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A B S T R A C T

Rationale: Induced pluripotent stem cells (iPSCs) have been generated from patients with various forms of
disease, including Danon disease (DD); however, few reports exist regarding disease-specific iPSCs derived from
clinically divergent monozygotic twins.
Objective: We examined the characteristics of iPSCs and iPSC-derived cardiomyocytes (iPSC-CMs) generated
from clinically divergent monozygotic female twins with DD.
Methods and results: We generated iPSCs derived from T-cells isolated from clinically divergent, 18-year-old
female twins with DD harboring a mutation in LAMP2 at the intron 6 splice site (IVS6 + 1_4delGTGA). Two
divergent populations of iPSCs could prepare from each twin despite of their clinical divergence: one with wild-
type LAMP2 expression (WT-iPSCs) and a second with mutant LAMP2 expression (MT-iPSCs). The iPSCs were
differentiated into iPSC-CMs and then autophagy failure was observed only in MT-iPSC-CMs by electron mi-
croscopy, tandem fluorescent-tagged LC3 analysis, and LC3-II western blotting. Under these conditions, X-
chromosome inactivation (XCI) was determined by PCR for the (CAG)n repeat in the androgen receptor gene,
revealing an extremely skewed XCI pattern with the inactivated paternal wild-type and maternal mutant X-
chromosomes in MT-iPSCs and WT-iPSCs, respectively, from each twin.
Conclusion: Regardless of their clinical differences, we successfully established two sets of iPSC lines that ex-
pressed either wild-type or mutant LAMP2 allele from each monozygotic twin with DD, of which only the
populations expressing mutant LAMP2 showed autophagic failure.

1. Introduction

Danon disease (DD) is an X-linked disorder clinically characterized
by hypertrophic cardiomyopathy, skeletal myopathy, and intellectual
disability induced by mutations in LAMP2[1,2]. Female carriers are
usually asymptomatic in childhood, although a fixed percentage of
patients show symptoms in adulthood with varying degrees of severity
[3]. We recently reported a rare case of monozygotic female twins with
DD harboring a LAMP2 splicing mutation (IVS6 + 1_4delGTGA) [4].
Interestingly, the patients showed divergent clinical appearance despite
a similar environment [4].

Induced pluripotent stem cells (iPSCs) are generated by

reprogramming somatic cells and capable of self-renewal and differ-
entiation into all three germ layers [5,6]. Since then, various disease-
specific iPSCs have been created [7–11], including those of X-linked
disorders—such as Duchenne muscular dystrophy, hemophilia, and DD
[12–14]. A few reports have used female carrier-derived iPSCs to model
X-linked disease [15–18], since X-chromosome inactivation (XCI) is a
unique feature of female iPSCs. Interestingly, the generated iPSCs
showed different XCI patterns and phenotypes, and because of the
hidden clinical phenotype, whether the generated iPSC line modeled
the carrier or not is difficult to evaluate. Furthermore, whether the
iPSCs from the patients with X-linked disease with clinical phenotype
demonstrates equivalent phenotype to the iPSCs from the carrier with
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X-linked disease in vitro or not is still unknown. Additionally, previous
reports demonstrate that wild-type and mutant iPSCs could be gener-
ated from single set of Rett syndrome monozygotic female twins
[10,16]; however, it remains also unknown whether this is true for DD.

In the present study we generated wild-type and mutant iPSCs from
clinically divergent monozygotic female twins with DD and examined
the association between LAMP2 mutations and clinical presentation on
the phenotype of iPSC-derived cardiomyocytes (iPSC-CMs).

2. Materials and methods

2.1. Patient characteristics

The present study examined monozygotic female twins with DD
(Fig. 1A, Online Fig. 1, and Online Table 1). Echocardiography and
cardiac magnetic resonance imaging (MRI) revealed cardiac hyper-
trophy in II-2, but not in II-3. II-2 exhibited the signs of Wolff-Par-
kinson-White syndrome with slightly elevated aspartate

aminotransferase, lactate dehydrogenase and brain natriuretic peptide
levels of 62 IU/L, 578 IU/L, and 56.1 pg/mL, respectively. II-3 showed
no significant findings by echocardiography, cardiac MRI, electro-
cardiogram, and blood analysis [4]. This study was approved by the
Research Ethics Committee of Kanazawa University (Kanazawa, Japan)
and written consent obtained from each patient. All procedures were
conducted in accordance with Declaration of Helsinki and the Guide for
the Care and Use of Laboratory Animals published by the US National
Institutes of Health (NIH Publication No. 85-23, revised 1996).

2.2. iPSC derivation and culturing

iPSCs were generated from circulating T-cells derived from each
patient and control volunteer (healthy 33 year-old male) as previously
reported [19]. Briefly, peripheral blood mononuclear cells (PBMCs)
were isolated from whole blood samples by density gradient cen-
trifugation with Ficoll-Paque PREMIUM Reagent (GE Healthcare, Little
Chalfont, UK) according to the manufacturer's instructions. The cells

Fig. 1. Characteristics of the patients and generated iPSCs.
A, Patient pedigree and echocardiography. II-1 is the proband and II-2 and II-3 are monozygotic twins. II-2 is a symptomatic female. (Partially modified from reference 4.). II-2 showed
obvious left ventricular hypertrophy, although the other did not show hypertrophy. B, Alkaline phosphatase and pluripotency marker expression were assessed by immunohistochemistry
(scale = 100 μm) and RT-PCR. C, Triploblastic potential was monitored by immunofluorescence. Scale = 100 μm. D, Deletion of GTGA at the 3′ end of exon 6 was confirmed by genomic
DNA sequencing of iPSCs from II-2 and II-3.
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were cultured at 37 °C in 5% CO2 with plate-bound anti-CD3 mono-
clonal antibody (mAb) (BD Pharmingen, NJ) in KBM502 medium
(Kohjin Bio, Saitama, Japan) containing 175 JRU/mL rIL-2 to induce T-
cell proliferation.

After 6 days of culture, activated PBMCs were collected and replated
at 1.5 × 106 cells/well in a new 6-well plate coated with anti-CD3
mAb, incubated for an additional 24 h, and then infected with Sendai
virus vectors expressing OCT3/4, SOX2, KLF4, and c-MYC (Cyte-Tune
iPS Reprogramming kit; Denavec, Ibaraki, Japan). The medium was
changed 24 h post-infection. At 48 h post-infection, the cells were col-
lected and transferred to a 10 cm-dish containing mitomycin C (Sigma-
Aldrich, MO)-treated mouse embryonic fibroblasts (MEFs) at 1.0 × 106

cells/dish and cultured for an additional 24 h before the medium was
changed to iPSC medium containing DMEM/F12 (Sigma-Aldrich), 20%
knock-out serum replacement (KSR; Invitrogen, CA), 1 mM L-glutamine
(Invitrogen), 1 mM non-essential amino acids (Sigma-Aldrich), 0.1 mM
β-mercaptoethanol, 50 U/mL penicillin, 50 μg/mL streptomycin
(Sigma-Aldrich), and 4 ng/mL basic fibroblast growth factor (bFGF;
WAKO, Osaka, Japan). The iPSCs were maintained on mitomycin C-
treated MEFs in iPSC medium, which was changed every 2 days. Cells
were passaged with 1 mg/mL collagenase IV (Invitrogen) every 7 days.

2.3. Immunofluoresence

Immunofluorescent staining was performed as previously reported
with slight modifications [20]. Briefly, cells were fixed with 4% for-
maldehyde in PBS for 15 min, permeabilized with 0.1% Triton X-100 in
PBS for 15 min, and blocked with 1% Bovine serum albumin in PBS for
30 min before incubating for 2 h with the following primary antibodies:
Nanog (rabbit polyclonal; ReproCELL, Kanagawa, Japan), OCT3/4
(mouse monoclonal; Santa Cruz Biotechnology, Dallas, TX), TRA-1-60
(mouse monoclonal; Santa Cruz Biotechnology), TRA-1-81 (mouse
monoclonal; Santa Cruz Biotechnology), SSEA-4 (mouse monoclonal;
Santa Cruz Biotechnology), LAMP2 (mouse monoclonal; Abcam, Cam-
bridge, UK), troponin T (rabbit polyclonal; Abcam), α-actinin (mouse
monoclonal; Sigma-Aldrich), Nkx2.5 (rabbit polyclonal; Santa Cruz
Biotechnology), H3K27me3 (rabbit polyclonal; Merck Millipore, MA)
and H3K9me2 (mouse monoclonal; Abcam).

Primary antibodies were detected with Alexa Fluor 488-conjugated
goat anti-rabbit IgG (H + L), Alexa Fluor 568-conjugated goat anti-
mouse IgG (H + L), and Alexa Fluor 488-conjugated goat anti-mouse
IgM secondary antibodies for 1 h. DAPI (Dojindo Laboratories,
Kumamoto, Japan) was used for counterstaining. All procedures were
performed at room temperature. Cells were also alkaline phosphatase
stained by Fast Red Tablets (Roche, Basel, Switzerland). Samples were
imaged using an LSM 510 META confocal microscope (ZEISS,
Overkochen, Germany).

2.4. Reverse transcriptase-polymerase chain reaction (RT-PCR)

Pluripotency and cardiomyocyte (CM) gene expression were also
examined by RT-PCR. Briefly, RNA was isolated using RNeasy Mini Kit
(Qiagen, Venlo, Netherland) and reverse-transcribed into cDNA with
QuantiTect (Qiagen). The primers used for PCR are shown in Online
Table 2. LAMP2 50F-864R are primer set for exons 1–5 and LAMP2
716F-1493R are for exons 6–9. All PCR products were electrophoresed
using a 2% agarose gel and visualized with ethidium bromide.

2.5. Germ layer differentiation in vitro

Germ layer differentiation was assessed in vitro by culturing iPSCs
in low-attachment plates with iPSC medium to form embryoid bodies.
After one week in suspension, the embryoid bodies were cultured on
0.1% gelatin-coated glass bottom dishes for one week and then fixed
and stained with Nestin (rabbit polyclonal; Sigma-Aldrich), SOX17
(mouse monoclonal; R&D systems, MN), smooth muscle actin (SMA,

mouse monoclonal; Dako, Glostrup, Denmark).

2.6. Genomic sequencing

Genomic DNA was isolated from iPSCs using a Gentra Puregene Cell
Kit (Qiagen) and amplified with intronic primers for exons 1–9 of
LAMP2 (Online Table 3). PCR products were electrophoresed using a
2% agarose gel and purified using a QIA quick Gel Extraction kit
(Qiagen) for sequencing on an ABI PRISM 310 system (Applied
Biosystems, Santa Clara, CA) to confirm mutation status.

2.7. Generation of iPSC-CMs

The iPSCs were differentiated to CMs by sequential targeting of the
WNT pathway as previously described with slight modifications [21].
Briefly, iPSCs were cultured in feeder-free Matrigel (BD Biosciences,
NJ)-coated 6-well plates with mTeSR1 medium (STEMCELL Technolo-
gies, Vancouver, Canada) and maintained two passages to deplete
MEFs. Cells were plated at 1.0 × 106/well in 6-well plates with
mTeSR1 media containing 5 μM Y27632 (Cayman Chemical Company,
Ann Arbor, MI). The medium was replaced daily for 5 days, and then
changed to 2 mL of RPMI (Thermo Fisher Scientific, Waltham, MA)
containing B27-insulin (Thermo Fisher Scientific) and 12 μM of the
GSK-3 inhibitor CHIR99021 (Focus Biomolecules, Plymouth Meeting,
PA)—defined as day 0. On day 1, the medium was changed to 2 mL
RPMI/B27-insulin, then 1 mL of the existing medium was replaced with
1 mL fresh RPMI/B27-insulin and 5 μM of the Wnt inhibitor IWP2
(Tocris Biosciences, Bristol, UK) was added on day 3. On day5, the
medium was replaced with fresh medium without IWP2 and subse-
quently changed every 2–3 days with RPMI/B27 + insulin (Thermo
Fisher Scientific). On day 22, the medium was changed to glucose and
pyruvate-free DMEM (Invitrogen) containing 4 mM lactate [22] to
purify the CM-like cells. The medium was changed back to RPMI/
B27 + insulin around day 26 after visual confirmation of CM-like cell
purification. All cells were used in experiments at day 30–40.

2.8. iPSC-CMs size measurement

The single iPSC-CMs were re-seeded to the fibronectin (BD
Biosciences) coated glassbottom dish and immunolabeled for anti-tro-
ponin T as described above. The surface areas of the single cardio-
myocytes were measured by using computerized morphometric system
(ImageJ software, NIH).> 50 troponin T positive iPSC-CMs were
scored.

2.9. Detection of cell apoptosis

For detection of apoptosis, the iPSC-CMs were dissociated to single
cells using TrypLE™ Select (Thermo Fisher Scientific) and were stained
with Annexin V, Alexa Fluor™ 488 conjugate (Thermo Fisher Scientific)
and the viability dye 7-AAD (Thermo Fisher Scientific). The proportion
of Annexin V-positive, 7-AAD negative cells was measured by flow
cytometry (Guava® easyCyte™ Flow Cytometers (Merck Millipore)). The
data were analyzed using guava Soft 2.7 software. Also, TUNEL (In Situ
Cell Death Detection Kit, TMR red, Sigma-Aldrich) was performed on
fixed and permialized cells according to the manufacturer's instructions.
This was followed by immunostaining for troponin T.

2.10. Western blotting

Cells were lysed in Pierce RIPA Buffer (Thermo Fisher Scientific)
containing Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific).
Proteins (5 μg) were electrophoresed with 7.5% precast polyacrylamide
gels (e-PAGEL, Atto-Tec, Tokyo, Japan) and transferred to PVDF (Atto-
Tec). The blots were probed with anti-LAMP2 antibody and anti-alpha
tubulin antibody (mouse monoclonal; Sigma-Aldrich) as a loading
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standard using iBind™ Western Systems (Thermo Fisher Scientific).

2.11. In vitro autophagy analysis

Western blot and autophagic vacuole (AV) maturation were eval-
uated to assess autophagy dysfunction. For western blotting, whole cell
lysates (20 μg) from iPSC-CMs treated with or without protease in-
hibitors (pepstatin A (Peptide Institute, Osaka, Japan) and E64d
(Peptide Institute)) for 24 h were loaded on 4–20% gradient SDS-PAGE
denaturing gels and transferred to PVDF nylon membrane using a
Trans-Blot Turbo™ Blotting system (Bio-Rad, Carlsbad, CA). The mem-
branes were blocked with 1% non-fat dry milk in PBS, and then probed
with anti-LC3B (rabbit polyclonal; Medical & Biological Laboratories
Co., Nagoya, Japan) primary antibody overnight at 4 °C and re-probed
with anti-GAPDH antibody (Sigma-Aldrich) as a loading standard after
the stripping the previous antibody. AV maturation was evaluated by
tandem fluorescent-tagged LC3 (tfLC3) assay (BacMam mRFP-GFP-
LC3B; Thermo Fisher Scientific). Briefly, cells were transduced for 48 h
according to the manufacturer's instructions. After 2 h of starving, cells
were fixed and counterstained. Early and mature AVs in 50 individual
cells were evaluated by confocal microscopy and analyzed with ZEN
software (ZEISS).

2.12. Transmission electron microscopy (TEM)

iPSC-CMs sections were imaged with a HITACHI H7650 (HITACHI,
Tokyo, Japan) and Hitachi EMIP software (HITACHI). Only cells with
visible cardiac muscle striations were assessed.

2.13. X-chromosome inactivation

X chromosome status was examined by presence of trimethyl-his-
tone H3 (Lys27) (H3K27me3) foci in immunofluorescent staining and
heterozygous (CAG)n repeats in exon 1 of the X-linked human androgen
receptor (AR) gene. Briefly, isolated genomic DNA was treated with
sodium bisulfite with a Methylamp DNA Modification Kit (Epigentek,
NY). M-PCR and U-PCR primer sets (Online Table 4) were used to
amplify the methylated and unmethylated AR alleles on the inactive
and active X-chromosomes, respectively [23,24]. Amplification with
the M-PCR primers will occur if the CpG dinucleotides on exon 1 of AR
gene are methylated, and a product will be obtained only when the X
chromosome is inactive, since the methylation of this region is corre-
lated with X inactivation. Likewise, amplification with the U-PCR pri-
mers will occur if the CpG dinucleotides of AR gene are unmethylated,
and a product will be obtained only when the X chromosome is active.
The M-PCR and U-PCR forward primers were labeled at the 5′ end with

a 6-carboxyfluorescein. The PCR products (1 μL) were mixed with
0.3 μL size standard (GeneScan 500LIZ dye Size Standard; Thermo
Fisher Scientific), 23.5 μL Hi-Di formamide (Thermo Fisher Scientific),
and 1.2 μL nuclease-free water. DNA bands were detected using an ABI
PRISM 310, and peak patterns were visualized using GeneMapper
software (Applied Biosystems). Skewed inactivation was based on the
calculated ratio between alleles in digested DNA as follows: ≥75%
(skewed), ≥80% (highly skewed), ≥90% extremely skewed [25].

2.14. Statistical analysis

Continuous variables are expressed as mean ± standard error of
the mean (SEM). Statistical comparisons between two groups were
performed using student t-test. P < 0.05 was considered statistically
significant.

3. Results

3.1. Generation of iPSCs and iPSC-CMs

Typical embryonic stem cell-like iPSC colonies appeared around
20 days after gene transduction by Sendai viruses. The iPSC colonies
expressed ALP and the pluripotency markers Oct3/4, Nanog, TRA1–61,
TRA1–80, and SSEA-4 as determined by immunofluorescence and RT-
PCR (Fig. 1B). The embryoid bodies formed from iPSCs stained positive
for the triploblastic differentiate markers Nestin, SMA, and hSOX17
(Fig. 1C). A heterozygous 4-bp deletion in LAMP2 at the intron 6 splice
site (IVS6 + 1_4delGTGA) was identified in 22 iPSCs lines derived from
II-2 (II-2-iPSCs) or II-3 (II-3-iPSCs) as previously reported (11 lines
each; Fig. 1D) [4].

II-2-iPSCs and II-3-iPSCs started spontaneously contracting around
14 days after differentiation into cardiomyocytes (Supplementary video
1). Immunofluorescent staining revealed a marked expression in the
cardiac transcription factor NKX2.5 and the sarcomeric proteins α-
sarcomeric actinin and troponin T (Fig. 2A). Gene expression analysis
showed an upregulation of the cardiac transcription factors, myofila-
ments, and hormones, including GATA4, NKX2.5, TNNT2, MYL7, MYL2
[26], and BNP (Fig. 2B) [14].

3.2. Characteristics of iPSC-CMs expressing wild-type and mutant LAMP2
from both II-2 and II-3

When iPSC-CMs were stained with LAMP2 antibody from both
subjects, some lines showed aggregated signals around the nucleolus
(WT-iPSCs-CMs), whereas others had no visible LAMP2 expression (MT-
iPSCs-CMs) (Fig. 3A). We then selected one line each from the two

Fig. 2. Generation of iPSC-CMs.
A, Immunofluorescence (scale = 50 μm) and B, RT-PCR analysis of cardiomyocyte marker expression in both II-2 and II-3 iPSC-CMs.
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patients for western blot analysis. Notably, a ~110 kDa band consistent
with LAMP2 was clearly observed in WT-iPSCs, whereas no such band
was found in MT-iPSC lines (Fig. 3B). Subsequent RT-PCR analysis re-
vealed that WT-II-2-iPSCs and WT-II-3-iPSCs expressed the expected
777 bp amplicon, while those of MT-II-2-iPSCs and MT-II-3-iPSCs were
only around 650 bp (Fig. 3C) with LAMP2 716F-1493R primers. Se-
quence analysis confirmed that the transcriptional product from WT-
iPSCs was normal, whereas exon 6 was skipped in MT-iPSCs (Fig. 3D).
Interestingly, the cell surface area of single MT-iPSC-CMs is sig-
nificantly larger than that of WT-iPSC-CMs (Fig. 3E). We found no
significant difference in cell apoptosis between MT- and WT-iPSC-CMs
in the flow cytometry assay by means of annexin V and 7-AAD and
TUNEL assay (Online Fig. 2).

3.3. MT-iPSC-CMs exhibited impaired autophagy

We next examined autophagic function in the four types of iPSCs
(-CMs). First, we evaluated the changes in the LC3-I and LC3-II ex-
pression in the presence of lysosome protease inhibitors (pepstatin A
and E64d). No difference in LC3-II expression and LC3-II/LC3-I ratio
was found between WT- and MT-iPSCs (Fig. 4A–C) with or without
protease inhibitors, however, the same treatment increased LC3-II le-
vels and LC3-II/LC3-I ratio specifically in WT-iPSC-CMs (Fig. 4D–F) and
not in MT-iPSC-CMs describing abnormal autophagic maturation in
MT-iPSC-CMs according to previous report [27].

Moreover, tfLC3 assay showed both immature and mature AVs in
WT-iPSC-CMs; however, MT-iPSC-CMs almost exclusively contained
early AVs (Fig. 4G and H). All four iPSC-CM lines exhibited sarcomere
structures on TEM. Interestingly, MT-II-2-iPSC-CMs and MT-II-3-iPSC-
CMs showed a significant accumulation of intracytoplasmic vacuoles,

Fig. 3. Characteristics and LAMP2 mRNA and protein expression in iPSC-CMs.
A, Immunofluorescence showed some of the iPSC-CMs from each subject had aggregated LAMP-2 signals around the nucleus (WT-iPSC-CMs), however, other lines have no LAMP2
expression (MT-iPSC-CMs) (scale = 50 μm). B, Western blotting showed apparent LAMP2 protein expression in WT-iPSC-CMs but not in MT-iPSC-CMs. C, MT-iPSCs expressed amplicons
around 650 bp with LAMP2 716F-1493R primers, which was smaller than expected (777 bp) on RT-PCR. D, Exon 6 skipping was proved in MT-iPSCs by cDNA sequencing. E, The cell
surface area of the single MT-iPSC-CMs is significantly larger than that of WT-iPSC-CMs.
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which were absent in WT-II-2-iPSC-CM and WT-II-3-iPSC-CM lines
(Fig. 4I). As such, the vacuolation in MT-iPSC-CMs is likely to result
from a failure in AV maturation owing to an absence of LAMP2 protein.

3.4. X chromosome inactivation in iPSC lines

We could confirm H3K27me3 foci by immunofluorescent staining in
all II-2-iPSC and II-3-iPSC lines (Fig. 5A) describing one of the X
chromosomes was inactivated. Immunostaining for dimethyl-histone
H3 (Lys9) revealed homogeneous staining of the nucleus with no focus
in both MT- and WT-iPSC lines (Online Fig. 3).

In the first, AR methylation assays were performed to PBMCs from
the parents of the twins. The maternal and the paternal X chromosomes
can be distinguished by polymorphism of the (CAG)n repeat element. In
fact, modified DNA obtained from their father was only amplified by
the U-PCR primer set with the peaks around 202 bp but not by M-PCR
primer set. Likewise, modified DNA from their mother was amplified
both by the U-PCR and M-PCR primer sets with the peaks around 193
and 202 bp. (Online Fig. 2). This indicated that the X chromosome with
longer (CAG)n repeats in exon 1 of the AR gene was paternal and the X
chromosome with shorter (CAG)n repeats in exon 1 of the AR gene was
maternal. Interestingly, AR methylation assays revealed extremely
skewed XCI patterns in all of the iPSC lines evaluated, which were not

found in the isolated PBMCs. In addition, MT-iPSCs displayed a me-
thylated (inactivated) X chromosome of paternal origin, whereas WT-
iPSCs harbored a methylated (inactivated) X chromosome of maternal
origin, regardless of the twin from which they derived (Table 1 and
Fig. 5B).

4. Discussion

In the present study, we successfully generated iPSCs from mono-
zygotic twins with DD (II-2 and II-3) that showed divergent clinical
phenotypes especially regarding cardiac phenotypes. Under these con-
ditions, the generated iPSCs could be categorized into 4 groups—MT-II-
2-iPSCs, WT-II-2-iPSCs, MT-II-3-iPSCs, and WT-II-3-iPSCs—where MT-
iPSCs and WT-iPSCs from both twins expressed mutant or wild-type
LAMP2, respectively. Autophagy failure was observed only in MT-iPSC-
CMs by tandem fluorescent-tagged LC3 analysis and LC3-II western
blotting. Moreover, the intracytoplasmic vacuoles which are common
findings in the histological sections of the heart of the patients with DD
were also observed in MT-iPSC-CMs from each twin. Under these con-
ditions, the existence of H3K27me3 foci revealed that one of the X
chromosomes was inactivated and that there was no impairment of
dosage compensation, which is a mechanism to equalize the expression
of X-chromosome in males and females. In combination with the

Fig. 4. Autophagic function of iPSC-CMs.
A–C, LC3 Western blotting in iPSCs. Protease inhibitor did not increase LC3-II level or LC3-II/LC3-I ratio significantly in WT-iPSCs nor MT-iPSCs. D–F, LC3 Western blotting in iPSC-CMs.
LC3-II level and LC3-II/LC3-I ratio in WT-iPSC-CMs were significantly increased in the presence of protease inhibitors but not in MT-iPSC-CMs. G, H, Vacuole maturation was monitored
with tfLC3 assays. WT-iPSC-CMs had both early (yellow) and mature (red) autophagic vacuoles (AVs). In contrast, MT-iPSC-CMs had significantly less number of mature AVs than that of
WT-iPSC-CMs. Scale = 50 μm. I, Transmission Electron Microscopy revealed significant accumulation of intracytoplasmic vacuoles in MT-iPSC-CMs, although, there were few vacuoles in
WT-iPSC-CMs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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H3K27me3 immunostaining, AR methylation assay revealed that the
normal paternal X chromosome was inactivated in MT-iPSC-CMs. This
inactivation could elucidate the result that only MT-iPSC-CMs from
both twins demonstrated in vitro phenotypes of DD.

The autophagy impairment was detected in the MT-iPSC-CMs.
Moreover, MT-iPSC-CMs had larger cell surface area than that of WT-
iPSC-CMs. According to the previous study, altered autophagy was in-
dicated not only in the autophagy related gene defecting disease like
DD but also in the sarcomeropathy related hypertrophic cardiomyo-
pathy [28]. Also, several cardiac storage disorders demonstrate cardiac
hypertrophy [29,30]. Especially, the autophagic vacuoles of DD are
strongly related to the alteration of autophagy [2]. Therefore, the car-
diomyocyte hypertrophy subsequent to the autophagy impairment of
MT-iPSC-CMs contributed to the hypertrophic cardiomyopathy of pa-
tient II-2. Direct sample of the cardiomyocyte of the twins to evaluate
the XCI patterns and the morphologic differences is necessary to

approve our hypotheses.
There was no significant difference in cell apoptosis between MT-

and WT-iPSC-CMs in the present study, although the previous study had
shown that Danon iPSC-CMs displayed markedly higher TUNEL
staining than WT control lines [14]. One of the reasons for the differ-
ence can be explained by the differences in the site of gene mutation.
The additional stress that induces further apoptosis may cause apop-
totic difference between MT- and WT-iPSC-CMs in our experimental
system [31].

The human LAMP2 gene is located on chromosome Xq24 and its
pre-mRNA is alternatively spliced into three isoforms. Translated
LAMP2 variants are single-pass lysosomal membrane proteins involved
in autophagic flux by contributing the autophagosome/lysosomal
membrane interactions and autophagosome clearance. Interestingly,
impairment in autophagosome maturation was shown in MT-iPSC-CMs
but not in MT-iPSCs, although the LAMP2 mutation was already de-
monstrated on MT-iPSCs. Possible reasons for the phenomenon are as
follows. First, CMs exhibit abundant LAMP2 protein ex-
pression—particularly the LAMP-2B isoform [32]. Second, in CMs,
autophagy occurs at basal levels and the basal autophagy play a critical
role in cardiomyocyte function and survival [33,34]. Last, it is well
known that mitochondria are abundant in CMs. The most recent study
showed the mitochondrial damage/dysfunction and incomplete mito-
phagy contribute to the disruption of macroautophagy in iPSC-CMs
derived from patient with DD [35]. From these observations, the ob-
served differences in LAMP2 expression, autophagic activity, and the
amount of mitchondria might affect the impaired autophagy in both
MT-iPSC-CMs but not in MT-iPSCs from each twin with DD.

In the present study, II-2 and II-3 were identical twins and they both
have mutated LAMP2, however, only II-2 showed hypertrophic cardi-
omyopathy. The difference in the clinical phenotype might also explain
from single nucleotide polymorphism of the twins. Nevertheless,

Fig. 5. X-chromosome inactivation (XCI) status of generated iPSCs.
A, H3K27me3 immunostaining in iPSCs. H3K27me3 foci were detected in all the lines of generated iPSCs. (II-2 and II-3 iPSCs). B, AR methylation assay. The XCI patterns of peripheral
blood mononuclear cells (PBMCs) were not skewed. Different from them, the XCI patterns of MT-iPSCs were extremely skewed that X chromosome of paternal origin (Xp) was inactivated
and X chromosome of maternal origin (Xm) was activated. Opposed to MT-iPSCs, Xm was extremely inactivated and Xp was extremely activated on WT-iPSCs regardless of their host. Size
standard (yellow peak) = 200 bp. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
X-chromosome inactivation (XCI) patterns of peripheral blood mononuclear cells
(PBMCs) and induced pluripotent stem cells (iPSCs) assessed by AR methylation assay.

Cell lines XCI pattern
ratio

Assessment Active X chromosome
origin

II-2-PBMCs 29:71 Not skewed –
II-3-PBMCs 29:71 Not skewed –
MT-II-2-iPSCs 99:1 Extremely

skewed
Mother

WT-II-2-iPSCs 0:100 Extremely
skewed

Father

MT-II-3-iPSCs 98:2 Extremely
skewed

Mother

WT-II-3-iPSCs 0:100 Extremely
skewed

Father
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considering the result that we could generate similar MT- and WT-iPSCs
from each twin, the epigenetic difference represented by X chromosome
inactivation probably contributes to the distinct clinical phenotype.
Furthermore, the clinical divergency of the twins did not correlate to
the in vitro iPSC-CMs phenotype, which led us to two hypotheses. First,
different organs in an individual have distinct XCI patterns [36]. In
other words, it is difficult to estimate the XCI patterns of certain organ
from clinical phenotype in other organs caused by X-linked disease.
Indeed, II-2 and II-3 had similar non-skewed XCI patterns in peripheral
blood leukocytes and both LAMP2-negative and LAMP2-positive gran-
ulocytes were observed by flow cytometry in spite of their different
clinical cardiomyopathy phenotypes [4].

Second, regardless of XCI patterns of the host somatic cells, the state
of X chromosome changes dynamically during generation of human
female iPSCs. Successful reprogramming of differentiated somatic cells
is thought to require epigenetic remodeling, including reactivation of
the inactive X [37]. According to the previous reports [15,38,39],
random re-inactivation of one X chromosomes occurs subsequent to X
chromosome reactivation on human iPSCs, suggesting that the XCI
states are reset by reprograming, explaining why these MT- and WT-
iPSCs (−CMs) had different XCI. Thus, our data demonstrate that with
or without clinical phenotype, the X chromosome that either paternal or
maternal originated allele was inactivated may reactivate during re-
programing, and then one X chromosome could be randomly in-
activated during several passages.

Theoretically, most colonies should be heterogeneous with both
maternal and paternal X chromosome inactivation, assuming XCI oc-
curs at random. However, in conjunction with a previous report [38],
XCI states of both iPSCs from DD twins were extremely skewed to
maternal or paternal X chromosome. Therefore, we suggest that each
iPSC colony was derived from a single somatic cell, although it remains
unclear how X chromosomes are selected for inactivation. Under these
conditions, appropriate inactivation of pathogenic X chromosome and
reactivation of normal X chromosome probably contribute to the
treatment of female X-linked diseases such as present cases. In fact, 5-
aza-2′-deoxycytidine induced LAMP2 demethylation and restored ex-
pression in both iPSCs and iPSC-CMs derived from female DD fibro-
blasts in vitro [40]. However, the effect of the demethylating agents is
global and potential off-target effects may present some clinical con-
cerns. Therefore, agents that could specifically target the non-desirable
X chromosome for inactivation would be key in treating X-linked dis-
eases.

5. Conclusion

We successfully established two sets of iPSC lines that expressed
either wild-type or mutant LAMP2 allele from each monozygotic female
twin with DD, of which only the populations expressing mutant LAMP2
showed autophagic failure. The XCI patterns of the iPSCs elucidate the
LAMP2 expression and subsequent in vitro phenotype. The in vitro
characteristics of generated iPSCs and iPSC-CMs did not rely on the
clinical phenotype of each twin. The fact that we could generate disease
specific iPSCs with evident in vitro phenotype from patient with X-
linked disease without clinical phenotype is a great advantage of this
experimental system to investigate the disease mechanism. Although,
these findings aroused attention developing disease-specific iPSCs de-
rived from female with not only X-linked disease represented by DD but
also autosomal chromosome related disease, that is, harbored mutation
on X chromosome could be remarkable after generating iPSCs. Careful
evaluation of the in vitro phenotype is mandatory when using iPSCs
derived from female human as a model of the disease.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.yjmcc.2017.11.019.
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