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Abstract 

Late graft failure (LGF) without evidence of residual recipient cells is a serious complication 

after allogeneic hematopoietic stem cell transplantation (allo-SCT) and often requires stem 

cell infusion from the same donor when the patient fails to respond to conventional therapies. 

We screened the peripheral blood (PB) of 14 patients who developed donor-type LGF at 

2–132 months after allo-SCT for the presence of the markers for immune-mediated bone 

marrow (BM) failure. Increased glycosylphosphatidyl inositol-anchored protein-deficient 

(GPI-AP
-
) leukocytes, which accounted for 0.009–0.147% of the total granulocytes, were 

detected in five (severe aplastic anemia, n=2; follicular lymphoma, n=1; acute lymphoblastic 

leukemia, n=1; and myelodysplastic syndromes [MDS], n=1) and 4.7–81.2% HLA-allele 

lacking leukocytes (HLA-LLs) were detected in two (acute myeloid leukemia, n=1; and MDS, 

n=1) patients. Three of the five patients with increased GPI-AP
- 
leukocytes were treated with 

antithymocyte globulin (ATG) and two patients achieved transfusion independence. These 

results suggest that immune-mechanisms that are similar to acquired aplastic anemia underlie 

condition of approximately half of the patients with donor-type LGF and that in patients with 

increased GPI-AP
-
 cells, donor-derived hematopoiesis may be restored by ATG therapy alone 

without donor stem cell infusion. 

Keywords: late graft failure, GPI-AP
-
 cells, HLA allele-lacking leukocytes, antithymocyte 

globlin  
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Introduction 

Late graft failure (LGF) without evidence of residual recipient cells is a serious complication 

after allogeneic hematopoietic stem cell transplantation (allo-SCT). Various factors, such as 

infections and chronic graft-versus-host disease (GVHD), are involved in the development of 

such donor-type LGF
1,2

. It is therefore difficult to identify the exact cause and to restore the 

graft function without performing a second transplant. One exceptionally treatable condition 

is immune-mediated bone marrow (BM) failure that is similar to acquired aplastic anemia 

(AA). This condition occurs during donor-derived hematopoiesis, and can be diagnosed by 

identifying immune markers in the peripheral blood (PB). The markers include 

glycosylphosphatidylinositol-anchored protein (GPI-AP)-deficient blood cells (GPI-AP
-
 

cells,
3,4

) and HLA allele-lacking leukocytes (HLA-LLs) due to copy number-neutral loss of 

heterozygosity in the short arm of chromosome 6 (6pLOH
5,6

) or missense mutations in the 

HLA alleles
7
, which can be found in 50% and 25% of patients with newly diagnosed AA, 

respectively. To determine how often such immune mechanisms are involved in the 

development of donor-type LGF, we retrospectively analyzed the laboratory data and clinical 

courses of patients who were referred to our clinic to undergo a closer examination for 

donor-type LGF. 
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Methods 

Patients 

During the eight-year period from 2007 to 2015, 17 patients with LGF after allo-SCT were 

referred to our clinic to undergo a closer examination for LGF. All patients showed initial 

engraftment but subsequently developed loss of a previously functioning graft defined by at 

least two cytopenic lines 
8
. The platelet count increased to 60×10

9
-205×10

9
/L before the 

development of LGF. Three of the 17 patients were diagnosed with LGF due to mixed 

chimerism, while the other 14 patients were diagnosed with donor-type LGF based on the 

absence of recipient-derived T cells, which was demonstrated by the amplification of short 

tandem repeat markers or a fluorescence in situ hybridization (FISH) analysis of the sex 

chromosomes. None of the 14 patients had apparent signs of GVHD, infections, or drug 

reactions at the time of LGF development. Eleven of the 14 patients were dependent on 

transfusions (eight on red blood cell and eight on platelet transfusions).The medical records 

(including the prevalence of increased GPI-AP
-
 cells and HLA-LLs) and treatment outcomes 

of the 14 patients with donor-type LGF were reviewed. The study protocol (No. 287) was 

approved by the Ethics Committee for Human Genome/Gene Analysis Research at Kanazawa 

University Graduate School of Medical Science. All of the patients provided their informed 

consent prior to participation in the study.  

The detection of GPI-AP
-
 cells and HLA-LLs 
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PB was collected from the patients at the time of the diagnosis and from the donor in Cases 1, 

3 and 6. To detect GPI-AP
-
 PNH-type cells, we performed high-sensitivity flow cytometry of 

the granulocytes and erythrocytes, as described previously
3
. The presence of ≥0.003% 

CD55
-
CD59

-
CD11b

+
 granulocytes or FLAER

-
CD11b

+
 granulocytes and ≥0.005% CD55

-
 

CD59
-
glycophorin-A

+
 RBCs was defined as an abnormal increase based on the reference 

ranges in healthy individuals
9
. In our previous study, none of 51 SCT recipients without graft 

failure showed an increase in the percentage of GPI-AP
-
 cells

 4
. For patients who did not show 

increased GPI-AP
-
 cells, we attempted to detect HLA-LLs. The expression of HLA-A on 

granulocytes, monocytes, B and T cells was analyzed by flow cytometry using a FACS Canto 

II (Becton Dickinson, Franklin Lakes, NJ, USA) with the FlowJo program (Tree Star, Ashland, 

OR, USA). This study used monoclonal antibodies specific for HLA-A24, A2, A26, and A31 

as well as the lineage marker antibodies specific for CD33 in granulocytes and monocytes, 

CD19 in B cells and CD3 in T cells, as described previously
5
. HLA-A allele lacking 

leukocytes were not detected in any of 8 SCT recipients who did not develop LGF. 

The SNP array analysis and the deep sequencing of the HLA-A gene 

PB was collected from the patient and the donor in Case 6. The DNA extracted from isolated 

granulocyte was subjected to genomic and allele-specific copy number analyses using 

GeneChip® 250K arrays (Affymetrix, Inc., Santa Clara, CA, USA), as previously 

described
10,11

. The genomic abnormalities responsible for the failure of HLA-A allelic 
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expression were also analyzed using Illumina MiSeq and HiSeq sequencing systems (Illumina, 

San Diego, CA, USA). 

The statistical analysis 

Overall survival (OS) was calculated as the number of months from the diagnosis of LGF 

until death or the last follow-up examination. The survival time was estimated by the 

Kaplan-Meier method and compared by a log-rank test. Two-sided P values were calculated, 

and P values of <0.05 were considered to indicate statistical significance. All of the statistical 

analyses were performed using the EZR software package (Saitama Medical Center, Jichi 

Medical University), a graphical user interface for the R software program (The R Foundation 

for Statistical Computing, version 2.13.0)
12

. 
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Results 

The prevalence of the immune markers in patients with LGF 

GPI-AP
-
 granulocytes ranging from 0.009–0.147% were detected in 5 of the 14 patients 

(35.7%, Figure 1). Five patients who did not show an increase in GPI-AP
-
 granulocytes and 

who were heterozygous for the HLA-A allele were subjected to FCM to detect HLA-LLs. 

4.7–81.2% HLA-LLs were detected in 2 of the 5 (40%) patients (Figure 2). All of the 14 

patients showed prominent thrombocytopenia at the onset of LGF, which gradually 

progressed to pancytopenia; their platelet counts were 7–40×10
9
/L (median 18.5×10

9
/L) and 

their neutrophil counts were 0.3–3.8×10
9
/L (median 0.9×10

9
/L).  

The clinical courses of the seven patients 

Table 1 summarizes the clinical characteristics of the seven patients who possessed immune 

markers. High-sensitivity flow cytometry detected small populations of CD55
-
 CD59

-
 cells or 

FLAER
-
 cells in the granulocytes at the development of LGF. The numbers denote the 

proportion of GPI-AP
-
 cells in the CD11b

+
 granulocytes. 

 Case 1’s clinical course was previously reported
4
. Briefly, 0.147% GPI-AP

-
 granulocytes 

(Figure 1) and 0.019% GPI-AP
- 
erythrocytes were detected in the PB of the patient after 2

nd
 

stem cell transplantation (SCT) for severe aplastic anemia (SAA) when the patient developed 

donor-type LGF. An increase in GPI-AP
-
 cells was not detected in the PB of the donor. We 

treated the patient with antithymocyte globulin (ATG) and cyclosporine. The patient achieved 
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a complete hematological recovery and has been in complete remission for 10 years after the 

ATG therapy. 

Case 2 had SAA. The patient was negative for increased GPI-AP
-
 cells and did not 

respond to ATG plus cyclosporine therapy. He underwent BM transplantation (BMT) from an 

unrelated donor whose HLA allele showed a 2-loci mismatch. Although his platelet count 

once increased to 96×10
9
/L on day 44 after BMT, it gradually decreased to 15×10

9
/L in 

parallel with the progression of anemia and leukocytopenia. A PB sample obtained at 7 

months after BMT showed 0.009% GPI-AP
-
 granulocytes (Figure 1). At 9 months after BMT, 

he was treated with rabbit ATG therapy (Thymoglobulin, 3.5 mg/kg × 5 days) and his 

pancytopenia improved after 2 months of the therapy (neutrophil count, 0.7×10
9
/L to 

1.1×10
9
/L; hemoglobin, 5.5 g/dL to 7.8 g/dL; platelet count, 15×10

9
/L to 23×10

9
/L; and 

reticulocyte count, 9.1×10
9
/L to 59.9×10

9
/L). Although the patient was 

transfusion-independent for 6 weeks, his pancytopenia progressed again at 4 months after 

ATG therapy. The patient required red blood cell transfusions twice a month and platelet 

transfusions once a week as of 24 February 2017. A blood analysis at his most recent 

examination revealed the following findings: neutrophil count, 0.7×10
9
/L; hemoglobin, 6.7 

g/dL; platelet count, 18×10
9
/L and reticulocyte count, 25.5×10

9
/L.  

Case 3 received PB stem cell transplantation (PBSCT) from an HLA-haploidentical son 

for the treatment of follicular lymphoma that was refractory to chemotherapy. When the 



10 

 

patient developed donor-type LGF at 7 years after PBSCT, 0.125% GPI-AP
-
 granulocytes 

(Figure 1) were detected in the PB of the patient. The patient’s donor was negative for 

increased GPI-AP
-
 cells. She received rabbit ATG therapy (3.75 mg/kg × 5 days) and 

cyclosporine (6mg/kg/day) at 2 weeks after the development of pancytopenia, but the severe 

neutropenia persisted and she did not respond to G-CSF. At 6 weeks after ATG therapy, she 

received an infusion of PBSCs (3.6×10
6
/kg CD34

+
 cells) from the original donor to promote 

hematological recovery. Her neutrophil count increased to 2.7×10
9
/L 68 days after the PBSC 

infusion without conditioning, but decreased to 0.1×10
9
/L again on day 134 after the infusion. 

She eventually received a conditioning regimen consisting of fludarabin (162 mg/m
2
), 

busulfan (6.4 mg/kg) and ATG (5 mg/kg) followed by a third PBSCT from the original donor 

at 6 months after ATG therapy. Her post-transplant course was uncomplicated and her 

complete blood cell counts were normal at 57 months after the third PBSCT. GPI-AP
-
 cells 

were undetectable when her blood was examined at one month after PBSCT.  

Case 4 was a 57-year-old woman who received HLA 2-loci-mismatched umbilical cord 

blood transplantation (CBT) for the treatment of acute lymphoblastic leukemia. When she 

developed donor-type LGF at 7 years after CBT, 0.011% GPI-AP
-
 granulocytes were detected 

in her PB (Figure 1). Because she declined ATG therapy, cyclosporine (6 mg/kg/day) was 

administered for 11 months without an appreciable response. In the four years since 

developing LGF, she has required red blood cell transfusions monthly due to persistent 
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pancytopenia.  

Case 5, a 25-year-old man, received a BMT from an HLA-matched unrelated donor for the 

treatment of MDS-refractory cytopenia of multilineage dysplasia (RCMD). His platelet count 

increased to 114×10
9
/L on day 44, but gradually decreased thereafter. When he was diagnosed 

with donor-type LGF on day 175 after the BMT, 0.016% GPI-AP
-
 granulocytes were detected 

in his PB (Figure 1). However, the patient chose to undergo a second BMT from an 

HLA-matched unrelated donor rather than IST, following conditioning with fludarabin (125 

mg/m²) and melphalan (140 mg/m²). The second BMT was successful and a sustained 

hematologic recovery was achieved. A laboratory analysis on October 26, 2016 revealed the 

following findings: neutrophil count, 2.7×10
9
/L; hemoglobin, 9.1 g/dL; and platelet count, 

96×10
9
/L.  

Case 6 was a 23-year-old woman who underwent PBSCT from her HLA-haploidentical 

father for the treatment of acute myeloid leukemia with FLT3-internal tandem duplication. 

After neutrophil engraftment on day 19, she developed a generalized skin rash and high fever. 

After severe acute GVHD (grade II) was diagnosed, methylprednisolone (2 mg/kg/day) was 

started on day 24 and her skin rash quickly resolved. Platelet engraftment occurred on day 27 

and her platelet count reached 119×10
9
/L on day 38. However, her platelet count gradually 

decreased thereafter, and when her platelet count fell to 33.0×10
9
/L on day 89, her PB was 

negative for GPI-AP
-
 cells. Since the patient’s donor was heterozygous for the HLA-A allele 
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(A2 and A24), we examined her PB granulocytes for the presence of HLA-LLs—15% of the 

total granulocytes were negative for HLA-A2. HLA-A2-lacking leukocytes were not 

detectable in the PB of her donor (Figure 2A).  

Since her thrombocytopenia was mild, she was observed and the administration of tacrolimus 

and prednisolone—which had been prescribed for acute GVHD treatment—was continued. 

Her platelet counts showed a slight increase and stabilized at around 100×10
9
/L thereafter. 

The HLA-A2-lacking leukocytes gradually increased and accounted for 81.2% of the total 

granulocytes on day 167, but the percentage subsequently decreased and became undetectable 

on day 287 (Figure 2B). Her platelet count remained stable at 31 months after PBSCT. To 

identify the mechanisms responsible for the lack of the HLA-A allele, the patient’s 

granulocytes obtained on day 118 were subjected to a single nucleotide polymorphism (SNP) 

array analysis and granulocytes obtained on day 126 were used for the deep sequencing of the 

HLA-A gene. The donor’s granulocytes were used as a control. We did not detect a copy 

number-neutral 6pLOH or structural gene mutations of HLA-A*02:01 (Supplementary Figure 

1).  

Case 7 was a 63-year-old man who received a HLA-2-loci-mismatched CBT for the 

treatment of RCMD. Neutrophil and platelet engraftment were achieved on days 18 and 43 

after CBT, respectively, and his platelet count increased to 139×10
9
/L on day 134. When the 

patient developed donor-type LGF at 21 months after CBT, 4% of the total monocytes were 
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HLA-A26-lacking (Figure 2A). He was treated with cyclosporine (6 mg/kg) for one month 

without effect and died of systemic adenovirus infection at two months after the initiation of 

treatment.  

The clinical courses of the seven patients (Cases 8-14) without immune markers 

The PB of seven patients did not show an increase in either of GPI-AP
-
 cells or HLA-LLs.  

They developed LGF at 3 to 84 months after SCT. Four of them suffered from severe 

pancytopenia and required frequent transfusions. Cases 8-10 were treated with cyclosporine 

and responded; however, Case 10 developed pancytopenia 5 months after the discontinuation 

of cyclosporine. Since a low percentage of recipient-derived lymphocytes appeared at the time 

of relapse, the patient was treated with donor lymphocyte infusion (DLI) and a good 

hematopoietic function was restored. Case 11, who was heavily dependent on red blood cell 

transfusions, responded to a dose escalation of tacrolimus, which was given as prophylaxis 

against GVHD. Case 12 received DLI from the original donor because graft failure caused by 

residual recipient lymphocytes, which were not be detected by a FISH analysis of the patient’s 

sex chromosomes, could not be excluded, and the pancytopenia resolved. Case 13 did not 

respond to anabolic steroids and died of diffuse pulmonary hemorrhage. Case 14’s LGF, 

which was associated with acute GVHD, was improved by corticosteroids and iron chelation 

therapy (Table 2). 

The HLA alleles of the patients and the donor 
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Table 3 shows the HLA alleles of the patients and their donors. Four donors of the seven 

patients possessed one of the four HLA class I alleles (A*02:01 and A*02:06) that we 

previously identified as being associated with susceptibility to AA
5
. An HLA-A allele 

(A*02:01) that was lost in the donor-derived granulocytes in Case 6 was not shared by the 

recipient; however, there was no evidence of residual recipient T cells. Figure 3 shows the OS 

of the 14 patients with donor-type LGF.  
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DISCUSSION 

The present study identified seven patients with donor-type LGF who possessed GPI-AP
-
 

cells or HLA-LLs that are known to reflect the immune pathophysiology of BM failure. In 

keeping with the proposed significance of the immune markers, two of the three patients who 

were treated with ATG showed a sustained or transient improvement of their hematopoietic 

function. The prevalence of the immune markers among the patients with donor-type LGF 

was 50%. Even the patients who were negative for the immune markers may have had 

immune-mediated BM failure because a good hematopoietic function was restored in four of 

the seven patients who were treated with cyclosporine or tacrolimus. It is therefore suggested 

that immune-mediated BM failure, which is similar to AA, may underlie donor-type LGF.  

The mechanism responsible for the development of immune-mediated BM failure is not 

clear. Cases 1 and 2 originally had SAA, while Cases 5 and 7 had MDS-RCMD, which could 

have been diagnosed as non-severe AA. The BM microenvironment of these patients may 

predispose SCT recipients to developing immune mediated BM failure. However, this 

hypothesis does not explain the development of BM failure in the other three patients who 

had hematologic malignancies before SCT. Alternatively, the donors might have had genes 

that were associated with susceptibility to immune-mediated BM failure. We previously 

revealed that four class I HLA alleles (A*02:01, A*02:06, A*31:01 and B*40:02) are 

associated with susceptibility to AA. HLA-DRB1*15:01 and 15:02 have also been shown to 
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be associated with immune-mediated BM failure
11

. With the exception of Case 7, all of the 

subjects in the present study possessed one of these high-risk HLA-alleles. Of note, Case 6 

did not possess any of the high-risk class I alleles but the patient’s donor possessed 

HLA-A*02:01, which was missing in 15% of the total granulocytes when the patient 

developed thrombocytopenia. In these patients with donor-type LGF, certain triggers (such as 

infections or drugs) might have induced the breakdown of immune tolerance to hematopoietic 

stem cells, leading to the development of BM failure. 

Both an SNP array analysis and the deep sequencing of the HLA-A gene failed to detect 

mutations in the HLA-A*02:01 that would have accounted for the lack of HLA-A2 in the 

Case 6’s granulocytes. Our recent analyses of the HLA-B*40:02 gene in AA patients 

possessing HLA-B*40:02-lacking granulocytes revealed various mutations in the aberrant 

granulocytes of all patients
13

. However, we previously experienced some patients whose 

granulocytes, which lacked HLA-A*31:01, did not show any mutations involving this A allele 

and did not express its mRNA (unpublished observation). Thus, epigenetic mechanisms may 

have been involved in the transient appearance of HLA-A2-lacking granulocytes in Case 6. 

LGF has been defined as hematopoietic failure secondary to neutrophil engraftment. Some 

patients who meet this criterion do not achieve platelet engraftment and require regular 

platelet transfusions. We excluded patients with persistent thrombocytopenia from the present 

study because their hematopoietic failure is primarily caused by the poor engraftment of 
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donor HSCs due to the infusion of an insufficient number of HSCs. In reality, none of eight 

patients with persistent thrombocytopenia showed an increase in GPI-AP
-
 cells or HLA-LLs 

(unpublished observation). Similar to acquired AA, thrombocytopenia was the first sign of 

LGF in the seven patients with increased numbers of GPI-AP
-
 cells or HLA-LLs. It is 

therefore important to bear in mind that progressive thrombocytopenia precedes 

immune-mediated hematopoietic failure in donor hematopoiesis. 

In conclusion, immune-mediated BM failure similar to AA is a common in patients with 

donor-type LGF after allo-SCT; GPI-AP
-
 cells or HLA-LLs were detected in half of the 

patients. This immune-mediated BM failure may be potentially curable by ATG, without the 

need for a second SCT. When donor-type LGF occurs without preceding infections, GVHD or 

exposure to drugs, the patient’s blood should be screened for the presence of GPI-AP
-
 cells 

and HLA-LLs using high-sensitivity flow cytometry.  
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Table 1. The characteristics of the seven patients who had GPI-AP⁻ cells or HLA-LLs. 
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Table 2. The characteristics of the seven patients who did not have GPI-AP⁻ cells or 

HLA-LLs. 
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Table 3. The HLA alleles of the donors and recipients of the seven patients who had 

GPI-AP⁻ cells or HLA-LLs. 
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Figure Legends 

Figure 1. The Analysis of the GPI-AP
-
 cells at the development of LGF. 

 

Figure 2. The analysis of HLA-LLs at the development of LGF and the clinical course of 

Case 6. 

(A) HLA-allele lacking leukocytes (HLA-LLs) were detected by flow cytometry. The 

numbers denote the proportion of HLA-LLs in the specific leukocyte compartment. In Case 6, 

HLA-A2-lacking leukocytes were detected in the granulocytes at the development of LGF, 

but none of them were detected in the donor. In Case 7, HLA-A26-lacking leukocytes were 

detected in the monocytes at the development of LGF. 

(B) In Case 6, acute GVHD developed on day 24 and thrombocytopenia developed on day 45 

after SCT. The proportion of HLA-A2-lacking leukocytes in granulocytes was followed. The 

percentage became undetectable on day 287.  

 

Figure 3. The OS of the 14 patients who were diagnosed with donor-type LGF according 

to the status of their GPI-AP
-
 cells or HLA-LLs. 
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Supplementary Figure 1. SNP array analysis of chromosome 6 and deep sequencing of 

the HLA-A*02:01 gene 

 

 

(A) A copy number-neutral 6pLOH was not detected in the recipient’s granulocytes.  

(B) Alignment view of HLA-A*02:01 allelic sequences from the recipient’s granulocytes 

(Recipient) and the donor’s granulocytes (Donor). The allelic sequences were phased by 

phase-defined HLA gene sequencing pipeline
1
. In HLA-A gene region, allelic sequences of 

phased HLA-A*02:01 sequence of recipient and donor were completely identical and rare 

somatic mutations were not observed either. 
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