
Dissertation

Development of first principles approach on the

magnetic anisotropy in Fe/MgO interfaces

Fe/MgO界面における磁気異方性に関する第一原理アプ

ローチの開発

Graduate School of

Natural Science & Technology

Kanazawa University

Division of Mathematical and Physical Sciences

Student ID: 1524012014

Name : Nurul Ikhsan

Chief Advisor : Prof. Tatsuki ODA

Date of Submission : 29 June 2018



Development of first principles approach on the

magnetic anisotropy in Fe/MgO interfaces

Nurul Ikhsan

Abstract

Fe/MgO interface remain attractive for the last decades, and many exciting

features make it kernel elements in future spintronics or magnonic devices.

However, underlying physical mechanisms of this multi-functional interface

remain open to be explored. We performed structural and electronic proper-

ties analysis by employing Carr-Parrinello molecular dynamics with fully rel-

ativistic Density Functional Theory utilizing planewave basis. Investigation

on large perpendicular magnetic anisotropy (PMA) in Cr-buffered Fe/MgO

interface from the first-principles approach was performed. The electronic

structure shows that the origin of PMA come from the 2-dimensional singu-

larity of the flat band in the X̄–Ȳ line and Γ̄–M̄ line, this feature is proposed

as the origin of the interface states, which appeared as sharp peak near Fermi

level from the density of states. To observe temperature effect to the electronic

structure, smearing of Fermi level in the material with the metallic band was

proposed. Tuning of the smearing function showed magnetic anisotropy en-

ergy (MAE) from spin orbit interaction (SOI) decrease linearly with respect

to the temperature, significant change of 0.4 mJ/m2 observed when the tem-

perature drops from 527K to 10.5K. Changing temperature did the variation

of the shape anisotropy, then the SA is included to the total MAE by con-

sidering the M(T ) model. These situations introduce competition between

MAE(SOI) and shape anisotropy as the temperature increase. Development
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on the search for the origin of PMA from the electronic structure and its

smearing dependence is our novel approach in first principles calculation of

Fe/MgO interfaces.

Keywords: Magnetic anisotropy energy, thickness dependence, temperature

dependence, electric field effects, density functional theory, MRAM
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1 Introduction

1.1 Background and Motivation

The rapid development of computational approach and computing facility are cou-

pling each other accelerating the edge of science. As the third pillar of science,

computational could be aid to the experimentalist and theorist or more further

as the frontier of science, predicting the undiscovered. Density functional theory

(DFT) as the numerical approach to solve the Schrodinger equation has evolved to

be powerful tools to understand or predict the physical properties of materials.

In another side, the rapid development of material science and spintronics lead

us to the next generation of magnetic technology. This situation has opened the

opportunity to advance the technological area such as high-density data storage,

ultra-sensitive magnetic sensor, sub-Tera Hertz frequency generator, and magnonic

device. Successful development in one of this field may lead to the next industrial

revolution.

In this chapter, the author wants to focus the advancement of high-density non-

volatile storage. As we know that the third industrial revolution, also known as the

digital revolution has brought the computer to become an inseparable part of our

life, starting from the personal computer, portable computer, mobile phone, up to

important wearable biomedical devices related to one’s health. Behind all of this

sophisticated devices, there is one crucial component which supports the proces-

sor to work, that is the memory. It has been known for decades that there is a

pyramid-like architecture of memory implementation in the microcomputer device.

This implementation is the best at the current stage, and the memory has its role

and requirement depend on how close its location to the processor, the area of the
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pyramid slices proportional to the size of memory, the top category in pyramid has

the fastest access from the processor. The closer the memory to the processor, it had

faster access speed but limited in size. This characteristic is due to the limitation

in available space in the fabrication of processor.

This staging strategy is proposed at the early age of the computer, and it is

very successful until now. However, there is one caveat, the data movement from

the volatile memory to non-volatile memory is energy consuming. Especially for

low power and energy efficient device, such as mobile phone, sensor, or internet of

things device. Storing data from volatile memory such as SRAM or DRAM to the

permanent storage could be energy consuming if there is a significant flow of data

in a short period.

The knowledge of material science has open the possibility to create the non-

volatile memory which has almost zero power consumption, with more dense capac-

ity, and fast data switching close to current memory use for data register. Discovery

of Fe/MgO interface as the recording element of magnetic tunnel junction (MTJ)

in the last decade has successfully encouraged the IT industry to fabricate the real

non-volatile memory based on this technology.

There are several viewpoints in analyzing requirement for achieving the high-

capacity low powered memory. The first consideration is the target of implemen-

tation, in which part of the pyramid this memory/storage devices will be imple-

mented. This part will affect to the writing speed requirement, how fast data could

be recorded on the MTJ. The primary requirement will be affected with this target

such as damping constant.

Next thing to consider is how much power that used to write the device. Natu-

rally, we want to use the lowest possible current (power) to write the memory. This

part of energy on the writing technology can be realized by many techniques, start-

ing from spin-polarized current, voltage effect, spin orbit torque, or the combination

of it.
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Another critical issue is related to error rate and data retention. Direct physical

properties related to this requirement is the magnetic anisotropy. The strength of the

magnet will define the quality of the data retention and error rate. It will require

much energy to modify strong magnet, but the weak magnet would be unstable

when exposed to thermal fluctuation or other external disturbance such an artificial

magnetic field. Rapid development on the prototype of future memory elements is

driving research in the magnetic thin film in both experiment and theoretical area.

Substansial need to support future computing machine, motivate us to challenge

the current limit in density and power consumption. The primary requirement is to

increase the memory density, while maintaining low power consumption.

In summary, the primary target to realize MRAM in a real device are:

• Strong Perpendicular Magnetic Anisotropy (PMA)

• Large Voltage Control of Magnetic Anisotropy (VCMA) [up to 1000 fJ/Vm]

• Low damping constant (α) for STT MRAM application

• Low magnetic saturation (Ms)

• Discovery for new writing mechanism/technology (such as Voltage Control

+β)

1.2 Development on the perpendicular magnetic anisotropy

on Fe/MgO Interface

Fe/MgO interface is the well-known building block of the magnetic tunnel junction

(MTJ). Recently this interface becomes prominent candidate for magnetic random

access memory (MRAM) application. However, the well establishes MRAM rely

on the in-plane magnetized ferromagnet element. The modification of magnet ori-

entation (writing mechanism), still also require induced current. This mechanism

also is known as spin-transfer-torque(STT). Recent development on this interface
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has successfully achieved the perpendicular magnetization, so that we can optimize

the material for high density recording. New writing mechanism also discovered

the voltage control magnetic anisotropy (VCMA), or the author prefer to call it the

electric field effect (EFE) in this work. It has been one decade since the first finding

of tunnel magneto resistance effect in this Fe/MgO. However, we still observe many

new physics on this interface.

In the works for the development of the devices, the family of Fe/MgO inter-

faces has been used as a kernel technological element. They have shown a strong

perpendicular magnetic anisotropy for the thin Fe without any heavy element [1, 2].

The multi-functional properties, mentioned in the previous paragraphs, are mostly

originated from the electronic structure. In such a system, the interface state has

been discussed in the several works [3, 4]. These states are consequences of the

band formation consisting of non-bonding orbitals on the interface. Although such

character has been observed as new characteristics, detail dependence of electronic

structure has not been investigated.

In the recent improvement of computational performance allows us to estimate

the magnetic anisotropy or its EF effect precisely and numerically [5, 6]. Such

improvement contributes not only to physical and qualitative explanations in the

property of magnetic anisotropy but also to semi-quantitative agreements. In par-

ticular, the slope in the EF variation has been proved to have a real meaning, when

compared with the experimental results [7]. However, in the calculation of magnetic

anisotropy energy (MAE), result comparison with experiment still has a gap, to be

able to explain the experimental measurements with a quantitative agreement. The

experimental progress on the interface magnetic anisotropy in the thin films gives

us a fascinating opportunity on a direct comparison between the theoretical and

experimental approaches.

This work was devoted to the discussions on electronic, magnetic, and struc-

tural properties of Fe(x ML)/MgO(001), as a reinvestigation in the viewpoint of
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two-dimensional electronic structure. We obtained remarkable Fe-thickness depen-

dences of MAE, implying a picture of non-rigid band filling in the interface states.

Such result can be discussed in terms of electronic band theory, compared with the

available experimental data.

1.3 Development on temperature dependence anisotropy

Perpendicular magnetic anisotropy (PMA) has an important role for designs of bet-

ter devices of spin transfer torque recording magnetoresistive random access mem-

ory (STT-MRAM) [8, 1]. In the approaches of both theory and experiment, a

lot of progress has been made for developing functionals or improving performances

[7, 9, 5, 6, 10, 11, 12, 13, 16, 50]. The properties of temperature dependence in PMA

are highly requested for designing magnetic materials. Up to now, there are many

works of theoretical approach for the systems of localized magnetic moments (single

ion-magnetic anisotropies) [18, 19, 20]. In these approaches, the magnetic anisotropy

energy (K) was treated as a cubic polynomial function of magnetization (M). For

the metallic epitaxial films, the function of square polynomial were employed at the

low temperature [21, 22]. The theoretical approaches showed that K is proportional

to M2 in case of L10-ordered FePt [23, 24] The recent density functional approach

to disordered magnetic bulk alloys explains an anomalous temperature dependence

of magnetocrystalline anisotropy [25].

For the design of materials in emerging nanoscale memory and logic device,

Alzate et al. showed that in the system MgO/CoFeB/Ta-based MTJ [26], M as

temperature dependence fitted well with the Blöch law (T 3/2) [27]. In addition to

this, K as temperature dependence fitted well with a power law of M2 or a similar

one. Wen et al. also showed a similar behavior of temperature dependence on M

and K in Ru/Co2FeAl/MgO-based MTJ [28]. For the thinner films of several iron

monolayers, the temperature dependence of M was implied to change from T 3/2 to

T 2 [29].
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In the materials for perpendicular-MRAM devices, the property of PMA is

mainly ascribed to spin-orbit coupling (SOC) in the metallic electronic structure.

The magnetocrystalline anisotropy for metal has been estimated successfully since

the 1980’s using density functional approaches. The PMA of thin films has qualita-

tively or semi-quantitatively been explained. This is a consequence of the fact that

the PMA from SOC overcomes the magnetic shape anisotropy (SA) which favors

in-plane magnetization. The latter contribution to magnetic anisotropy has been in-

vestigated for a long time, including its temperature-dependent property. However,

the temperature dependence of the magnetic anisotropy caused by metallic energy

bands has not been investigated very well, particularly for thin film systems.

In the present work, we investigated smearing effects on the Fermi level in terms

of the magnetic anisotropy energy of the metal slab system for magnetic devices, by

means of a first-principles calculation. These effects are expected to contribute to

a temperature dependence on the magnetic anisotropy caused by SOC. In combi-

nation with SA analyses, a saturating behavior in K at room temperatures may be

comprehended, compared with the available experimental data [13].

1.4 Research Objectives

The purposes of this work are to confirm the mechanism of perpendicular magnetic

anisotropy energy and electric field control in Cr buffered Fe/MgO interface by first

principles approach. So that we could optimize this interface to enhance its ability

in the future. Theoretical understanding of the mechanism on this device holds

essential role before we could understand the mechanism, there is a limitation to

improve the material properties, but after the findings in the detail of the mechanism,

we could clearly define the direction of the improvement.

There is two main objective that highlighted in this research, that is the origin

of the perpendicular magnetic anisotropy (PMA) as thickness dependence of the

ferromagnet layer, and the temperature dependence of PMA. Our research focus on
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PMA rather than electric field effect (EFE) because the estimation of PMA is the

building blocks of estimation of MAE at each system under a different electric field.

However the estimation of EFE also will be presented and discussed in this work.

Part of the result of this dissertation is also published in The Science Reports of

Kanazawa University [14], [15].
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2 Theory

2.1 Khon-Sham

Calculation of electronic state are formulated by Kohn-Sham theory. In Khon-Sham

formalism of density functional theory we have to solve the mathematical problem

of solving eigenvalue equation:

{
− h2

2m
∇2 + Vext(r) +

∫
ρ (r′)

|r − r′|
dr′ + µxc [ρ]

}
φi(r) = εiφi (r) (2.1)

Where the electronic density is given by:

ρ (r) =
N∑
i=1

fi |φi (r)|2 (2.2)

In above equation N represent the number of electrons, and fi is the occupation

number corresponding to one electron eigenstates.

The external potential vext(r) represents the interaction between the electron

and nuclei, expressed as:

Vext(r) = −e2
P∑

I=1

ZI

|r −RI |

Finally the last term related to exchange correlation part:

µxc [ρ] (r) =
δExc

δρ (r)
(2.3)

This equation has to be solved self-consistency as it depends on the solution of

Kohn-Sham orbitals equation, shown by Eq. 2.1. And make sure that the density

is used to construct the reference potential from Eq. 2.2.
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The energy functional of the real system formulated as:

E [n (r)] =

∫
Vext(r)n (r) dr + F [n (r)]

where,

F [n (r)] = Ts [n (r)] +
1

2

∫∫
n (r)n (r′)

|r − r′|
drdr′ + Exc [n (r)]

The exchange correlation part has uncertain value, but we can calculate using some

approximation.

We never solve the Kohn-Sham equation analytically for system more than one

electron. In most situation we always solve Kohn-Sham equation by numerical

approximation or iterative way.

2.2 Generalized Gradient Approximation

Based on expression in Kohn-Sham equation, the exchange-correlation energy is a

functional of electron spin densities. The density of electron is not always homo-

geneous, in case of non-homogeneous density, we have to carry out the expansion

of electronic density in the term of gradient and higher order derivatives. The

exchange-correlation energy can be written as:

EXC [ρ] =

∫
ρ(r)εXC [ρ(r)]FXC [ρ(r),∇ρ(r),∇2ρ(r), ...]dr

The exchange energy expansion will introduce a term that proportional to the

squared gradient of the density. If we considered up to fourth order, the similar

term also appear proportional to the square of the density’s Laplacian.

The fourth order terms in the expansion of Fx have is expressed as[30, 31]:

FX(p, q) = 1 +
10

81
p+

146

2025
q2 − 73

405
qp+Dp2 +O(∇ρ6)
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where

p =
|∇ρ|2

4(3π2)2/3ρ8/3

is the square of the reduced density gradient, and

q =
∇2ρ

4(3π2)2/3ρ5/3

is the reduced Laplacian of density.

The second order gradient expansion corresponds to an expression such as:

EXC [ρ] =

∫
AXC [ρ]ρ(r)

4/3dr+

∫
CXC [ρ]|∇ρ(r)|2/ρ(r)4/3dr (2.4)

which is asymptotically valid for densities that vary slowly in space. The general-

ized gradient approximations (GGA) have been derived appropriate expressions by

theoretical methods, and requesting that the coefficients are such that a number of

formal conditions are fulfilled, and also some results in known limits are reproduced.

Another GGA approach is to fit the functional parameters in order to reproduce a

number of experiment results. The results can be structural parameters, formation

energies, thermochemical data, etc. This is worked well when we apply to the

molecules which similar to the database. However, the transfer-ability to other

systems such as solids is not guaranteed.

2.3 Ultrasoft Pseudo Potential

In 1990 Vanderbilt proposed smoother and highly transferable pseudopotentials

called ultrasoft pseudopotentials [32].

The construction is started from generalized, multi-reference separable non-local

pseudo potentials. Define the non-local operator such as:

∆V̂ l
US =

∑
i,j

Dl
ij

l∑
m=−l

|βlm
i 〉〈βlm

j |
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where

Dl
ij = Bl

ij + εilQ
l
ij

then we obtain

∆V̂ l
US =

∑
i,j

Bl
ij

l∑
m=−l

|βlm
i 〉〈βlm

j |+
∑
i,j

εilQ
l
ij

l∑
m=−l

|βlm
i 〉〈βlm

j |

The relation between all-electron and pseudo-wave function is:

〈Φilm
AE|Φilm

AE〉rc = 〈Φilm
PS |Φilm

PS 〉rc +Ql
ij = 〈Φilm

PS |Ŝ|Φilm
PS 〉rc

where

Ŝ = Î +
∑
l

∑
i,j

Ql
ij

l∑
m=−l

|βlm
i 〉〈βlm

j | (2.5)

is the non-local overlap operator. With these definition, if the Hamiltonian is written

as

Ĥ = T̂ + V̂ loc
PS +

∑
l′

∆V̂ l′

sep +
∑
l′

∑
i,j

εil′Q
l′

ijσ
l′

m′=−l′|βl′m′

i 〉〈βl′m′

j | (2.6)

the pseudo-wave function |Φilm
PS 〉 are the solution of a generalized atomic eigenvalue

problem

Ĥ|Φilm
PS 〉 = εil|Φilm

PS 〉+
∑
l′

∑
i,j

εil′Q
l′

ij

l′∑
m′=−l′

|βl′m′

i 〉〈βl′m′

j |Φilm
PS 〉 = εilŜ|Φilm

PS 〉

Only the angular component l of the non-local and overlap operator produce non-

zero matrix elements with well-defined state angular momentum l such as |Φilm
PS 〉.

Then by using the Friedel sum rule we could write:

−1

2
{[rRl(ε, r)]2

d

dε

d

dr
lnRl(ε, r)}rc = 〈φilm

PS |φilm
PS 〉rc +Ql

ii (2.7)

which the norm of all-electron wave function should be matched with the pseudo-

wave function and the diagonal element of operator Q̂. By relaxing the norm-
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conservation, all wave functions at different reference energies can be pseudized

independently by fitting the logarithmic derivatives at the cutoff radius rc.

2.4 Effective Screening Medium

ESM method describes the screening effect by introduce local relative permittivity

εr (r) and classical charge ρc (r) into the slab model.

The total energy expression in this model is:

Etot [ρe, V ] = T [ρe] + Eex [ρe]−
∫

dr
εr (r)

8π
|∇V (r)|2 +

∫
dr [ρe (r) + ρc (r)]V (r)

(2.8)

Above equation express the electrostatic potential as the variational parameter.

When we introduce the Green function for the Poisson equation:

∇ · [εr (r)]G (r, r′) = −4πδ (r− r′)

Then Eq. 2.8 above, can be rewritten as

Etot [ρe, V ] = T [ρe] + Eex [ρe]−
1

2

∫
drdr′ [ρe (r) + ρc (r)]G (r, r′) [ρe (r) + ρc (r)]

The Kohn-Sham equation, derived by varying the total energy with the Kohn-

Sham orbital, is not affected by the ESM, but the Poisson equation, derived from

electrostatic potential variation, is affected as

V (r) =

∫
dr′G (r, r′) [ρe (r) + ρc (r)] ≡

∫
dr′G (r, r′) ρtot (r

′)

So the most time consuming Khon-Sham equation part is remain unchanged.
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The Poisson equation in the Laue representation, is:

{
∂z [ε (z) ∂z]− ε (z) g2‖

}
G
(
g‖, z, z

′) = −4πδ (z − z′)

where g‖is a reciprocal lattice vector in the surface parallel direction and g‖ ≡∣∣g‖
∣∣
In vacuum/slab/metal configuration which is used in this work, the boundary

condition is 
V
(
g‖, z

)∣∣
z=z1

∂zV
(
g‖, z

)∣∣
z=−∞

= 0

= 0

εr (z) =


1,

∞,

when z < z1

when z ≥ z1

and the Green’s function is

G(iii)
(
g‖, z, z

′) = 4π

2g‖
e−g‖|z−z′| − 4π

2g‖
e−g‖(2z1−z−z′)

2.5 Smearing of the Fermi function

The idea of this estimation comes from the extension to LDA DFT found by Mermin.

Finite temperature effects can be taken into account in the band-energy by the

Mermin’s approach [33]. In such kind of approaches a set of temperature-dependent

electron occupations is introduced. Using an analogy of quasi-one-particles, the free

energy of system at the temperature T is expressed as follows:

Ftot =
∑
i

fi (εi − µ)− kBTS +∆F + µNe , (2.9)

∆F = −kBT log Tr [exp{−∆H/kBT}] , (2.10)
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where Ne and µ are the number of electrons and chemical potential, and εi and

fi are the eigenvalue of band energy and its occupation number. The latter is

defined as fi = 1/(exp(εi − µ)/kBT + 1). Note that
∑

i fi = Ne. The second term

in Eq. (2.9) represents the entropic energy of non-interacting one-particles and

S =
∑

i si =
∑

i y(fi), where y(x) = −x log x + (1 − x) log(1− x). The third term

∆F in Eq. (2.9) represents the contributions from all the other interactions between

electrons which are not included in the first (one-particle) term. Ferromagnetism

is stabilized by an exchange magnetic field (molecular field) arising from the other

magnetic moments. This effect is taken into account partially in εi and ∆F . The

magnetic dipole-dipole interaction between electrons, contributing to the SA, is

included in ∆F .

2.6 Magnetic Anisotropy

Magnetic anisotropy means that there is directional dependence of material magnetic

properties. For example the magnetic moment direction of anisotropy material will

follow its easy axis, which is have lower energy during spontaneous magnetization.

Magnetic anisotropy energy will define the strength of ferromagnet, because it

related to how much energy required to rotate magnetization from the easy axis to

the hard axis. In application viewpoint magnetic anisotropy play important roles,

various types of magnetic anisotropy is needed in application devices whether it is

weak, moderate, or strong. For example devices such as, permanent magnets, in-

formation storage media or magnetic cores in transformers and magnetic recording

heads require different characteristic of magnetic anisotropy. Basically magnetic

anisotropy is preferred magnetic moment orientation in materials. It’s also related

with internal energy that depends on spontaneous magnetization direction. It has

been said that the main origin of magnetic anisotropy comes from spin-orbit cou-

pling: In the technical
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HS.O. = ξl · s

ξ(r) =
1

2m2c2r

∂V

∂r

If we see in the microscopic way, there is two origin of magnetic anisotropy that

is magnetostatic and electronic structure contribution. The magnetostatic contri-

bution can be written as:

Ed−d =
1

c2

i 6=j∑
Ri,Rj

{
m(Ri).m(Rj)

R3
ij

− 3
[m(Ri).(Ri −Rj)][m(Rj).(Ri −Rj)]

R5
ij

}

This contribution was derived from dipole-dipole interaction, so the contribution

depends on the arrangement of atoms, and not so depend on electric field.

As said before, the electronic structure contribution is really big to the magnetic

anisotropy. This contribution due to perturbation of spin-orbit interaction, the

magnetic anisotropy appears from an anisotropy of orbitals. Anisotropic occupation

of the outer orbitals, for example d-orbitals will lead to magnetic anisotropy. So

it is important to see the behaviour of each angular orbitals. The relation of this

spin-orbit interaction is shown by:

HS.O. =
1

2
ξl · σ

2.7 Magnetic Anisotropy Energy

Magnetic Anisotropy energy comes from the energy difference of ferromagnet when

it has different magnetic orientation, for example the energy difference between

hard axis and easy axis. The anisotropy energy is come from spin-orbit coupling

which break the rotational invariance with respect to the spin quantization axis [34].
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Another contribution may comes from magnetic dipole interaction between spins.

In practice MAE is total energy differences between in plane and out-of-plane

magnetization. If the total energy differences has positive value, that means the

system have perpendicular anisotropy.

The formulation of internal energy of materials is:

E[ne] = K[ne] + Exc[ne] +

∫
dr[ne(r) + nI(r)]VH(r)

The main origin of MAE comes from the electronic structure, especially spin-

orbit contribution from band electrons. The formulation is written in second order

perturbation theorem:

MAE ∝ ξ2
∑
k

∑
o,u

|〈ko |lz| ku〉|2 − |〈ko |lx| ku〉|2

εku − εko

where ko is the occupied wave vector, ku is unoccupied wave vector, lα is angular

momentum operator, ε is eigen value.

In order to observe EF driven magnetization reversal, we study the EF depen-

dence of magnetic anisotropy energy (MAE). MAE is the internal characteristic of

magnetic materials, which is the total energy difference between out-of-plane and

in-plane magnetization. The contribution of MAE comes from dipole-dipole inter-

action and spin orbit interaction. In our case, the main contribution comes from

spin-orbit interaction which formulated by the second order perturbation theory[35],

MAE ∝ ξ2
∑
k

∑
o,u

|〈ko |lz| ku〉|2 − |〈ko |lx| ku〉|2

εku − εko
. (2.11)

The coupling between the same angular orbital component in Eq. 2.11 (first summa-

tion term) will contribute to a positive MAE, while the coupling between different

angular orbital component will reduce the MAE.
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2.8 MAE from Bruno’s relation

One can estimate MAEs from the orbital magnetic moments by using Bruno’s for-

mula [36]

MAE = ξ
m

[001]
o −m

[100]
o

4µB

, (2.12)

where ξ is the spin-orbit coupling constant (Fe: 51 meV/atom[37]) andm
[001]
o (m

[100]
o )

is the orbital magnetic moment for the [001] ([100]) magnetization direction.
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3 Simulation Method

Density functional theory (DFT) code based on Carr-Parinello molecular dynamics

has been used to perform simulation in this research. The CPVO codes [38] is built

based on plane wave basis, by utilizing the ultrasoft pseudopotential and generalized

gradient approximation in the exchange correlation term the many body electron

problem were solved. The structural optimization is performed in scalar relativistic

calculation, but finally we calculate the magnetic anisotropy energy by using full

relativistic calculation, with considering spin orbit interaction.

The MAE originating from spin-orbit interaction (SOI) was estimated from the

total energy difference between the different magnetization directions [100] (x-axis)

and [001] (z-axis), MAE(SOI) = E[100]−E[001], where [001] specifies the direction

of film thickness. We used the 32 × 32 × 1 mesh of k point sampling [39] in MAE

estimation [45]. Using the scalar-relativistic level computation, in which taking a 24

× 24 × 1 k-mesh, we induced structural relaxation while keeping both the in-plane

lattice constant and the atomic coordinates of O(3). The MAE from the shape

anisotropy, MAE(MDI), was estimated using the magnetostatic dipole interaction

(MDI) and assuming the atomic magnetic moments

To understand the k-space contributions to the MAE, the k-resolved MAE, de-

fined as MAE(k) =
∑

n(f
[100]
nk ε

[100]
nk − f

[001]
nk ε

[001]
nk ) + (correction term), was calculated,

where the correction term above was assumed to be a uniform in k-space and the

integrated value of MAE(k) is equal to the MAE(SOI). After excluding the trivial

contribution which is cancelled out with each other by symmetrizing MAE(k). Such

intrinsic MAE(k) is shown in Fig. 13.
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3.1 Computational Model of Cr-buffered Fe/MgO

3.1.1 Integer number of ferromagnetic layer

Fe O MgCr

Figure 1: Schematic model of the slab systems Cr(6ML)/Fe(xML)/MgO(5ML) for
x = 5.

To investigate the interface of Fe/MgO, we consider slab model consisting 0.79 nm

vacuum. The construction is vacuum/Cr(6 ML)/Fe (x ML)/MgO (5 ML)/vacuum,

ML means atomic monolayer. This structure are illustrated in Fig. 1. We build

our computational model based on the slab model for metal. Every atom stacked in

pillar-like position with two large vacuum at the both end of the model. So it has

infinite 2-dimensional boundary, but with finite z-direction thickness.

In this work the thickness of Cr is already fixed to 6 ML because it has been

known from previous work[41], that the thickness of buffer layer is does not effect to

the estimation of MAE. 6 ML configuration assumed to be enough, also in this model

we could build antiferromagnetic configuration for the Cr underlayer. Previous works

show, MAE is almost independent of Cr thickness within the accuracy of 0.1mJ/m2

for a given Fe thickness.

3.1.2 Non-integer number of layer(Intermixing in the Fe/Cr interface)

In order to consider more detail behaviour of the magnetic anisotropy energy as a

function of thickness of ferromagnet. We tried intermixing configuration or non-

integer number of layer. To model this configuration, we construct
√
2×

√
2 model,

also 2 × 2 in-plane lattice constant model. Therefore we can reproduce such 25%,

50%, or 75% intermixing at the Fe/Cr interface model, just like described in Fig. 2
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Figure 2: Schematic model of the slab systems Cr(6ML)/Fe(xML)/MgO(5ML) for
x = 3.5.

3.1.3 Smearing effect of the temperature dependence

The magnetic anisotropy also depends on the magnetic moment. As temperature

of the magnetic moment decreases, the anisotropy energy often becomes decreased.

The main part of such reduction may be realized by the contribution of SA. The

temperature dependence of the magnetic moment originates from the spin fluctu-

ations. In order to evaluate it, one can take a method based on the microscopic

electronic structure [23, 24]. However, for focusing the smearing effect at the Fermi

level and for simplicity, this work employs a well-known sophisticated model as

the temperature-dependent magnetization M(T ), as follows: M(T ) = M0 y(T/T
∗),

where y is a given function, M0 = M(0), and T ∗ is a sophisticated parameter, such

as Curie temperature (Tc). T
∗ is used as a sort of fitting parameters. In this work,

due to the thinner magnetic slab, we employed y(T/T ∗) = 1− (T/T ∗)2 [29].

The magnetic anisotropy energy is presented as K = Kb+Ksa, where Kb is from

the band energy andKsa from the SA.Kb is expressed as the energy difference of free

energy Fb between the different magnetization directions, such as [100](x-direction)

and [001](z-direction). The Fb is given as follows [42, 43] :

Fb =
∑
nk

fnk (εnk − µ)− kBTS + Ed + µNe , (3.1)

where Ed is the double counting term in the total energy.[44] Using Eq. (3.1),

Kb = F
[100]
b −F

[001]
b [45]. The Ksa is expressed as Ksa = −µ0M

2/2Ω+∆K int
sa , where
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Ω and µ0 are the volume of magnetic slab and permeability of vacuum, respectively,

and ∆K int
sa is the interface contribution which does not include in the 1st term.

∆K int
sa originates from both the discreetness of stacking atomic layers [46] and the

deviation from spherical atomic spin moment density at the interface magnetic atoms

[47]. These are due to the shape of magnetization distribution, reducing the in-plane

SA in ferromagnetic Fe layers.

In the demonstration, we used the slab system, vacuum(0.79nm)/Cr(6ML)/Fe(5ML)

/MgO(5ML)/vacuum(0.79nm) (ML=atomic monolayer). At the Fe/MgO interface

the Fe atom was placed just next to the O atom due to its stability, and in the

Cr and Fe layers the body-centered layer-stacking sequence was used. The in-plane

lattice constant extracted from bulk Cr was employed.

3.2 Computational Parameter

The calculation perform in custom built DFT Code named CPVO. In this program

we use below parameter:

• 30 Ryd cutoff wave function.

• 300 Ryd cutoff charge density.

• GGA exchange correlation

• Ultrasoft pseudo-potential

• 32x32x32 dense k-points, and 24x24x1 sparse k-points

• Spin orbit interaction when calculating MAE

The density functional calculation employs a fully relativistic (with spin-orbit

interaction) ultrasoft pseudopotentials and planewave basis [48], by using the gen-

eralized gradient approximation [49]. We used a 32 × 32 × 1 (sparse) mesh for the

k point sampling in the estimations of Kb. At the low temperatures, unfortunately,
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the sparse mesh mentioned above cannot give any convergence in the self-consistent

calculation, and a 64 × 64 × 1 (dense) mesh was also introduced. The difference

from the sparse mesh appeared at the low temperatures, such as less than or equal

to 100-200 K, and becomes small at 300 K. The dense mesh requires a large amount

of computational source so that the number of calculated temperature points were

limited to a few.

3.3 Workflow

Here we briefly describe the work flow of the experiment which conducted to write

this dissertation report. The experiment basically performed in two stage in order to

finally get the MAE and electronic structure. The first stage we call it the collinear

stage, and non-collinear for the second stage.

Fig. 3 describe how the experiment in density functional simulation is performed

in this work. First we treat the electron optimization (OPTE1) under small amount

of magnetic field bias to set the magnetic orientation under the scalar-relativistic

calculation,then the bias canceled after several iteration. Calculation continue with

next electronic structure convergence (OPTE2) after canceling the presence of mag-

netic field, then then the atomic structure is optimized (OPTS). We call this step

is the optimization in collinear condition as described in Fig. 3. The electron

convergence are performed in the first stage is to get the optimized electronic struc-

ture at initial atomic configuration. After that we perform structural relaxation in

non-relativistic condition (OPTS), the optimization is performed until the atomic

force low enough. When the optimized atomic structure achieved, we optimize the

electronic structure one more time (OPTE3). After the final optimized electronic

structure is achieved, it used to draw the density of states and band dispersion of

interested atom.

After the optimization of atomic and electronic structure in collinear condition,

we continue the calculation in the non-collinear magnetic structure. The atomic
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Figure 3: Research workflow in generating electronic structure of the target material
in Collinear Calculation
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structure received from previous optimized structure are being used and first stage

of OPTE1 performed by using relativistic effect. In this OPTE1 we put small bias

on magnetic field to set the spin structure on the thin film. The small imposed

bias are given to make the [001] orientation of the ferromagnet, and also make

the Cr in antiferromagnet configuration. After we take off the bias, convergence

of electronic structure are continued (OPTE2). When we reach the lowest level of

convergence in this electronic structure, we take this configuration as the out of

plane magnetization. Therefore we need to rotate the spin orientation, especially

the ferromagnet to be in-plane orientation. We call the procedure as the SPINSET.

Finally we measure the difference of the energy between in-plane and out-of-plane

orientation. All of this process are summarized in Fig. 4.
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4 Result and Discussion

4.1 Investigation on large perpendicular magnetic anisotropy

energy

Within this chapter we will explore the result when we change the thickness of fer-

romagnet materials. The Cr-buffer effect to the electronic structure of the interface

states will be explained.

4.1.1 MAE(SOI)
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Figure 5: Thickness dependence of the magnetic anisotropy energy (MAE) from
spin-orbit interaction in Cr/Fe(xML)/MgO. The bullet indicates the experimental
value (ref. [50]), where 1ML thickness is assumed to be 0.142 nm.
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Figure 6: Thickness dependence of the magnetic anisotropy energy (MAE) from
spin-orbit interaction in Cr/Fe(xML)/MgO. In this model we also consider the non-
integer layer, where intermixing is possible. The bullet indicates the experimental
value (ref. [50]), where 1ML thickness is assumed to be 0.142 nm.

We report the thickness dependence of MAE(SOI) in Fig. 5. It indicates an oscil-

lating perpendicular anisotropy with respect to Fe thickness (x), and the maximum

of 2.0 mJ/m2 at Fe 2ML(x = 2) and other maximal values at 5ML(x = 5) and

7ML(x = 7). The behavior shows that an odd-even alternating oscillation at the

thicker systems (4ML-10ML). For the thinner systems, the amplitude of oscillation is

largely enhanced since large changes are expected in the electronic structure around

the Fe/MgO interface.

The estimation to the MAE of non-integer layer also performed in order to see

the behaviour. Fig. 6 showed that the oscillation tendency as the thickness increase

is not changed, all the non-integer estimation is located at the intermediate value

of MAE from integer layer thickness.

4.1.2 Fe 2ML case

The maximum MAE at Fe 2ML is much larger than the previous theoretical and

experimental values in the Fe/MgO interface family, comparable to the interface

contribution extracted from the extrapolation fitting in the experiment [16]. At Fe

5ML our value agrees well with the experimental value [50].
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Figure 7: Electronic structures at the Fermi level in Cr/Fe(2ML)/MgO without
including spin-orbit interaction, (a) projected densities of states (PDOS)(form the
top) 3d total dxz+yz, dxy, dx2−y2 ,d3z2−r2 components, (b) selected k-point path, and
(c) band dispersion for the Fe 3d orbitals at the interface Fe(1)
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Fig. 7 shows the projected density of states (PDOS) at the interface in x = 2

and band dispersions with 3d orbital components in the vicinity of the Fermi level

(EF). As shown, the EF is located between the two peaks of PDOS consisting of

3d orbitals. These electronic states are relatively localized since the main orbital

components are made of the non-bonding 3d-orbitals. Indeed, the states form a flat

band around the k-point k1 = π/a(1/2, 1/2) (see Fig. 7) and a saddle point near

k1 in two-dimensional Brillouin zone (2DBZ). The band flatness appears along X̄–Ȳ

line in 2DBZ. These features are remarkably observed for both the occupied and

unoccupied bands in Fig. 7(c). There is a saddle point nature around k1 in 2DBZ

(not exact of saddle point). Along X̄–Ȳ, there is a maximum at k1 in the 3d-orbital

band just above EF, and simultaneously along Γ̄–M̄ a minimum near k1.

This feature is the origins of sharp PDOS peaks in the interface states, appear-

ing more or less in the Fe/MgO and its family systems. However, for realizing such

features, there may be a combination of two conditions. The one is an appropriate

orbital hybridization between 1st Fe and 2nd Fe layers. This keeps splitting the

mixed eigenstates of dxz and dyz components at M̄ point to the lower and higher

eigen energies, while in the Fe 1ML system, those stays remain on or around EF [35].

The 2nd condition is also an orbital hybridization between Fe d3z2−r2 and O pz. This

keeps the d3z2−r2 away from EF, not disturbing the localized states of non-bonding

dxy, dx2−y2 , dxz, and dyz at EF. The latter has been well known as one of impor-

tant origins for realizing perpendicular anisotropy [2]. This is because the orbital

d3z2−r2 always contributes only to in-plane magnetic anisotropy, assuming that the

contribution from the majority spin state can be neglected due to a large exchange

splitting [35]. The MAE maximum in Fe 2ML is obtained as the consequences of

the origins discussed above. Note that there are vertical couplings of SOI around k1

area in 2DBZ, which contribute to perpendicular anisotropy; couplings of dxy–dx2−y2

and dxz–dyz.
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4.1.3 Fe 5ML case
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Figure 8: Electronic structures at the Fermi level in Cr/Fe(5ML)/MgO without
including spin-orbit interaction, (a) partial density of states (PDOS), (b) band dis-
persion for the Fe 3d orbitals at the interface Fe(1)

In x = 5, such dispersionless states is more clearly observed just above EF (0.1

eV in Fig. 8(c)), the band changes upward along Γ̄–M̄ and slightly downward along

X̄–Ȳ. In the more real-life scenario of x = 5 configuration in Fig. 8, the formation of

interface state is also observed, but unfortunately the vertical coupling of dxy–dx2−y2

and dxz–dyz at k1 is already shifted away from the Fermi level to higher energy.

Therefore we have lower value in the magnetic anisotropy energy, but we still have

the coupling of dxz–dyz orbital at middle point of X̄–Γ̄ and Γ̄–M̄ which is contribute

significantly to the perpendicular magnetic anisotropy.

4.1.4 Thickness dependences of interface electronic structure and num-

ber of electrons

The thickness dependence in MAE has a relationship with the number of electrons

(NOE) in the 3d orbital of minority spin state on the interface Fe. In the large
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variation range of MAE (< Fe 4ML), the NOE decreases as thickness, and in the

odd-even alternating range (≥ Fe 4ML) its NOE does not synchronize so much with

the MAE, as shown in Fig. 9. For the former, the number of Fe works as hole

doping, while in the latter the MAE may be influenced by the details of electronic

structures at the interface. Interestingly, note that the NOEs of dxy and dx2−y2

show an alternating behavior in their relative values (See Fig. 9). Indeed, the

alternating nature appears at the dxy component in the band dispersions (not shown)

and PDOS(see Fig. 10).

The number of 3d electrons at the interface Fe is summarized in Fig. 9. The total

number of 3d electron decreases as the thickness increases until Fe 4ML. This de-

crease is in accordance with the relationship of electronegativity between Fe and Cr.

The electrons on Fe of larger electronegativity gradually increases as the thickness

of Fe increases from Fe 4ML.

Fig. 10 shows the series of PDOS for interface states. Except for x = 1, the

sharp peaks appear, implying the localized nature of wave functions. It is worthy to

notice that the series of x = 2−5 do not show a simple rigid band filling. The shape

of dxy component changes while that of dx2−y2 is kept without any large change. In

details, the peaks of dxy and dx2−y2 are located just below and above the EF level,

respectively, in Fe 2ML, and as the thickness the peaks of dxz+yz moves to higher

energies with that of dx2−y2 . Additionally, it is interesting to see the PDOS peak

sharpen in the thicker systems (see the case of x = 9). The origin of interface states

energy shift is speculated as an orbital hybridization with the Cr underlayer. At the

Cr/Fe interface, the 3d orbital components at EF was shifted due to the hybridization

to a higher energy for Cr and to a lower energy for Fe. This realizes the electron

transfer from Cr to Fe atoms, showing a property of smaller electronegativity for

Cr. Consequently, the 3d orbital on the Fe of Fe/MgO interface can get electrons as

the thickness of Fe layer decreases. Indeed, it was observed clearly in the Fe layer

with small x’s as a vicinity effect of Cr. Interestingly, the similar energy lowering of
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IS occurs as the decrease of in-plane lattice constant [51], inducing the modulations

in MAE.

4.1.5 Variation of the atomic magnetic moment
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Figure 11: Atomic magnetic moment of Fe in the ferromagnet layer, Fe(1) are located
at the interface of MgO.
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Figure 12: Atomic magnetic moment of Fe in the ferromagnet layer, Cr(1) are
located at the interface with Fe.

We report the results of atomic magnetic moments obtained by integrating the

spin density in the atomic sphere with the radius (Cr: 0.90 Å, Fe: 0.90 Å), as shown

in Fig. 11 and Fig. 12. As general trends the Fe magnetic moment is enhanced (2.8

µB) and reduced (2.3 µB) at the Fe/MgO and Cr/Fe interfaces, respectively, com-

pared with those of the inside layers (2.5 µB). In the Cr layer, the magnetic moments
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couples also antiferromagnetically between the neighboring layers. These configu-

rations are similar to the previous theoretical work on the Fe(001)/MgO/Cr/Fe

magnetic tunnel junctions [52]. Note that the magnetic alignment related with the

Cr atoms has not been know in the thin film materials (devices). To bulk Cr, an

incommensurate antiferromagnetic spin-density wave has been know for a long time

[53] and the interface with Fe may possibly show a noncollinear magnetic configu-

ration [54].

As shown in Fig. 12, the magnetic moment on Cr(6) is larger than those of the

other Cr MLs, because this atom faces to vacuum and the electron wave function

is more localized near the vacuum. This feature contributes to larger magnetic

moment.

4.1.6 The k-resolved anisotropy
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Figure 13: The k-resolved contribution of MAE: MAE(k) for x = 2, 3, 4, 5, 6, 9,
which corresponds from (a) to (f), respectively. The red (blue) color indicates posi-
tive (negative) contribution to the MAE from electronic band structure. The non-
vanishing typical couplings are described in the right hand side for the positive
(negative) area indexed by P (N) in (a)(x = 2), (d)(x = 5), and (f)(x = 9), where
the symbol o (symbol u) specifies the states below (above) the Fermi level, and the
`z (`x) is the operator of z-component (x-component) orbital angular momentum.

In order to understand the contribution to perpendicular magnetic anisotropy

from the second order perturbation clearly. We develop tools to analyze the dis-



4.1 Investigation on large perpendicular magnetic anisotropy energy 49

tribution of magnetic anisotropy energy in the k-space. As observed in Fig. 13

we can see in the thicker Fe layer (x = 9, see Fig. 13(f)), there is some positive

contribution (red area) along the line kx + ky ∼ 2π
a
× q (q = 0.22). This contribu-

tion survives overcoming the negative contributions (blue area) in the other area.

Such positive contribution commonly appears, enhanced in x = 5 (Fig. 13(d)) and

x = 2 (Fig. 13(a)). For x = 2, in addition, the positive area is much extended

to the area of larger q-values. These characters may cause the large MAEs in the

systems of x = 2, 5. Along the line mentioned above (q = 0.34), in contrast, some

cancellation appears in x = 4 (Fig. 13(c)). In the case of x = 2 the large MAE

may be attributed to the area near k1 where the flat band and singularity appear,

through the consideration of second-order perturbation theory,[35] as discussed in

the previous paragraph. In Fig. 13, the coupling which may contribute to the en-

hanced MAE is presented for the positive area (indexed by the symbol P). Even

in x = 5, 7, 9, those vicinities of flat band and singularity can enhance the positive

contribution in MAE (see Fig. 5) and are consistently explained with MAE(k) (not

shown here for x = 7).

4.1.7 Total magnetizations

In the theoretical approach we obtained the magnetic dead layer (MDL) with 0.053

nm thick at most, while the experiment clearly showed the MDL with 0.1 nm thick

[16]. The theoretical magnetization is larger than the experimental one by about

24 % at the Fe 5 ML, as shown in Fig. 14. These differences could be ascribed

to an alloying effect at the Cr/Fe interface in the experiment. This allows to draw

a suppression of the in-plane anisotropy from MDI contribution, or alternatively

an enhancement in the strength of interface perpendicular anisotropy. The near-

est neighbor pairs of Cr–Cr and Fe–Cr tends to enhances antiferromagnetic cou-

pling between the magnetic moments, and possibly inducing a noncollinear magnetic

structures due to a competition in magnetic couplings [54]. Associated with such
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complexity in magnetic configuration, the MAE(SA) modulates due to the change

in MDI.

4.1.8 Shape anisotropy

−2.5

−2

−1.5

−1

−0.5

0

2 4 6 8 10

ED
I

(m
J
/
m

2
)

tFe (ML)

Figure 15: Theoretical MAE(MDI) (yellow triangles), normalized MAE(MDI) (blue
reverse triangles), and experimental MAE(SA) (red dots), the dashed lines are only
guide.

The shape anisotropy is realistically important for determining the whole magnetic

anisotropy. When we compare our MAE(SOI) with those from measurements, the
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shape anisotropy needs to be estimated precisely. Here, we estimated the shape

anisotropy energy, MAE(SA), in two ways; from the MDI [55] using the theoretical

atomic magnetic moments and the estimation (−µ0M
2
s /2) using the experimental

saturation magnetization (Ms) [16]. In the former, all the Cr layer were also taken

into account. This shape anisotropy contribute to the in-plane component, large

negative value means more reduction to the MAE(SOI). So we could observe that

the calculation from pure dipole-dipole interaction [55] provide much reduction com-

pared to the one extracted from experimental ones [16]. Just as described in Fig. 14,

the estimation of total magnetization are overestimate experimental value, therefore

we consider the case of normalized ones. Later we can use this value as the corrected

factor of the MAE(MDI).

4.1.9 Total MAE
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Figure 16: Total magnetic anisotropy energy (MAE), compared with the experi-
mental data (bullets)(ref. [16]). The open yellow triangle symbol specifies the data
estimated theoretically; MAE(SOI)+MAE(MDI), the reverse blue triangle symbol
represent the MAE(SOI+MDI) after the 26% reduction of theoretical atomic mo-
ment, and the cross data the sum of the theoretical MAE(SOI) and the shape
anisotropy MAE(SA) estimated using the experimental magnetization.

Fig. 16 reports the total MAE, namely summation of MAE(SOI) and MAE(SA),

in comparison with the available experimental data. This figure shows that our

estimation is much reduced due to large in-plane contribution from the MDI. As



4.1 Investigation on large perpendicular magnetic anisotropy energy 52

shown in Fig. 15, the experimental MAE(SA) is much reduced in absolute, compared

with the theoretical one. This is an origin why we have so much reduced value. By

considering the reduced MDI (rMDI), we could obtain that the MAE (SOI+rMDI)

describe in the blue reverse triangle. In this result we could observe an agreement

with the experimental data [16].

4.1.10 Thickness dependece of electric field effect

-100

-50

 0

 50

 100

 150

 1  2  3  4  5  6  7

M
A
E
 
s
l
o
p
e
 
(
f
J
/
V
m
)

tFe (ML)

EF-MAE (SOC)

Figure 17: The electric field effect change as the thickness of the ferromagnet increase

In Fig. 17 we observe the change of EFE constant as the thickness of ferromagnet

increase. The modulation of thickness change the EFE significantly especially for

the case of thinner than 5ML of ferromagnet. EFE constant for each layers are

become saturated in positive value above 50 fJ/m2 for thicker layer case. But for

2ML case, the value of this EFE become negative, in the opposite sign compared to

the other systems investigated in our calculation.

4.1.11 Bruno’s relation to the MAE

The obtained MAE(SOI) result can be compared to Bruno relation [56] in order

to confirm the validness of our calculation results. In Fig. 18 we can observed

that in even number of ferromagnet layers MAE(SOI) can be fairly close estimated

by assuming 62 meV to the spin-orbit coupling constant. But the Bruno’s model
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Figure 18: The estimation from Bruno’s relation compared to the calculation of
MAE from SOI. Black solid square represent MAE from SOI, red cross symbol are
MAE calculated from Bruno relation, blue star symbol are the contribution from
Fe(1) at the interface, and orange empty square symbol are contribution from Fe(2).

is much underestimated the MAE for odd number of Fe cases. This features can

be tolerated, because its already known even this relation are applied to most of

the ferromagnet transition metals like Ni, Fe, Co, sometimes due to complexity of

the system or the large value of spin-orbit coupling constant this relation can’t be

filled. In another way, it might be this model is too simple for even number of Fe

layers cases. Still we could expect the same out-of-plane tendency for the number

of MLs in Fig. 18. We could consider the main contribution of magnetic anisotropy

energy come from the first layer of interface iron with the MgO. The contribution

of nearest neighbor is constant around 0.2 mJ/m2, and the contribution from next

nearest neighbor is almost zero, therefore not included in the Fig. 18.

4.1.12 The thermal stability of thin layers of ferromagnet

In the case of consideration when we decrease the thickness of Fe layer, for example

become 2ML, the ferromagnetic state may become unstable against thermal distur-

bance. This could be denied in a discussion of Cr–Fe magnetic interaction. The Fe

at the Cr/Fe interface has a strong antiferromagnetic interaction of Heisenberg type.

This stabilizes the ferromagnetic state of Fe thin layer. The previous works reported
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large exchange interactions of J = 69 meV and |J |=59, 20 meV for Fe-Fe and Cr-Fe

nearest neighbors, [54, 57, 58] respectively. They could be enough to maintain the

ferromagnetic states at room temperatures. However, practically, associated with

the existence of magnetic dead layer in such system, [16] Fe atom may diffuse into

the Cr layer during the fabricating process at high temperatures. Indeed, when

exchanging the Fe and Cr atoms at the Cr/Fe interface in Fe 4ML, the total energy

does not become so higher (50 meV/in-plane Fe).

4.1.13 The origin of oscillating behaviour: Interface states and Quantum

well

As shown in Figs. 7 and 10 the interface state discussed here is presented just as

some sharp peaks in this work. The main body of states is on EF or just above EF by

less than 0.2 eV. These energy levels are located at the same energy range in which

the enhanced magnetic tunneling spectra appears [50]. The interface states in the

present work may have the potential to make a state resonating with the conduction

electron through the s−d interaction at the interface [59]. Indeed, the enhanced

spectra in the spin-dependent tunnel conductance has been observed, implying some

unknown/non-resolved mechanism behind [60, 3].

The Fe layer, forming a quantum well structure, is terminated at the Fe/MgO

and Cr/Fe interfaces, calling the amplitudes of wave function at the edges have a

feature of odd-even alternating behavior in the one dimensional model chain of which

the atomic site is connected with electron transfer integral. The dxy component at

the Fe/MgO interface is largely affected due to its non-bonding nature, and can

be sensitive to external perturbation from the other edge of Cr/Fe interface. The

electron transfer between the dxy orbitals of neighboring Fe MLs is proportional to

Txy,xy(k) ∼ eik·R{3t(ddσ) + 2t(ddπ) + 4t(ddδ)}/9, and is not negligible because the

absolute of transfer integral can reach to about 0.1 eV [35]. Consequently, as an

edge effect of the model chain, some non-negligible changes of dxy are supposed to
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appear at the interface states.
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4.2 Fermi level smearing effect to the MAE

4.2.1 Magnetic anisotropy from spin-orbit interaction
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Figure 19: Fermi level smearing effect in magnetic anisotropy energy (MAE) with
respect to temperature. The symbols of triangle and circle specify the data by dense
and sparse meshes, respectively.

Fig. 19(b) shows Kb per unit area as a function of T . These values are posi-

tive, contributing to a perpendicular magnetic anisotropy as expected in a family

of Fe/MgO interfaces [1, 7, 2], and similar to the data (1.5 mJ/m2) from the exper-

imental measurement at the room temperature for the Fe thickness (tFe) of 0.7nm

[50]. Such positive contribution may be attributed to the SOCs between the orbital

components of dxy and dx2−y2 , or dxz and dyz in the respective occupied and unoc-

cupied states [61]. The smearing effect decreases Kb monotonically by 0.38 mJ/m2

from 10.5 K to 527 K. This decreasing quantity is not negligible, implying one of

important ingredients for the temperature dependence of magnetic anisotropy.

4.2.2 Electronic structure

Kb decreasing with temperature is a consequence of electronic structure. To confirm

the variation property, in Fig. 20 we show the band dispersion curves and the partial
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Figure 20: (a) Band dispersion curves (left and center) and (b) partial density
of states (right) for the minority-spin-state 3d orbital on the interface Fe in the
[001] magnetization system determined with the temperature-dependent Fermi level
smearings of 316 K (full curves and symbols) and 53 K (broken curves). The sym-
bols specify the angular orbital components projected on the interface Fe atoms;
dxy, dx2−y2 , d3z2−r2(left) in blue, green, and red bullets, respectively, and dxz, dyz
(center) in orange and yellow. The Fermi levels are adjusted to zero in the vertical
axis with the horizontal full line, and the Fermi energy (chemical potential µ) de-
creases by 0.11 eV as temperature. The inset figure in (b) shows the typical data of
εnk − µ with respect to the temperature at k = 0.33× Γ̄M̄ (vertical red arrow).

density of states (PDOS) for two different temperatures (53 K and 316 K). The

eigenvalue with respect to the chemical potential (εnk − µ) is increased roughly by

0.01 eV in almost all the Brillouin zone. In particular, focusing the unoccupied

states dominated by 3d orbitals at around 0.09 eV, the eigenvalue tends to behave

(εnk − µ) = ε0nk − µ0 + αT 2, where ε0nk and µ0 are the eigenvalue and chemical

potential, respectively, extrapolated to 0 K, and α is a positive constant (typical

temperature dependence of εnk − µ is shown in the inset of Fig. 20). Consequently,

the quantity of 1/(εnk − µ) decreases as temperature, implying a decrease in Kb

considering the second-order perturbation formula for spin-orbit interaction [61].

In the present case, the α is small so that αT 2/(ε0nk − µ0) is much smaller than

unity, showing a gradual temperature dependence in Kb like a linear, instead of

a complicated dependence. Quantitatively the decreasing rate by the Fermi level

smearing should be canceled out partially by the other contributions so as to showing

a gradual decline such as observed in the experimental measurement [13].
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Figure 21: Total magnetic anisotropy energy (K) per unit area with respect to
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4.2.3 Including shape magnetic anisotropy

In order to validate the smearing effects obtained above comparing them with the

experimental results, we had performed a simulation on K using the parameters of

M0 and T ∗. In this simulation we used the Fe layer thickness (tFe = 0.710nm). This

tFe is comparable to those obtained by the first-principles calculation. As a result

the M0 can be fixed to the value which reproduces the experimental magnetization

at 300 K (M(300K) = 1.83 T) [16]. We also found that, comparing the results of

the T ∗s of 800, 900, 1000, 1100, 1200, 1300, and 1400K, the T ∗s between 1200K

and 1300K give a reasonable fitting to the temperature dependence of available

experimental data [13] except a temperature-independent value implying ∆K int
sa . In

Fig. 21, the total K per area are plotted as temperature for the parameters of T ∗ =

900K, 1100K, and 1300K, where ∆K int
sa = 0. At the lower T ∗s, the in-plane SA

becomes larger and the difference with the experimental data also becomes large at

the low temperatures.

In Fig. 21, the totalK per unit area is also shown for a non-zero ∆K int
sa . This plot
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implies that, assuming the interface contribution of SA (∆K int
sa /A = 0.09mJ/m2), K

becomes close to the experimental results. This quantitative assumption in ∆K int
sa is

not so far from a realistic contribution, because the quadrupole atomic spin density

of prolate type at the interface can reduce the in-plane SA by an energy comparable

to that in the free-standing Fe 1ML (0.10mJ/m2) [47]. Note that such contribution

does not depend on the total magnetization. On the fitting to another experimental

data of M(300K) = 2.09T,[50] the set of parameters (∆K int
sa /A = 0.35mJ/m2, T ∗ =

1400K) provides a reasonable temperature dependence in K. This parameter of

∆K int
sa is not too large, because the parameter originates from both interfaces in the

Fe layer. Further investigations on the origin of ∆K int
sa are required for analyzing

real magnetic interfaces.

Our analysis in the temperature dependence of K can predict a behavior at the

higher temperatures. As shown in Fig. 21, our result indicates that it increases

as temperature after some temperature. Note that such behavior is a consequence

that as temperature the perpendicular Kb decreases and the in-plane SA (|Ksa|) also

decreases more rapidly with a growth of spin fluctuations. The behavior that the

SA works as an enhancement of PMA or as a suppressing origin in the reduction

of PMA at higher temperatures, may be one of important general interests in the

thin ferromagnetic materials. Note that at further higher temperatures near Tc the

Mermin’s approach is no longer useful and should be corrected in accordance with

existing large spin-fluctuations [62]. In a further general treatment on magnetic

anisotropy, temperature effects originating from a magnetoelastic anisotropy should

be considered.

In our analysis, the parameter of T ∗ is relatively flexible, compared with the other

parameter of M0. T ∗ around 1300K seems to be suitable to explain the available

experimental data. If T ∗ is regarded as Tc, this Tc (= 1300K) is comparable to those

of bcc Fe (Tc = 1043K). When considering a Tc formula in the approach of localized

spin moment, Tc is proportional to both the exchange coupling constant and the
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square of magnetization. Roughly speaking, the effective Tc may increase, because

the magnetic moments on Fe atom tend to be enhanced at the interfaces. Further

information on Tc should be required in the computational approach as well as in

the approaches of phenomenological theory and experimental measurement.

Our present approach to a temperature dependent MAE may indicate a corre-

spondence with an available experimental data. However, it is still unclear that the

spin fluctuation at finite temperatures is fully considered. This is because that the

electronic structure calculation, which is a basis of the MAE originating from the

spin-orbit interaction, does not include effects of finite temperature in the atomic

spin configuration, whileas the spin configuration at finite temperatures should be

an ensemble of various directions for atomic magnetic moments. The last picture is

a reason why the strength of total magnetization tends to derease as temperature.

An improved approach on MAE estimation is required for a computational material

design of magnetic materials.
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4.2.4 The change of density of states
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Figure 22: Temperature dependence on the Density of states of Cr6/Fe5/MgO5
system

When we increase the temperature the interface resonant state are change, its be-

come more sharp and closer to the Fermi level. This feature support the phenomena

of higher perpendicular magnetic anisotropy energy.
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5 Conclusion and Future Works

5.1 Conclusion

Systematic investigation on Cr-buffered Fe/MgO interface has been performed in

this work. Starting from the change in thickness of ferromagnet layer, until the

temperature dependence by the change of Fermi level smearing. We performed first

principles electronic structure calculations for the interface systems with Cr under-

layer of Fe/MgO interface and estimated the MAE originating from the SOI and

MDI. The exotic oscillating behavior was observed in the MAE from SOI. We found

that the DFT approach can describe the MAE with good accuracy, compared with

the experimental data. Our calculation shows that the MAE(SOI) in 5ML system

with 1.5 mJ/m2 is comparable to the experimental ones. The series of total MAE’s

indicated perpendicular and in-plane magnetic anisotropies in the Cr-underlayer

Fe/MgO. The reduction by the in-plane shape anisotropy energy was considered

as the correction factor to the pure DFT calculation approach. By introducing

the rescaled magnetization similar to the experimental one, the thickness range of

perpendicular magnetic anisotropy was found to correspond to experimental result.

From the electronic structure, the dispersionless and saddle point nature appear in

the band dispersions around k1 are found to play the important role in the perpen-

dicular anisotropy. In the Fe 2ML, particularly, the flat bands consisting of dxz, dyz,

dxy, dx2−y2 are located just below and above the Fermi level. These bands contribute

to the large MAE(SOI) of 2 mJ/m2. The change of interface states as an effect of

vicinity of Cr under-layer and the formation of quantum-well is discussed as the

origin of change in perpendicular magnetic anisotropy like a proximity effect. The

detail electronic and magnetic properties of this Cr buffered Fe/MgO slab systems,
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might be useful in future materials design for such multi-functional interfaces.

Based on similar first-principles calculation method, the MAE from the band

energy contribution using the temperature-dependent Fermi level smearing in the

Fe(5ML)/MgO slab was considered. The contribution of the MAE decreases by 0.4

mJ/m2 as temperature from 10.5K to 527K. When employing the simple formula for

the SA and assuming the experimental saturated magnetization with the appropriate

temperature dependence for ultra-thin films, the total MAE shows a nearly flat part

around the room temperature. This theoretical analysis may predict an increase

of the perpendicular total MAE at higher temperatures. Such increase may be

a possible general consequence of the balance between a large perpendicular band

energy contribution and small in-plane shape anisotropy. The present work provides

a new pathway to understand origins of a temperature dependence in MAE.

5.2 Future Works

Details of sign change in electric field effect in 2 ML configuration of the Cr(6)/Fe(x)/MgO(5)

system need to be discussed in future, considering large change in magnitude of 123

fJ/Vm electric field effect coefficient. The details on the electric field effect from the

smearing effect also planned to be reported in future works.
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A Appendix

A.1 Thickness dependence of MAE and its EF effect

One of the target in this research is to find material with large perpendicular mag-

netic anisotropy energy and also responsive to the voltage change, which is have

large electric field effect coefficient. Motivated by the search for better material, we

try by varying the thickness of ferromagnet. In hope this work will provide better

understanding of the underlying mechanism of PMA and EFE.

A.1.1 Cr(6)/Fe(1)/MgO(5)

In this work we start to build our model by begin to calculate from single mono-

layer of iron. With single layer of ferromagnet we try to investigate the electronic

structure, atomic structure, and finally observe the EFE and MAE.

A.1.1.1 Optimized Structure

Figure 23: The atomic structure model in Cr(6)/Fe(1)/MgO(5)

We optimize the structure of this material, as described in Fig. 23. The most im-

portant part of this structure is optimized distance, the optimized interface distance

of this material are 2.18 Angstrom.



A.1 Thickness dependence of MAE and its EF effect 65

A.1.1.2 Electronic Structure

The electronic structure of interface atom play important role in determining the

magnetic anisotropy energy and its electric field effect characteristic.
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Figure 24: The density of states of Cr(6)/Fe(1)/MgO(5)

We can see here, from the density of states of 1 monolayer of iron configuration

in Fig. 24 that we could see there is some states of majority spin in the unoccupied

states, especially comes from 3z2-r2. we could also see the 3d xy and yz orbital

states are available at Fermi level. It seems like this iron are much likely interfered

by underlying chromium. From the band dispersion its more clear that we can

observe there is a lot of states of the 3z2-r2 near Fermi level, especially from 1eV to

below. Also we could observed that yz and zx band at the Γ point are exactly at

the Fermi level.
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Figure 25: The band dispersion of Cr(6)/Fe(1)/MgO(5)

A.1.1.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 26: Electric field effect in Cr(6)/Fe(1)/MgO(5)
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A.1.2 Cr(6)/Fe(2)/MgO(5)

A.1.2.1 Optimized Structure

Figure 27: The atomic structure model in Cr(6)/Fe(2)/MgO(5)

We optimize the structure of this material, as described at 27. The optimized

interface distance for this structure is 2.20 Angstrom.

A.1.2.2 Electronic Structure

0

1

2

3

0

0.5

1

1.5

−3

−2

−1

−1.5

−1

−0.5

total 3d-orbital
dyz+zx

−1

0

1

−1

0

1

D
O

S
(S

ta
te

s/
eV

/c
el

l)

N
u
m

b
er

of
el

ec
tr

on
s/

at
om

dxy

−1

0

1

−1

0

1

dx2−y2

−1

0

1

−3 −2 −1 0 1 2 3

−1

0

1

Energy(eV)

d3z2−r2

Figure 28: The density of states of Cr(6)/Fe(2)/MgO(5)
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Figure 29: The band dispersion of Cr(6)/Fe(2)/MgO(5)

Two monolayer configuration give the highest value of magnetic anisotropy energy

from the spin orbit coupling contribution. The main difference could be notified from

the 1 monolayer configuration is the formation of sharp peak just above Fermi level

at the minority unoccupied states of the 3d orbitals. We call this peak the interface

resonant states, because its correlated with the IRS observed in experiment.The

observation from band dispersion in Fig. 29 show clear demonstration of band

splitting of the xz and yz orbital at Γ point of the Fermi Level, the band energy

split in to above and below Fermi level. Here we also could observe that x2 -r2

orbital are pushed away from the Fermi level.
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A.1.2.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 30: Electric field effect in Cr(6)/Fe(2)/MgO(5)

A.1.3 Cr(6)/Fe(3)/MgO(5)

A.1.3.1 Optimized Structure

Figure 31: The atomic structure model in Cr(6)/Fe(3)/MgO(5)

We optimize the structure of this material, as described at 31. Optimized distance

for this structure is 2.20 Angstrom.
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A.1.3.2 Electronic Structure
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Figure 32: The density of states of Cr(6)/Fe(3)/MgO(5)
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Figure 33: The band dispersion of Cr(6)/Fe(3)/MgO(5)
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A.1.3.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 34: Electric field effect in Cr(6)/Fe(3)/MgO(5)

A.1.4 Cr(6)/Fe(4)/MgO(5)

A.1.4.1 Optimized Structure

Figure 35: The atomic structure model in Cr(6)/Fe(4)/MgO(5)

We optimize the structure of this material, as described at 35. Optimized distance

of this structure is 2.21 Angstrom.
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A.1.4.2 Electronic Structure
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Figure 36: The density of states of Cr(6)/Fe(4)/MgO(5)
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Figure 37: The band dispersion of Cr(6)/Fe(4)/MgO(5)
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A.1.4.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 38: Electric field effect in Cr(6)/Fe(4)/MgO(5)

A.1.5 Cr(6)/Fe(5)/MgO(5)

A.1.5.1 Optimized Structure

Figure 39: The atomic structure model in Cr(6)/Fe(5)/MgO(5)

We optimize the structure of this material, as described at 39. Optimized interface

distance for this structure is 2.22 Angstrom.



A.1 Thickness dependence of MAE and its EF effect 74

A.1.5.2 Electronic Structure
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Figure 40: The density of states of Cr(6)/Fe(5)/MgO(5)
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Figure 41: The band dispersion of Cr(6)/Fe(5)/MgO(5)
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A.1.5.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 42: Electric field effect in Cr(6)/Fe(5)/MgO(5)

A.1.6 Cr(6)/Fe(6)/MgO(5)

A.1.6.1 Optimized Structure

Figure 43: The atomic structure model in Cr(6)/Fe(6)/MgO(5)

We optimize the structure of this material, as described at 43. Optimized interface

distance for this structure is 2.21 Angstrom.
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A.1.6.2 Electronic Structure
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Figure 44: The density of states of Cr(6)/Fe(6)/MgO(5)
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Figure 45: The band dispersion of Cr(6)/Fe(6)/MgO(5)
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A.1.6.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 46: Electric field effect in Cr(6)/Fe(6)/MgO(5)

A.1.7 Cr(6)/Fe(7)/MgO(5)

A.1.7.1 Optimized Structure

Figure 47: The atomic structure model in Cr(6)/Fe(7)/MgO(5)

We optimize the structure of this material, as described at 47. Optimized interface

distance for this structure is 2.21 Angstrom.
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A.1.7.2 Electronic Structure
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Figure 48: The density of states of Cr(6)/Fe(7)/MgO(5)
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Figure 49: The band dispersion of Cr(6)/Fe(7)/MgO(5)
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A.1.7.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 50: Electric field effect in Cr(6)/Fe(7)/MgO(5)

A.1.8 Cr(6)/Fe(8)/MgO(5)

A.1.8.1 Optimized Structure

Figure 51: The atomic structure model in Cr(6)/Fe(8)/MgO(5)

We optimize the structure of this material, as described at 51. Optimized interface

distance for this structure is Angstrom.
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A.1.8.2 Electronic Structure
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Figure 52: The density of states of Cr(6)/Fe(8)/MgO(5)
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Figure 53: The band dispersion of Cr(6)/Fe(8)/MgO(5)



A.1 Thickness dependence of MAE and its EF effect 81

A.1.8.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 54: Electric field effect in Cr(6)/Fe(8)/MgO(5)

A.1.9 Cr(6)/Fe(9)/MgO(5)

A.1.9.1 Optimized Structure

Figure 55: The atomic structure model in Cr(6)/Fe(9)/MgO(5)

We optimize the structure of this material, as described at 55. Optimized interface

distance for this structure is Angstrom.
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A.1.9.2 Electronic Structure
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Figure 56: The density of states of Cr(6)/Fe(9)/MgO(5)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Γ M X ΓX Y

E
n
e
rg

y
(e

V
)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Γ M X ΓX Y

 

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

Γ M X ΓX Y

 

Figure 57: The band dispersion of Cr(6)/Fe(9)/MgO(5)
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A.1.9.3 Magnetic Anisotropy Energy and Electric Field Effect
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Figure 58: Electric field effect in Cr(6)/Fe(9)/MgO(5)

A.1.10 Cr(6)/Fe(10)/MgO(5)

A.1.10.1 Optimized Structure

Figure 59: The atomic structure model in Cr(6)/Fe(10)/MgO(5)

We optimize the structure of this material, as described at 59. Optimized interface

distance for this structure is Angstrom.
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A.1.10.2 Electronic Structure
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Figure 60: The density of states of Cr(6)/Fe(10)/MgO(5)
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Figure 61: The band dispersion of Cr(6)/Fe(10)/MgO(5)
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A.2 Co Dopping to the Fe(3)/MgO(3) interface

In this part we report the effect of Co impurity to Fe/MgO interface. Most of

the tunnel junction or also known as spin valve device are based on FeCoB for the

magnetic thin film element. This material chosen because the economy of fabrication

process, one can synthesize the crystal from the amorphous state, then the thin

film crystallize during the annealing process. During the annealing, Boron (B) are

oxidized and disappear from the system, leaving Co-doped Fe/MgO interface. It still

not clear for us the effect of Co in the ferromagnetic thin layer, therefore we perform

first principles simulation to understand the impurity effect on this interface.

A.2.1 Type A insertion

In this configuration we inserted the cobalt at the interface.

A.2.1.1 Optimized Structure

The model of 3ML of MgO and 3 ML of ferromagnet was taken into consideration
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Figure 62: The optimized structure of Fe(2)/Fe(1− x)Co(x)/MgO(3)
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A.2.1.2 Electronic Structure
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Figure 63: The density of states of iron in Fe(2)/Fe(1− x)Co(x)/MgO(3)
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Figure 64: The density of states of cobalt in Fe(2)/Fe(1− x)Co(x)/MgO(3)
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Figure 65: The band dispersion of Fe(2)/Fe(1− x)Co(x)/MgO(3)

A.2.2 Type B insertion

In this configuration we inserted the cobalt at the middle layer of ferromagnet.

A.2.2.1 Optimized Structure

The model of 3ML of MgO and 3 ML of ferromagnet was taken into consideration
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Figure 66: The optimized structure of Fe/Fe(1− x)Co(x)/Fe/MgO(3)
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A.2.2.2 Electronic Structure
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Figure 67: The density of states of iron in Fe/Fe(1− x)Co(x)/Fe/MgO(3)



A.2 Co Dopping to the Fe(3)/MgO(3) interface 92

 

-2

-1

 0

 1

 2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5
total 3d-orbital

dyz+zx

-1

 0

 1

-0.5

 0

 0.5

D
O

S
(S

ta
te

s
/e

V
/c

e
ll)

dxy

-1

 0

 1

-0.5

 0

 0.5
dx

2
-y

2

-1

 0

 1

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

-0.5

 0

 0.5

Energy(eV)

d3z
2
-r

2

Figure 68: The density of states of cobalt in Fe/Fe(1− x)Co(x)/Fe/MgO(3)
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Figure 69: The band dispersion of Fe/Fe(1− x)Co(x)/Fe/MgO(3)

A.2.3 Comparative study on Magnetic Anisotropy Energy and Electric

Field Effect
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Figure 70: The electric field effect of Fe(2)/Fe(1− x)Co(x)/MgO(3)
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Figure 71: The electric field effect of Fe/Fe(1− x)Co(x)/Fe/MgO(3)
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Figure 72: The electric field effect of Fe(3)/MgO(3)
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Figure 73: The electric field effect of Fe(5)/MgO(5)

From the comparative study we found that Co impurity enhance both PMA and

EFE when its located in the nearest neighbor layer to the Fe/MgO interface. More

significant increase of EFE can be observed when we introduce impurity at the

interface, this configuration change the shape and peak location of resonance states

of interface iron. But in type-a configuration PMA are decreased when compared

to the pure Fe/MgO interface.
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A.3 Different underlayer effect

A.3.1 W underlayer

Tungsten buffer layer proposed in this works because it was found that W could

increase the thermal stability of Fe/MgO interface during annealing temperature.

It has been known that FeCoB/MgO has low thermal stability due to rapid decrease

of PMA during annealing process over 300K.

A.3.1.1 Optimized Structure

Figure 74: Structure of W(6)/Fe(2)/MgO(5) system



A.3 Different underlayer effect 97

A.3.1.2 Electronic Structure
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A.4 Magnetic moments of density functional approach

The magnetic moments obtained by the density functional approach are displayed

for typical temperatures of 53K (sparse mesh) and 316K (sparse mesh) in Table 1

and Table 2. These data were estimated from the spin density by integrating it in

the atomic sphere with the radius (Fe: 1.32Å, Cr: 0.90Å).

Table 1: Spin magnetic moments in µB on Cr and Fe atoms. The tempera-
ture specifies the value used in the Fermi level smearing. [001](z-direction) and
[100](x-direction) specify the direction of total magnetization.

Temperature Total Fe(1) Fe(2) Fe(3) Fe(4) Fe(5)
53K [001] 12.7964 2.8481 2.5311 2.5984 2.4986 2.3202
53K [100] 12.7964 2.8499 2.5295 2.5975 2.4992 2.3203
316K [001] 12.7844 2.8420 2.5286 2.5960 2.5008 2.3170
316K [100] 12.7848 2.8428 2.5286 2.5957 2.5007 2.3170

Temperature Cr(1) Cr(2) Cr(3) Cr(4) Cr(5) Cr(6)
53K [001] -1.0678 0.9999 -1.0902 1.2247 -1.4434 2.3329
53K [100] -1.0674 0.9999 -1.0903 1.2245 -1.4433 2.3330
316K [001] -1.0689 0.999 -1.0905 1.2209 -1.4421 2.3309
316K [100] -1.0689 0.9989 -1.0906 1.2208 -1.4421 2.3308

Table 2: Orbital magnetic moments in µB on Cr and Fe atoms. The temperature
specifies the value used in the Fermi level smearing.

Temperature Total Fe(1) Fe(2) Fe(3) Fe(4) Fe(5)
53K [001] 0.29061 0.08476 0.05967 0.05076 0.05301 0.04241
53K [100] 0.25549 0.06251 0.04822 0.04944 0.05068 0.04464
316K [001] 0.2855 0.0833 0.0574 0.0498 0.0524 0.0427
316K [100] 0.2572 0.0649 0.0478 0.0492 0.0505 0.0448

Temperature Cr(1) Cr(2) Cr(3) Cr(4) Cr(5) Cr(6)
53K [001] 0.00996 -0.00612 0.00935 -0.00746 0.0105 -0.01491
53K [100] 0.01182 -0.00607 0.00888 -0.00911 0.00931 -0.02182
316K [001] 0.0098 0.0062 0.0094 0.0075 0.0105 0.0150
316K [100] 0.0121 0.0062 0.0091 0.0090 0.0093 0.0211
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