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Abstract: The nanostructure (atomic-scale structure) and water species in the body frame and spicules
of the marine glass sponge, Euplectella aspergillum, collected from the sea floor around Cebu Island
was characterized in detail by thermogravimetric differential thermal analysis, nuclear magnetic
resonance spectroscopy, Raman and infrared spectroscopies, and X-ray diffraction method. The
structural features of the nanostructure in the body frame and spicules were essentially similar to
each other, although these were different from those of inorganic amorphous silica materials, such as
silica gel and silica glass. In addition, the averaged short and medium range structures of the sponge
may be similar to those of tridymite. The water content and water species included in the body frame
and spicules were almost the same. More than half of the contained water was physisorbed water
molecules, and the rest was attributed to Q3 and Q2 silanol groups. Most of the water species may be
present at the surface and involved in hydrogen bonding.

Keywords: sponge; biogenic silica; nanostructure; silanol; ring structure; amorphous silica;
Raman spectroscopy

1. Introduction

The classes of marine sponges, Demospongiae and Hexactinellida, have the biomineralized siliceous
component in their body [1]. The sponges of the class Hexactinellida are commonly called glass
sponges. These glass sponges can live in any ocean [2] and their skeletons are composed of hydrated
amorphous silica [3]. Glass sponges have interesting silicic fibrous root-like structures, which appear
to grow from the bottom of their cylindrical body frame. This root-like part is called a spicule and
anchors the sponge to the soft sediment of the sea floor [2,3]. The cross-sectional scanning electron
microscope (SEM) images of the glass sponge (Euplectella aspergillum) revealed that the spicules were
formed from consolidated spherical silica particles with a diameter of 50–200 nm [4]. Using the
X-ray small angle scattering method, Woesz et al. [5] demonstrated that the small particles were
composed of even smaller particles, which were less than 3 nm in diameter. These small particles
were formed around a proteinaceous axial filament in the center of the spicule [4,6]. In addition,
SEM observations showed that the body frame is basically formed from a bundling spicule with an
extremely intricate construction [4,6]. However, few studies have examined the silica nanostructure
(atomic-scale structure) of the body frame and spicule. Gendron-Badou et al. [7] examined the
sponge spicules using infrared, 29Si {1H} cross-polarization magic angle spinning (CP-MAS) as well
as 1H and 29Si MAS nuclear magnetic resonance (NMR) spectroscopies, which revealed that the
spicules have a Si–O–Si network structure containing single and germinal silanol (Si–OH) groups.

Minerals 2018, 8, 88; doi:10.3390/min8030088 www.mdpi.com/journal/minerals

http://www.mdpi.com/journal/minerals
http://www.mdpi.com
https://orcid.org/0000-0002-4253-775X
http://dx.doi.org/10.3390/min8030088
http://www.mdpi.com/journal/minerals


Minerals 2018, 8, 88 2 of 15

However, details about the silica nanostructure and the water species included in the skeleton of glass
sponges remained poorly understood. Cha et al. [8] reported that the proteinaceous axial filaments
isolated from spicules in a Demospongiae was shown to induce the polymerization of silica from the
TEOS (Si-tetraethoxide, Si[C2H5O]4) substrate when combined with TEOS and axial filament. The
silica synthesis was promoted by a protein called silicatein solubilized from the axial filament [8].
Silicatein-like proteins were also identified in the hexactinellid sponges [9]. The protein “glassin”
rapidly accelerates silica polycondensation over a pH range of 6–8, when combined with silicic
acid solutions [9]. In addition, the spicule of Demospongiae can crystallize into cristobalite at lower
temperature (850 ◦C), which is possibly due to the presence of silicatein [10]. These studies showed
that precise structural information on the sponge spicule and body frame designed by some proteins
may be essential in the synthesis of amorphous and crystalline silica materials with less environmental
burden and the development of new materials.

On the other hand, the distribution of the ring structure made of SiO4 tetrahedra, which is
constituted of the amorphous silica, varies greatly according to different silica materials. For example,
the average structure of silica gel may be four-membered ring [11], although the silica glass may be
mainly composed of a ring with more than six-membered ring [12–15]. Therefore, it is interesting to
elucidate the nanostructure from the perspective of material science, especially the ring structure of
biogenic silica, e.g., the skeletons of glass sponge and radiolarian and the frustule (shell) of diatom,
compared with the inorganic silica materials. Namely, in order to develop and accelerate the synthesis
of biological silica, it is necessary to know the specific features of the formed structure. In addition,
we conceive that crystallization of spicules of Demospogiae [10] at low temperature is derived from an
amorphous structural feature. The results may also give new important insight to the protein, which
controls the formation of silica structure.

In this study, the body frame and spicules of the glass sponge, Euplectella aspergillum, were
examined by thermogravimetric differential thermal analysis (TG-DTA), 1H static NMR and 1H–29Si
CP-MAS NMR spectroscopies, Raman and infrared spectroscopies, and X-ray diffraction (XRD)
analysis. Our aim was to determine precisely the nanostructure and water species in the sponge
and to reveal the structural differences between the body frame and spicules.

2. Materials and Methods

2.1. Sample

The hexactinellid sponges, Euplectella aspergillum, used in this study were collected from the
sea floor near Cebu Island (Philippines; Figure 1). Silica gel synthesized by a typical sol-gel method
(described by [16]) and commercially available fused silica glass [17] were used as reference materials.
The chemical composition of the skeletal body frame, the spicules, and silica glass were determined by
X-ray fluorescence analysis (Rigaku ZXS Primus II, Tokyo, Japan) with an acceleration voltage of 50 kV
and current of 20 mA (Table 1). The body frame and spicules were composed of >99% SiO2. Only
spicules were found to contain PdO, but the determination of its content needs more accurate analysis.

Table 1. Chemical composition of glass sponge body frame and spicules. The PdO content is explained
in the text. The values of silica glass were reported by Fukushima [18].

Samples
Element (%)

Na2O Al2O3 SiO2 SO3 Cl K2O CaO ZnO PdO

body frame 0.31 0.02 99.20 0.08 0.08 0.14 0.19 0.02 n.d.
spicules 0.26 0.04 99.30 n.d. n.d. 0.32 n.d. n.d. 0.12

silica glass n.d. 0.02 99.97 n.d. n.d. n.d. n.d. n.d. n.d.
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Figure 1. Photograph of the skeleton of Euplectella aspergillum. Scale bar is 5 cm. 
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Thermo Plus 2 TG 8120 instrument (Tokyo, Japan). Powdered samples (10 mg) were placed in a 
platinum pan and heated to 1400 °C at a heating rate of 10 °C/min under a nitrogen atmosphere. 
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29Si CP-MAS and 1H static single pulse measurements. Both 29Si and 1H chemical shifts were 
referenced to the signal of tetramethylsilane (TMS). The 29Si CP-MAS NMR spectra were collected 
with a π/2 pulse (2.73 μs) and high-power decoupling (HPD) using two-pulse phase-modulated 
decoupling [19] with a phase modulation angle of 15°. The 1H decoupling frequency and spin-locking 
frequency were 73.3 kHz and 91.6 kHz, respectively. These spectra were collected using a contact 
time of 8 ms and a recycle delay of 1 s. A MAS speed of 10 kHz was employed for the samples. The 
1H static NMR spectra were collected with a recycle delay of 10 s. To estimate the water content of 
the samples from 1H peak area (all 1H peaks in the samples were assumed to be due to H2O), 
adamantine was mixed with the sample as an internal reference. Unfortunately, the amount of spicule 
sample was not adequate to perform accurate NMR measurement in this study.  
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Raman spectra for all samples were recorded using a LabRAM HR800 spectrometer (Horiba 
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a spectral resolution of approximately ± 1.6 cm−1 in the spectral range. Spectra were accumulated for 
60 s in the range of ν = 50–1500 cm−1 and 2500–3900 cm−1. The body frame and spicule were set on clay 
perpendicularly with a longitudinal direction for analysis of cross-sectional portions of samples. The 
body frame samples for Raman analysis were prepared from the top, middle, and bottom of the 
sample. The bottom portion is near the anchoring spicule.  

The Attenuated total reflection (ATR) infrared (IR) measurements for all samples were 
performed using a Nicolet iN10 spectrometer (Thermo Fisher Scientific, Tokyo, Japan) equipped with 
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and current of 30 mA. A θ–2θ scanning technique was used with a scan step of 0.05° with 2θ = 2–120° 
for sponge samples, silica gel, and silica glass. The total accumulation number was five for all 
measurements. For the samples after TG-DTA measurement, a θ–2θ scanning technique was adopted 
with a scan speed of 1.00° min−1 with 2θ = 2–60°. 
  

Figure 1. Photograph of the skeleton of Euplectella aspergillum. Scale bar is 5 cm.

2.2. TG-DTA

TG-DTA measurements for body frame, spicule, and silica gel were performed using a Rigaku
Thermo Plus 2 TG 8120 instrument (Tokyo, Japan). Powdered samples (10 mg) were placed in a
platinum pan and heated to 1400 ◦C at a heating rate of 10 ◦C/min under a nitrogen atmosphere.

2.3. NMR Spectroscopy

NMR measurements were performed using a JNM-ECX 500II (JEOL, Tokyo, Japan) spectrometer
operating at resonance frequencies of 99.37 MHz and 500.16 MHz for 29Si and 1H, respectively.
The powdered body frame of the sponge and silica gel were taken in a 3.2 mm zirconia rotor to
perform 29Si CP-MAS and 1H static single pulse measurements. Both 29Si and 1H chemical shifts were
referenced to the signal of tetramethylsilane (TMS). The 29Si CP-MAS NMR spectra were collected
with a π/2 pulse (2.73 µs) and high-power decoupling (HPD) using two-pulse phase-modulated
decoupling [19] with a phase modulation angle of 15◦. The 1H decoupling frequency and spin-locking
frequency were 73.3 kHz and 91.6 kHz, respectively. These spectra were collected using a contact time
of 8 ms and a recycle delay of 1 s. A MAS speed of 10 kHz was employed for the samples. The 1H
static NMR spectra were collected with a recycle delay of 10 s. To estimate the water content of the
samples from 1H peak area (all 1H peaks in the samples were assumed to be due to H2O), adamantine
was mixed with the sample as an internal reference. Unfortunately, the amount of spicule sample was
not adequate to perform accurate NMR measurement in this study.

2.4. Raman and Infrared Spectroscopy

Raman spectra for all samples were recorded using a LabRAM HR800 spectrometer (Horiba
Jobin Yvon, Kyoto, Japan) with 514.5 nm Ar laser light (Melles Griot, 43 Series Ion Laser, 543-GS-A02,
Carlsbad, USA). A grating with 600 lines/nm provided a wavenumber resolution of 1.4–1.8 cm−1 and
a spectral resolution of approximately ± 1.6 cm−1 in the spectral range. Spectra were accumulated for
60 s in the range of ν = 50–1500 cm−1 and 2500–3900 cm−1. The body frame and spicule were set on
clay perpendicularly with a longitudinal direction for analysis of cross-sectional portions of samples.
The body frame samples for Raman analysis were prepared from the top, middle, and bottom of the
sample. The bottom portion is near the anchoring spicule.

The Attenuated total reflection (ATR) infrared (IR) measurements for all samples were performed
using a Nicolet iN10 spectrometer (Thermo Fisher Scientific, Tokyo, Japan) equipped with a diamond
crystal. The ATR-IR spectra of the body frame and spicule samples were recorded in the range of
ν = 600–4000 cm−1. The band pass for all spectra was 4 cm−1.

2.5. XRD Analysis

Powder XRD measurements for all samples were recorded using a Rigaku RINT 2200
diffractometer (Tokyo, Japan) with CuKα radiation under an applied acceleration voltage of 40 kV
and current of 30 mA. A θ–2θ scanning technique was used with a scan step of 0.05◦ with 2θ = 2–120◦

for sponge samples, silica gel, and silica glass. The total accumulation number was five for all
measurements. For the samples after TG-DTA measurement, a θ–2θ scanning technique was adopted
with a scan speed of 1.00◦ min−1 with 2θ = 2–60◦.
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3. Results

3.1. TG-DTA Curves

The TG curves for the sponge body frame and spicules showed that weight loss was similar for
two distinct reduction steps (Figure 2) and are listed in Table 2. The total weight losses for the sponge
samples were very similar. In the result of silica gel, the weight loss observed below 200 ◦C was about
two times of those of sponge samples and the total weight loss was about 8% greater than those for the
sponge samples.
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Figure 2. TG curves for body frame, spicules, and silica gel.

Table 2. Water content of samples estimated from TG results and 1H NMR spectra.

Samples
Weight Loss Estimated from TG Results (wt %)

1H NMR (wt %)
RT-200 200–600 600–1400 Total

body frame 7.25 3.89 0.88 12.02 10.5
spicules 7.37 3.73 0.94 12.04 -
silica gel 14.84 4.34 1.03 20.21 17.2

The DTA curves for the body frame and spicules have a broad endothermic band near 64–69 ◦C,
which is similar to the intense band of silica gel observed at 67 ◦C (Figure 3). Strong exothermic
bands were observed at 925 ◦C and 946 ◦C for the spicules and body frame, respectively. No obvious
exothermic bands were observed for silica gel. In our preliminary experiment, we carried out the
TG-DTA measurements for silica glass, although those curves for silica glass did not show the weight
loss, the endothermic and exothermic bands.
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3.2. 1H Static and 29Si {1H} CP-MAS NMR Spectra

The 1H NMR spectrum for the sponge body frame is shown in Figure 4, along with the spectrum
of silica gel. The 1H NMR spectrum for the body frame had a signal at ca. 4.8 ppm, which was similar
to that of silica gel. The physisorbed water molecules and/or silanol groups present on the surface of
the sample were attributed to this peak [20–22]. The water content estimated from the 1H peak was
10.5% for the body frame and 17.2% for silica gel (Table 2).
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Figure 4. 1H NMR spectra for sponge body frame and silica gel.

The 29Si {1H} CP-MAS NMR spectrum for the body frame had three signals at ca. –92.4, –101.4,
and –111.2 ppm (Figure 5). These signals usually represent Qn species, where n is the number of
bridging oxygens. These were assigned to Q2, Q3, and Q4, respectively. The positions of these signals
were similar to those of the spicules reported in a previous study [7] and the silica gel measured in
this study.
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Figure 5. CP-MAS NMR spectra for sponge body frame and silica gel.

The Gaussian peak fitting of three signals observed in CP-MAS NMR spectra for sponge body
frame and silica glass using IGOR Pro 6.3 software (Hulinks, Tokyo, Japan) showed the relative
intensities of Qn species (Table 3). Although the CP-MAS NMR technique is semi-quantitative, the
relative intensity of Q4/(Q2 + Q3) for the sponge sample was determined to be two times greater than
that of silica gel.

Table 3. Relative intensities of Qn species.

Samples
Relative Intensities (%)

Q4 Q3 Q2 Q4 / (Q2 + Q3)

body frame 40.9 57.1 2.0 0.7
silica gel 26.6 65.3 8.1 0.4

3.3. Raman Spectra

The Raman spectra for the body frame obtained from each observation position (from top, middle,
and bottom of body frame) were precisely consistent. Therefore, the Raman spectra for the middle part
of body frame, spicule, silica gel, and silica glass are shown in Figure 6. The Raman spectra of samples
had a broad band centered at ν = 450 cm−1, which was attributed to the symmetrical Si–O–Si stretching
mode and a D1 band at ν = 480–490 cm−1 due to the oxygen-breathing mode of the four-membered
ring of SiO4 tetrahedra [23–26]. The spectra of sponge samples and silica gel have a relatively sharp
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band at ν = 960 cm−1, which may be assigned to the Q3 silanol as observed in hydrous amorphous
silica materials [27,28]. The weak broad bands at ca. ν = 1060 and 1200 cm−1 were observed in the
spectra of sponge samples, which were corresponded to asymmetric Si–O stretching vibrations within
the fully polymerized SiO4 network [29]. A small band corresponding to the three-membered ring at
ca. ν = 600 cm−1 [17] observed for silica glass was not observed in spectra of the sponge and silica gel.
Since the D1 band is due to the main structure of the sponge and silica gel samples, it is assumed that
the relative intensity of this band did not change significantly at the measurement point. Therefore,
the intensities of spectra for all samples in Figures 6 and 7 were normalized to that of the D1 band.
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Figure 7. Raman spectra (ν = 2500–3900 cm−1) for body frame, spicule and silica gel. The spectrum of
silica glass had no peaks in this wavenumber region.
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At higher wavenumbers, sponge samples and silica gel had a broad band in the range
of ν = 3000–3800 cm−1 (Figure 7) due to overlap of the bands from molecular water and silanol
groups [30,31]. The spectra for sponge samples were similar to each other. Compared with the
spectrum of silica gel, the bands near ν = 3600 and 3650 cm−1 attributed to silanol species [32] were
more prominent in the sponge samples. A very small band at ν = 3750 cm−1, attributed to the vibration
of isolated silanol at the surface [30,32], was observed only for silica gel.

3.4. ATR-IR Spectra

The ATR-IR spectra for sponge samples have three distinct peaks at ν = 1050, 950, and 795 cm−1

(Figure 8). The bands at ν = 1050 and 795 cm−1 were attributed to the Si–O antisymmetric stretching
band and Si–O–Si bending vibration, respectively [33]. The band that appeared in the range of
ν = 1000–1300 cm−1 for silica glass was broader than other samples. The band at ν = 950 cm−1 was
assigned to the stretching vibration of silanol groups [34]. A weak peak near ν = 1635 cm−1 was
attributed to the H–O–H bending vibration of molecular water [35]. The IR spectra for sponge samples
were basically similar to that of silica gel.
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Figure 8. ATR-IR spectra (ν = 600–1800 cm−1) for body frame, spicules, silica gel, and silica glass.

The ATR-IR spectra in the range of ν = 2500–4000 cm−1 are shown in Figure 9. ATR-IR spectra
for body frame, spicules, and silica gel have bands for water molecules, which appeared at ν = 3200
and 3450 cm−1 [30,36,37], while the silanol group appeared at ν = 3600 and 3650 cm−1 [30,32]. The
intensities of spectra for all samples in the Figures 8 and 9 were normalized to the band intensity at ca.
ν = 1050 cm−1.
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Figure 9. ATR-IR spectra (ν = 2500–4000 cm−1) for body frame, spicules, and silica gel. The spectrum
of silica glass had no peaks in this wavenumber region.

3.5. XRD Analysis

The XRD patterns for the sponge body frame and spicules showed broad maxima centered at
2θ = 22.7◦ and 22.6◦, respectively (Figure 10). This indicated that the sponge samples had no crystalline
peak and thus, were similar to silica gel and silica glass.
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Figure 10. XRD patterns for body frame, spicules, silica gel, and silica glass.

4. Discussion

4.1. Water Content and Water Species in Sponge Samples

1H NMR spectra and TG curves revealed that the water content for both spicules and body
frames were 10–12 wt %, although the water content estimated by 1H NMR was slightly less than that
estimated by TG. This difference in estimated value was due to the TG curve being simply derived
from sample weight loss corresponding to the release of water molecule and the dehydration of silanol,
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while the water content was calculated from the integrated 1H NMR peak area according only to H2O.
Moreover, the weight loss estimated from the TG measurement includes ±0.2% measurement error.

The TG curves for the body frame and spicules indicated that they underwent the same
dehydration step. According to Graetsch et al. [38], the large weight loss up to 200 ◦C can be attributed
to the release of physisorbed water molecules, while the subsequent weight loss up to 600 ◦C is due
to the dehydration of silanol. The endothermic band that appeared at 64–69 ◦C in the DTA curves
corresponded to the release of water molecules on the sample surface. The small weight loss observed
at temperatures above 600 ◦C may be due to the dehydration of hydroxyl group located at the structural
site [38]. The water content values estimated from each dehydration step for the body frame and
spicules were similar, which indicates that the water species and their amounts were similar for both
samples. The TG curve for silica gel showed that the weight loss at temperatures below 200 ◦C was
two times greater than those for sponge samples. However, the second weight loss of silica gel at
200–600 ◦C was similar to that of sponges, which indicates that the difference in water content of silica
gel and sponge samples was mainly due to the number of water molecules located at the surface.
Micropores in the structure, which affects the number of water molecules that can be absorbed, may be
smaller in sponge samples than in silica gel.

Bronnimann et al. [20] reported that the 1H NMR spectrum for silica gel contained relatively sharp
bands at 3.5, 3.0, and 1.7 ppm, respectively, which were attributed to physisorbed water molecules,
H-bonded silanol, and isolated silanol, respectively. In the present study, the 1H NMR spectrum for
sponge sample had a band at ca. 4 ppm, which was narrower and less intense at <2 ppm than that of
silica gel. The Raman and ATR-IR spectra were consistent with the 1H NMR of the sponge samples,
which showed no evidence of isolated surface silanol (appearing ca. ν = 3750 cm−1). Thus, the Q2 and
Q3 silanol species in the sponge samples have hydrogen bonds.

4.2. Nano-Structure of Spicules and Body Frame of Glass Sponges

The Raman bands of Si–O stretching vibration at ν = 1060 and 1200 cm−1 were clearly observed
in sponge samples, such as silica glass. However, the spectra of silica gel showed no evidence of
these bands. This difference is also supported by the relatively greater intensity of (Q4/Q3 + Q2)
of NMR signals for sponge samples compared to silica gel, which indicates the well-polymerized
three-dimensional network of the sponge.

In general, the XRD patterns of amorphous silica materials show a broad scattering maximum
centered at 2θ = 22◦–23◦, which is called the first sharp diffraction peak (FSDP). The position of the
FSDP (Q = 4π sin θ/λ) can be estimated from XRD data, which assists in evaluating the size of the
medium range structure [39]. A low Q value means the presence of large medium range structure in
the sample. The values for the FSDP positions of sponge spicules and body frame are listed in Table 4.
The FSDP position for silica gel used in this study is consistent with that of silica gel (Q = 1.60–1.67 Å−1)
reported in Kamiya and Nasu [11]. As also described in the introduction, the medium range structure
of silica gel is composed mainly of the four-membered ring of SiO4 tetrahedra, although the structure
of silica glass is made mainly of ≥ six-membered ring. These results indicate that the medium range
structure of the sponge spicules and body frame were similar, while the size may be smaller than that
of silica glass but larger than that of silica gel.

Table 4. FSDP positions Q of X-ray scattering profiles for samples (Q is 4πsinθ/λ: λ is wavelength
of X-ray).

Samples Q (Å−1)

silica glass 1.51
silica gel 1.63
spicule 1.60

body frame 1.61
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In addition, the intensity of Raman bands at ν < 600 cm−1 clearly indicate the different features of
the ring structures of silica gel, silica glass, and sponge samples (Figure 11a). The band attributed to a
four-membered ring at around ν = 490 cm−1 was present in all samples, although the band attributed
to a three-membered ring at around ν = 600 cm−1 was observed only in spectra for silica glass. The
band below ν = 470 cm−1 broadened in the order of silica glass > sponge > silica gel. This broad
band may be a superposition of several bands for different ring structures and the appearance of
the band at lower wavenumber may be attributed to the large ring structure [40,41]. Therefore, the
result may indicate that the proportion of large ring structures included in sponge samples is less
than that of silica glass. The wide distribution of ring structure in silica glass may be associated with
the broad IR bands, which are attributed to the Si–O stretching mode that appears in the range of
ν = 1000–1300 cm−1. This broad band is formed from the superposition of several bands of different
Si–O stretching modes [42]. Therefore, the various ring structure included in the silica glass may affect
the broadness for this band. In the present study, Raman bands for the sponge body frame, silica glass,
and silica gel in the wavenumber region of ν = 100–700 cm−1 underwent detailed analysis based on the
bands of crystalline SiO2 polymorphs, such as quartz, cristobalite, and tridymite [41] using Gaussian
peak fitting with the IGOR Pro 6.3 software (Figure 11b–d). Since the Raman spectra for spicule and
body frame were very similar, peak fitting was performed only on that of body frame. When compared
to silica glass, the fitting results indicated that bands below ν = 300 cm−1 were weaker in the sponge
sample compared with the normalized band of four-membered ring (ν = 482 cm−1). In addition,
the band ca. ν = 425 cm−1 was intense for sponge samples, although the band at ca. ν = 460 cm−1

observed in spectra for silica glass and silica gel was more intense. Kingma and Hemley [41] assigned
the bands <480 cm−1; low-tridymite and low-cristobalite, including a six-membered ring, produced
the strongest band at wavenumbers lower than ca. ν = 420 cm−1, although the low-quartz produced an
intense band near ν = 460 cm−1. Moreover, the bands that appeared ca. ν = 350 and 460 cm−1 are not
observed in the spectrum of low-cristobalite, although these bands are observed in the spectrum for
low-tridymite [41]. These results indicate that the medium range structure of sponges was composed
mainly of six-membered rings with a disordered low-tridymite like structure.

On the other hand, the XRD patterns for the sponge samples after the TG-DTA experiments
were completely consistent with that of low-cristobalite (the strongest peak located at 2θ = 22.0◦, the
secondary peak at 2θ = 36.1◦; smaller peaks at 2θ = 28.5◦ and 31.5◦ and peaks above 40◦; Figure 12).
Therefore, DTA peaks at nearly 925 ◦C in spicules and 946 ◦C in the body frame may be related to
this structural change into cristobalite by heating. Synthesized hydrous amorphous opal (SiO2·nH2O)
with the medium range structure consisting of four-membered rings showed an exothermic band at ca.
1260 ◦C, corresponding to the crystallization into cristobalite [43]. In addition, Wahl et al. [44] reported
that the complete crystallization of silica gel to cristobalite occurred at 1400 ◦C. Sponge samples
crystalize into cristobalite at lower temperatures compared to silica gel and synthesized opal. In the
temperature region of 870–1470 ◦C, high-tridymite is a stable and high-cristobalite is a metastable
phase [45,46]. The metastable phase with high free energy crystallizes prior to the stable phase with
lower free energy minimum. Therefore, the metastable high-cristobalite phase may be crystallized
first according to Ostwald’s step rule. Moreover, high-cristobalite was converted to low-cristobalite
during quenching below 250 ◦C. This is the reason behind the structural change of sponge sample into
low-cristobalite after TG-DTA experiment. The rapid crystallization of sponge samples may be due to
their structural similarity to that of low-tridymite composed mainly of six-membered rings.
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Figure 11. (a) Raman spectra (ν = 200–700 cm−1) for body frame, spicule, silica gel, and silica glass.
These spectra were normalized to the D1 band at ca. ν = 480–490 cm−1. The Gaussian peak fitting
results for (b) body frame, (c) silica glass, and (d) silica gel. The dashed lines show the measured
Raman spectra and the solid lines are Gaussian peak fitting results.Minerals 2018, 8, x FOR PEER REVIEW  12 of 14 
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The nanostructure and water species of the body frames and spicules of the marine sponge, 
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5. Concluding Remarks

The nanostructure and water species of the body frames and spicules of the marine sponge,
Euplectella aspergillum, were determined and compared with other amorphous silica materials, such as
silica gel and silica glass.

The structural features of the nano-silica network in the body frame and spicules were essentially
similar, although these were different from those of silica gel and silica glass. The six-membered ring
made of SiO4 tetrahedra was the dominant component of the structure of sponge samples, which was
similar to that of silica glass, although the ring size distribution was narrower than that of silica glass.
In addition, the tridymite like six-membered ring structure was present in sponge samples without a
long-range ordered structure.

The body frame and spicules contained similar water content and water species. The water greater
than 60 wt% of the total water content in sponge samples was due to physisorbed water molecules at
the surface, with the rest mainly attributed to silanol groups. In this study, silanols (Q2 and Q3) that
are hydrogen-bonded to water molecules were detected at the surface. When compared to silica gel,
the degree of polymerization of sponge samples appeared to be greater than that of silica gel.
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