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Abstract 

 

In this study, the present and future rain-fall-runoff and inundation conditions of Cau-Thuong-Luc 

Nam river basin during rainy season (Jun-July-August) were also examined using the combination of 

the Weather Research and Forecasting (WRF) and River Run-off and Inundation model (RRI). We 

investigated the rainfall-runoff and inundation characteristics of the watershed in connection with the 

correspondence climate condition of the present (2000-2009) and future (2060-2069). The RRI model 

was used for the simulation of watershed hydrological characteristics. The essential future precipitation 

inputs for RRI were achieved by using the WRF model nested inside GFDL-CM3, and MIROC-5 

models. Both WRF and RRI models are capable of deploying further assessment on the future river 

basin condition. The future downscaling results by GFDM-CM3 and MIROC-5, indicated heavier 

rainfall conditions in the mid-21st century and consequently cause severe inundation with higher depth, 

wider radius and longer period. Heavy rainfall and inundation were expected to increase in the second 

half of rainy season. In both GFDL-CM3 and MIROC-5, the impacted areas due to flood will increase 

in both spatial and temporal extent, intensity, and density. Future inundation condition will affect mostly 

the agricultural and residential areas in the lower Cau-Thuong-Luc Nam river basin.  

The hybrid dynamical-statistical downscaling approach is an effort to combine the ability of 

dynamical downscaling to resolve fine-scale climate changes with the low computational cost of 

statistical downscaling. In this study, we propose a dynamical-statistical downscaling technique by 

incorporating WRF with artificial neural networks (ANN) to downscale rainfall information over the 

Red River Delta in Vietnam. First, WRF downscaling was performed to produce nested 30-km and 6-

km resolution simulations. Then, in the statistical downscaling step, the ANN was trained to predict 

rainfall in the 6-km domain based on weather predictors in the 30-km simulation. The evaluation shows 

that the WRF modeling system can reproduce temporal variation in the JJA daily rainfall reasonably 

well, but underestimates the total precipitation. Owing to the higher precision of WRF, the region 

appears to have more drizzle, resulting in significantly fewer dry days than were observed. The best 

performing ANN model produced high-resolution rainfall patterns that are highly correlated with WRF 

(r = 0.91) and have low RMSE (12 mm/day). High-resolution rainfall in each grid cell was downscaled 

by taking the climatological variables from the four grid cells in the coarse domain. ANN was 

configured as an MLP-BG network with three hidden layers using the hyperbolic tangent sigmoid 

activation function. Running 30-km WRF and using ANN to downscale to 6 km is 89% less expensive 

than running nested 30-km and 6-km WRF simulations.  
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CHAPTER 1.  

INTRODUCTION 

 

1.1. Background and motivation of the research  

1.1.1.  Climate change 

(a) Global warming 

Climate change has become a complicated and most destructive environmental issues 

around the world in the recent decades. The development of climate change exhibited through 

the variations in increasing trend of temperature which is mainly acknowledged as “Global 

warming”. This warming was resulted from the over consumption of fossil fuel since the 

Industrial Revolution which lead to the increasing amount of carbon dioxide in the atmosphere. 

Carbon dioxide and other gases are the main culprit that enhanced greenhouse effect that 

potentially increase the temperature of the Earth. (Houghton, 2004, Zveryaev and 

Aleksandrova, 2004). 

According to the IPCC, “climate change refers to a statistically significant variation in 

either the mean state of the climate or in its variability, persisting for an extended period 

(typically decades or longer). Climate change may be due to natural internal processes or 

external forcing or to persistent anthropogenic changes in the composition of the atmosphere 

or in land use” (IPCC, 2001). Therefore, the definition by IPCC pointed out both the concept 

of anthropogenic and natural component aspects. 

Climate change has become one of the most pressing issues in the world today. While 

civilization has always had to live with, deal with and adapt to environmental and climatic 

challenges and risks, the challenges posed by climatic change are however believed to be 

exceed historical experiences. Changes in climate system presenting an unprecedented 

challenge to the global community at large and local scales. New adaptation measures to this 

problem are required (Christoplos et al., 2009). With the fourth IPCC report reviewed the 

linkage between anthropogenic activities and climate change, much of the climate change 

debate and research has focused on the issue of climate change mitigation (IPCC, 2007). Yet 

as the report discloses, due to the scope of climate change, mitigation efforts aiming at reducing 

emissions will not suffice. Adaptation will be necessary as the impacts of warming linked to 

past emissions cannot be avoided. Human systems are closely tied to climate systems, the globe 
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local communities will have to adapt to new climatic conditions, which in many regions will 

entail warmer temperatures, increased climate variability and an intensification of extreme 

weather  

How to use the knowledge from the previous studies and experiences to understand the 

natural characteristics of the ongoing changes of the world is one of the growing concern 

recently. The recent efforts of the recent researches are reflected through the synthesis reports 

of IPCC. When cooperating the issues at the high level of techniques, both detection and 

attribution have different objectives. Detection of the change in global climate condition is to 

prove that climate has changed in some statistical range without the need of pointing out any 

specific reason for that (IPCC, 2007). In the past and current time, there have been many 

evidences of regional climatic changes that cementing this pressing problem. For instance, a 

lot of evidences has been found that showed the major parts of the cryosphere components are 

being generalized reduced in response to climate change. Meanwhile, there are several cases 

of growth that mainly related to increased snowfall. The reduction of glaciers that we have seen 

during the recent decades is the largest recession of all time throughout over 5,000 years of 

history, which is beside of the cover of any normal observation climate change. This problem 

probably resulted by anthropogenic warming for an certain extent (Jansen et al., 2007). As we 

can see in the Arctic and the Antarctic, the several-thousand-years-old ice blocks have 

gradually collapsing as the consequent of warming. For many cases, there has been a significant 

increasing trend in the shrinkage of the cryosphere during the past century which is proven to 

be consistent with the enhanced observed warming. 

 

(b) Climate change and rainfall 

The most significant impact of climate change to the world is shown in the variation of 

rainfall and precipitation in all forms. Compare to temperature, rainfall is much more difficult 

to be forecasted. However, the efforts of scientist in determining this problems have helped us 

to point out some of the important statements with confident about our future. 

Precipitation is a scientific terms related to rainfall, snowfall or other kinds of water, 

from frozen to liquid matters or even vapor of cloud. Therefore, precipitation happens 

periodically and it occurrence is heavily depended on the temperature and weather scheme. 

Weather situation effecting precipitation chance related to the formation of storms, the change 

of moisture by winds with evaporation effects and how it was accumulated to form clouds. 
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Precipitation in the form of water vapour is usually condensed in the uprising air that diffused 

and reduce temperature of the atmosphere (IPCC, 2007). 

Warmer atmospheric condition potentially keep more moisture, it is calculated that for 

every one warmer degree centigrade the water vapour in the earth increase for over 7% (Kevin 

E. Trenberth 2011). The ways vapour moisture transformed into precipitation is not yet to be 

fully understand but it is likely to rise 1-2% of rainfall water per a degree of warming (IPCC, 

2007). This is a proof to illustrate that if a region is wet already, under global warming it can 

get even wetter. However, the details of the extent of wetter and its consequences in a regional 

scale are extremely difficult to be certain. By contrast, the dry regions are likely to become 

even drier. This symptom is found gradually shift toward the two poles.  

Predicting the trend of changing in rainfall is particularly difficult due to the different 

characteristics of global weather patterns. Since most of climate models agree well in the future 

warming of global scale, they do not agree well when predicting how the change in temperature 

effect the variation in distribution, density and intensity of rainfall patterns, especially in 

detailed level of assumption. However, it is very possible that the warmer climate will enhanced 

heavy rainfall that produced from less extreme weather events. It could resulted in the longer 

dry periods and extended floods duration.  

As far as we have pointed out, any impact of global warming to local scale rainfall 

cannot be differentiate from the natural processes. However, in several particular evidences, 

the signal has started to emerge. In a recent study (Kevin E. Trenberth 2011), anthropogenic 

climate change can greatly increase the odds of damaging floods occurring in England and 

Wale during autumn. For England, current findings have pointed out that the intensity of heavy 

rainfall during winter time might increase and become distinguishable from natural variations 

from 2020s. The climate models as well as our observation data is always being improved 

along with the advancement of technologies. The more reliable of climate forecasting results 

is also likely to be significantly improved in the coming future. For instance, new satellites and 

more high-resolution models are being established with updated possibilities for understanding 

and interpreting the flows of water cycles though our climate system. 

 

(c) Climate change and water resources 

There is a strong connection between climate system and hydrologic cycle which are 

both energized by the solar radiation. The climate system is a complicated systems including 
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the atmosphere, topography surface, oceans and other forms of water bodies, snow and ice 

patterns of the earth, and also the living species (IPCC, 2007). Climate systems do not stay still 

but evolves relentlessly over time through the interaction between its inner components. Inside 

the climate systems, all the components are linked together with internal dynamics and the 

exchange of external information and other factor effecting the climate or “forcings”. The 

external forcings consist of natural phenomena such as storms, earth quakes, and volcanic 

eruptions was well as man-made changes that potential effect the atmospheric components and 

the change in land use. Any fluctuations in those factors can affect the balance between the 

incoming and outgoing radiation of the earth. It leads to the responses of the climatic systems 

to such changes, directly or indirectly. 

The hydrological cycle is influenced by any impact to the climate system. Hydrologic 

cycles is considered as the uninterrupted flows of water between oceans, atmosphere, and the 

land surface. Solar radiation powered the hydrologic cycle started from the surface evaporation 

from water bodies. Since moisture is floated into the air, it cools down and gradually condenses 

in the form of clouds. Clouds and moisture is moving around the planet and comeback to the 

land surface by precipitation. As long as the water touch the soil, it can evaporate back to the 

air or penetrated through the surface soil layers and reach the ground water layers in the aquifers. 

Groundwater poured into sea, river, and streams. The part of water remain on the surface of the 

earth is water runoff which then seeps into lakes, rivers, and stream before finally flow back to 

the ocean where the hydrologic cycle begins again. 

Many clear evidences have been found that climate change have already affected 

hydrologic cycle. Even when the long term tendency of hydrological indicators are difficult to 

establish due to the lack of observation variability in both spatial and temporal scale, the insitu 

observation changes of hydrologic cycle at continent scale are very consistent and associated 

with the variability of the climate system in the recent decades. (Bates, et al., 

2008;.Kundzewicz, et al., 2007): 

Global warming could significantly influences the future distribution of water 

availability around the world as well as the use of water. Water security and shortage is 

becoming the crucial matters in many pattern of the globe, at both global scale and regional 

scale, especially in agriculture sectors. Of course, the evidence of increase water variability 

have also been found in some regions and that changes can potential have exponential losses, 

for example the magnitude of extreme rainfall or flood. Hence, it can be highlighted that global 

warming is one of the factors effecting the future variations of water availability and use. 
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Water stress may become worsen as the results from climate change affecting 

hydrological condition. Many studies pointed out that water resources related problem will 

increase with the severe condition of climate change, and other than that, the impacts of other 

factors—demographic, socio-economic, and technological changes—are even more significant, 

especially in shorter time space (influences after the 2050s are pretty much dependent on the 

future population/discharge scenarios used). Depends on how the climate model was designed 

as well as other factors are embed in the model assessment, the differences between studies 

results might become larger. When finding the connection between climate change and 

population growth, Arnell (2004) has estimated that about 0.4 to 1.7 billion of people will be 

experienced with water stress in the 2020s and it will rise to 1 to 2.7 billion up to 2050s. 

 

1.1.2.  Development of climate change in Southeast Asia and in Vietnam 

(a) Climate change in Southeast Asia 

Recorded climatological data in the Asia and Pacific region has illustrate the increasing 

trend in the intensity and density of many extreme weather events including tropical cyclones, 

longer period of dry days, prolonged rainfall spell, snow avalanches, thunderstorms, dust 

storms, and heat waves. Besides, this regions is also expose to natural disaster which can be 

seen through the Ocean Tsunami in India in 2004, the 2005 Earthquake in Pakistan, and the 

landslide calamity in Philippines at late 2006. Those impacts added more risks for the already 

highly exposed communities who are striving to fight against poverty and find suitable 

adaptation strategy.    

About 91% of the death and 49% of damage worldwide due to natural hazards happens 

in the Asia/Pacific region during the 20th century. Thus, we can recognize the serious threat 

caused by climate change especially to poor smallholders and rural people living in the remote 

mountainous regions or marginal areas. The areas limited access in natural resources, 

communication and transport facilities often face more trouble in combating climate change.  

Particularly, the region of Asia/Pacific has been forecasted with the increased 

temperature of 0.5 to 2°C at the end of 2030 and up to 1 to 7°C by late 2070. Higher temperature 

is predicted to be more intense in the dry areas in the North of Pakistan, India, and the western 

China. Furthermore, rainfall is also expected to accumulate higher regional wide, especially 

during the summer monsoon period. Besides, total precipitation during winter time seems to 

decrease in the South and Southeast Asia which indicate the higher chance in increased dry 
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condition. As the consequence of climate change, this region is believed to be effected by 

global sea level rise of about 3-16 cm in 2030 and goes up to 7-50 cm in late 2070 in accordance 

with regional sea level variation. Intense tropical cyclones are expected to experience 

substantial changes under the effect of large scale climatic driven like the El Niño-Southern 

Oscillation.  

Many factors have pointed out that the Asia/Pacific areas are now highly vulnerable to 

the impacts of climate changes which may worsen the living condition of millions farmers who 

are already living in poverty. The major proportion of about 500 million rural poor in Asia are 

subsistence farmers who mainly depend on precipitation for farming. Influences of various 

hazards can much vary from the lack of daily food to likely to be harmed by disease, to the 

reduction in income and worsening livelihoods. Climate change is surely the fact of the modern 

development problems in the region. 

 

(b) Northern region of Vietnam 

Vietnam is divided into three main economic region which are the Northern, Central, 

and Southern. The Northern Vietnam is the oldest region among the three. It has more than 

2000 years of historical culture-social development around the Red River Delta. Vietnamese 

then started to migrate southward to the Southern region which centralized in the Mekong Delta. 

Hanoi is the capital of Vietnam and locate in the Northern area, next to Hanoi in the east is Hai 

Phong city – the second biggest city in the North.  

The total area of Northern Vietnam is approximately 116.332 km2 consists of several 

sub-regions: 

- The Northwestern region of 6 provinces locate on the right bank of the Red 

River including Lao Cai, Yen Bai, Dien Bien, Hoa Binh, Lai Chau, Son La. 

Among these provincese, Lao Cai and Yen Bai are also considerred as the sub-

region Northeast. 

-  Northeastern region of 9 provinces including Ha Giang, Cao Bang, Bac Kan, 

Lang Son, Tuyen Quang, Thai Nguyen, Phu Tho, Bac Giang, Quang Ninh. 

- The Red River Delta region of 10 provinces: Bac Ninh, Ha Nam, Ha Noi, Hai 

Duong, Hai Phong, Hung Yen, Nam Dinh, Ninh Binh, Thai Binh, Vinh Phuc. 

- Nothern Region Vietnam located at 23◦23’ North – 8◦27’ West with the total 

length 1,650 km. 
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Northern Region is the biggest region in Vietnam: 

- North is next to China. 

- West is share the boder with Laos. 

-  East is next to Western Pacific Ocean.. 

Topography feature 

Topography of Northern Vietnam is diverse and complicated. It includes mountain, 

plain and coastal plain. This place experienced through long time of terrain development and 

strong weathering condition. The land elevation is lower toward the Northwest-Southeast, that 

ware illustrated by the direction of main rivers (ADPC, 2003). 

The vast land formed by the Red River delta has the total area 14.800 km2, accounts 

for 4.5% total area of the country. The delta has the triangular shape, with the highest point in 

Viet Tri city and the bottom side is the eastern coast. The Red River Delta (RRD) is the second 

biggest delta in Vietnam (The biggest is Mekong River Delta). RRD was formed by Red river 

and Thai Binh river. The topography of the Red River Delta is flat with height from 0.4 to 12m 

above sea level, in which about 56% of the area is lower than 2m. 

Next to the RRD into the West and Northwest in the Northern mountainous region with 

the total area about 102,900 km2, accounted for 30.7% of the total area. The terrain includes 

high and dangerous mountains, from the northern borderline to the western Thanh Hoa 

province.  

 

Figure 1.1 Map of Vietnam 
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In the Northeast is the low mountainous region, next to the Western Pacific Ocean. This 

region is covered with small islands. In then Gulf of Tokin, there are about 3,000 small islands 

scattering around the area.  

Regional advantages 

Location advantages: having the Hanoi city which is the capital of economic, culture 

and politic, the Northern Vietnam has a great potentiality for developing socio-economic than 

other cities. In 2017, the total population of the region was about 34.3 million with density of 

278 people/km2. This region consists of the seven most important centrally municipal cities 

and provinces  including Hanoi, Hai Phong, Hung Yen, Ha Tay, Hai Duong, Vinh Phuc, and 

Bac Ninh. The formation of these dynamic economic zones in the Northern region of Vietnam 

plays the very important role for development of the country (ADPC, 2003). 

- Transportation strength: The door to the South of the contry found in this region. 

Therefore, this region has various transportation methods to meet the needs of the development 

including roadway, waterway, seaway, airway, railway (Hai Phong seaport, Noi Bai 

International airport). Hanoi is placed at the centre of the economic zone and links with others 

other national economic zones in the region as well as international points around the world. 

Northern region borders with China which is the largest market in the world and North-East 

Asian countries. 

- Natural resource strength: The region is diversity in ecological environment from flat 

plain to midland and mountainous areas. Red river delta is most fertile agriculture area in the 

North that suitable for the adoptation of any comprehensive development plans of agriculture-

forestry-fishery. This region is the second most productive agricultural production through the 

country, second to the Mekong delta in the South. This advantage ensures food security and 

economic for the vast region. Besides the potential in agriculture development, Northern 

Vietnam has various type of mineral resources with large capacity of coal (about 98% of natural 

reserves), kaolin (accounts for 40% of the whole country), and limestone (about 25% of total 

reserves) 

- Advantages of labour resource: The region is abundant in labour sources especially 

the high education labours with about 26% of university and colleges of the whole country. 

Meteorological Condition 

The climate system in Vietnam is effected by the South East Asia tropical monsoon 

system; the average annual rainfall of the whole country is about 1,940 mm. Water is a precious 

resource and plays a very important role in the development of socio-economic. However, the 

current condition of surface water in Vietnam is now in danger, threatening by the negative 



9 

 

increasing of wide scale depletion and contamination. About 75% of the total lands is covered 

by mountains. Thus, precipitation is unevenly distributed between regions and fluctuate over 

times. The temporal distribution of mean annual rainfall vary in a wide range, in some specific 

mountainous areas the annual rainfall can get over 4,000 – 5,000 mm, an even up to 8,000 mm 

in such as Bach Ma Mountain. However, in some areas such as Nha Ho and Binh Thuan the 

annual rainfall is usually very low at 600 to 800mm (MONRE, 2006).  

The climate system in Vietnam shifts upward from humid tropical climate in the 

Southern provinces to temperature in the Northern region. The Red river deltal is popularized 

by a tropical monsoonal climate affected by ocean-like climate. The main characteristic of this 

climate is seasonal and moist subtropical (Pfeiffer, 1984). The two distinguish seasons are wet 

and dry. The wet (rainy) season starts from Jun to September and dry season from December 

to March. The average temperature of the whole country is 23◦C.  

The annual average precipitation varies from 1,300mm to 1,800mm. The rainy season 

accounts for over 85% of the annual rainfall (Li et al., 2006). During the year, July has the 

highest amount of rainfall while December and January are the driest. Even when the 

temperature between the sub-basin regions was not much different, the regions closer to the 

coastal zone always had higher rainfall intensity.  In some special cases such as the Day Estuary 

and the lower Red River basins have annual rainfall up to 1860 and 1757 mm, respectively. 

Meanwhile, the average annual rainfall among other three sub-basins was only 1,600 mm (Luu 

et al., 2010). The historical observation climate record for 11 years found the peak in August 

2006 (450 mm/month). Generally the total annual rainfall in the basin has reduce in recent 

years, but it happened with much higher intensity. It has resulted in the imbalance in rainfall 

distribution throughout the year (Luu et al., 2010). 

 

1.1.3.  Inundation and flood in Cau Thuong Luc Nam river basin 

Vietnam has been known as a rapidly developing country but highly exposed to natural 

hazards. Inundation and flooding are the two major natural risks that the country have to face. 

According to the-the Intergovernmental Panel on Climate Change (IPCC), the global surface 

temperature is expected to rise 1-2°C by the year 2050 and up to about 2–5 °C at the end of 

21st century (IPCC 2013).  Global warming leads to the increasing trend of harmful disaster 

worldwide. Furthermore, climate change is forecasted to increase sea level rise accompany 

with the upward trend in frequency and intensity of floods, globally and in Southeast Asia 

(IPCC 2014; World Bank 2014). Observing the country’s population distribution, population 
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density, and the economic assets in vulnerable regions, Vietnam has been considered as one of 

the five most effected countries by climate change worldwide. 

Recent findings from IPCC's Fifth Assessment Report (AR5) indicated that climate 

change has already caused damages in many regions, especially the Southeast Asia (SEA) 

regions. Vietnam is believed one of the highly climate vulnerable countries in SEA region. 

Flood is the most destructive disaster in the Northern mountainous region in Vietnam. Since 

the occurrence of flood events has been increasing in recent decades, it has raised the needs 

and awareness of flood risk and management. Variations in density and intensity of rainfall 

directly cause impacts on the generation of floods. Flooding and inundation occur when the 

watershed system cannot handle the excessive amount of precipitation for either a short or 

prolonged rainfall events, it results in the unusual high stream flow that exceeds the capacity 

of a river channel (Vu and Ranzi 2017). 

The Cau-Thuong-Luc Nam (CTLN) locates in the northern mountainous region in 

Vietnam, was formed by three small river basin including Cau river in the west, Thuong river 

in the middle, and the Luc Nam river in the east. The whole CTLN watershed is surrounded by 

mountain ranges the north, the terrain gradually lower toward southeast direction with the lower 

river basin places on the flat plateau. That is the reason why the majority of rivers, especially 

tertiary rivers have the great gradient. 

CTLN river system is the upstream of Thai Binh river. The whole basin is influenced 

by the tropical region of the northern hemisphere. Under the impact of monsoon winds, this 

region has two distinctive seasons including the dry season starts from November to next April 

and the rainy season lasts from May to October. Strong hot south-west wind comes with 

complicated climatic turbulences like storms or air convergence are the main causes for the hot 

and humid weather with large amount of annual rainfall.  

Annual water volume of the basin contributed by Cau, Thuong, and Luc Nam rivers is 

4.5 billion m3, 4.2 billion m3 and 2.4 billion m3 which made the total volume of the system of 

approximately 11 billion m3. High rainfall has resulted in annual normal flow of average 22 l/s 

per km2. However, this amount of river discharge is still far less than northern east region of 

the north coastal provinces and some regions in Red River Basin. The flow of the whole CTLN 

region varies upon rainfall regime which distinguished into 2 seasons, the flood season from 

Jun to August and low flow season from September to May. 
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CTLN watershed plays an important role in the development of the Northeastern 

Vietnam region. It provides domestic and production water source for the vast populated-

economic regions including Thai Nguyen, Bac Ninh, Bac Giang, Lang Son, Quang Ninh, and 

the lower Thai Binh river basin.  

In CTLN watershed, the lower river channel capacity is sometimes under 

accommodating the high discharge of surface flow over the upstream which cause flood. The 

number of flood occurrence in CTLN watershed is recorded rapidly increasing recently. In the 

theme of global warming, it is important to prepare the countermeasures to and mitigation 

methods to cope with the potential risks. It is impossible to establish the action plan without 

the deep understanding of the characteristics of the flood in accordant with the present and 

future hydro-meteorological conditions. The traditional simulation method for inundation 

researches combines both rain-fall-runoff models for river discharge and hydraulic model for 

water propagation. However, this method not suitable for flat watershed with large inundation 

area as it requires significant calculation between the river and flood water. This study, therefore, 

used the Rainfall-Runoff Inundation (RRI) model, which is a fully coupled model of rainfall-runoff 

model and hydraulic inundation model (Sayama et al. 2012). Besides, the Weather Research 

and Forecast (WRF) model (Skamarock et al. 2008) was also employed to provide present and 

future input precipitation for RRI model. 

 

1.1.4.  Downscaling methods for climate change 

(a) The needs of weather information downscaling 

To meet the requirements of management agencies to cope with global warming, a lot 

of materials such as synthesis report, statistic recrods offer forecasted climate influences at 

long-term and large scales which are finer than the original projections are prepared. It is 

necessary to know the group of assumptions embed in the techniques which were adopted to 

derive this climate details and the drawbacks they made on the results (Trzaska and Schnarr 

2014). The most popular tools for projecting climate variation are General Circulation Model 

(GCMs), which are climatological models that contain numerous physical theories of the earth 

climate system. These physical theories are generally very famous but difficult to be always 

fully inserted in the models because of the limitations on computing capability and input data. 

Therefore, GCM simulation outputs can only be utilized at very coarse scale, which are global 

or continental scale to research climatological condition at averaged monthly, seasonal, annual, 
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and even longer time periods. Any data of finer spatial detail less than 100 square kilometres 

and temporal frequency of lower than monthly data has to be processed by a mathematical 

process to increase its resolution which is called downscaling. 

 Downscaling method outputs climatic details at higher resolution, it provides much 

more detail than the original GCM projections. For implementation of this method, 

downscaling process requires additional information, calculation, and contain more 

assumptions, and thus exhibiting more uncertainties and drawbacks of the final projection. A 

problem that these limitations are usually not made available to end-users (Hunt and Watkiss 

2011). Currently, scientific organizations or management offices cannot provide instruction 

which helps researchers and decision makers for selecting projection model, climatological 

variable, the approach to downscaling dat, and the sources of data that are suitable for their 

purposes (Trzaska and Schnarr 2014). Since downscaling methods are still under development 

of researching organizations, users often have to rely on complex technical report and 

specialized guidance to understand the model and appropriately apply their results for 

impacting studies, planning related purposes, or decision-making. The following are important 

considerations and recommendations to be aware and remember when simulating and 

describing fine-scale climatological detail on climate variability and its consequences.  

 Downscaling techniques considers that the local climate was formed by the 

combination of large scale climate indicators (such as global, hemispheric, continent, 

and region) with local variables (including the topographic condition, land cover, 

surface layers of the earth, water availability). Local variables can only be acquired at 

the high detail level of assimilation model which cannot be provided by the current 

GCMs.  

 The process of downscaling global climate projections to local scale is a complicated 

multistep process as can be seen in Figure 1.2. During the process, the additional 

assumptions and similarity are generated. Confusions and suspicions are made from 

projections of variation in climate system with their impacts. Those uncertainties 

originated from various sources and need to be knowledgeable, whether accurately 

calculated or not. 
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Deriving climate information to local detail can be performed spatially and temporally. 

Popularly, different downscaling approach are fused to achieve the projection data at preferable 

spatial and temporal levels.  

 The two main approaches to combine the climate change information at local scale with 

large-scale climate indicator are discussed as follows (Trzaska and Schnarr 2014):  

- Dynamical: by incorporating supplement data and physical theories in regional 

climate models which are similar to GCMs but offer a more detailed resolution 

but cover only a small part of the global. Such approach has many benefits but 

very computing expensive and needs large amount of data with an extreme level 

of knowledge to apply and discussing the results. Dynamical downscaling 

requirements are too high that often higher than the capability of researching 

facility in developing countries.  

- Statistical: this approach creates an empirical relationship between large-scale 

historical climate characteristics between outputs of GCMs and local climate 

features. Contradict to the dynamical downscaling approach, the statistical 

downscaling is computational inexpensive and much easier to demonstrate. 

 

Figure 1.2 Illustration of the components involved in 

developing global and regional climate projection 
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They need minimal computing resources but most importantly that they rely 

explicitly on historical climate in-situ data and the hypothesis that the currently 

established statistical relationships will continue to hold true in the future. 

Nonetheless, long term and good quality historical climatological observation 

data are not always accessible in many developing countries.  

For most purposes, different downscaling methods aim to obtain climate detail of the 

fine scale resolution but the findings from previous researches have shown climate change and 

its consequences has exhibiting the problems mentioned below:  

 Detail information on downscaling results with their uncertainties are usually 

inappropriately expressed which lead the user to think that the projections are truthful 

and believable at the resolution achieved. Carefully examining of technical notes is 

always recommended to deeply understand all the simulation steps and hypothesis that 

included in the final results.  

 Uncertainties included in downscaling output and additionally inherited from the used 

downscaling approach are usually not shown in detail. This important information is 

lack of quantification and discussion, that lead the numerical results are considered at 

face value.  

 Verification of downscaling results using observation data are often omitted; it would 

be better to compare downscaled results to high-resolution observed data to made clear 

systematic biases as well as the limitations in assumptions.  

The above key findings mostly resulted from simple oversight by the authors of this 

dissertation. However, they are sometime very important and heavily influence the final 

assessment of the problem. An end user would better be recognizing them and understand the 

limits of the results. 

 

(b) Dynamical downscaling 

Dynamical downscaling is performed by using a regional climate model (RCM) model 

driven by large-scale GCM outputs to achieve local climate information. RCM models are 

similar to GCMs but provide finer details which having more regional characteristics. This 

advantage helps them better capture local topography with the micro-physics processes of local 

atmospheric (Trzaska and Schnarr 2014). The GCM model contains the feedbacks of the global 

circulations which will develop in the atmospheric balance following various meteorological 
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processes. However, a part of this processes need to be approximated because of the very low 

resolution seen in GCM models. Besides, under the high-resolution of lower than 50 km which 

cover a smaller region of the earth, RCM models are able to distinguish those smaller-scale 

processes more reasonably. Meteorological variables such as temperature, pressure, horizontal 

and vertical wind, heat flux, and humidity which simulated by a GCM are taken as the boundary 

conditions of the regional model. In which, the meteorological data and physics processes are 

then utilized to calculate this information to achieve the downscaled information results. The 

main advantage of regional climate models is that they are able to handle atmospheric equations 

and variation in land cover accurately. (Trzaska and Schnarr 2014).  

Even when many improvements in the ability of RCMs models during these recent 

decades to better capture the regional climate condition, there still exist a lot of difficulties, 

drawbacks, uncertainties, and challenges to overcome. As the high resolution grid cells require 

additional surface information and the RCMs are also embed with more physical processes 

which is even higher than in GCM models at global scale, dynamical downscaling thus need 

to perform the enormous amount of calculations. Therefore, RCMs are usually extremely 

computationally expensive and may consume extensively computing time compare to GCMs 

(Wilby et al., 2009). RCMs also need a large amount of data, such as land-surface conditions 

with high frequency of meteorological variables from GCM. In addition, dynamic downscaling 

requires complicated calibration procedures to generate realistic simulations.  

Similar to GCMs, RCMs often have troubles in calculating convective precipitation 

accurately. This is a big major problem for studying tropical climate zones. RCMs models also 

have low accuracy in simulating extreme rainfall events which is considered as a systematic 

bias that may further worsen at the higher resolution of climate projection. Biases correction 

methods are often required to calibrate the model results to match the observations (Brown et 

al., 2008). In several cases, small adjustments in the convective schemes would significantly 

enhance the reproducibility of the simulated rainfall. However, these changes need a lot of 

expertise while reducing geographic portability. For that reason, this generate a sub-version of 

the model which was properly calibrated to a specific region but might potentially perform 

awful in other places.  

Applicability of RCM simulated results depends substantially on the quality of the 

GCM information fed in it. For instance, if the GCM poorly tracks the location of a storm, this 

will generate errors that continue to exhibited in the RCM simulation (Wilby et al., 2009). 

Furthermore, different RCMs models are often designed separately so they are having the 
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different dynamic schemes with wide range of physical parameters. This cause the variation in 

the downscaling results even if RCMs were driven by the same GCM output.   

 

(c) Statistical downscaling 

Statistical downscaling works by generating the empirical relationships between large-

scale atmospheric variable of the past with the regional climate condition. When a relationship 

is created and verified, the large-scale meteorological variables provided by GCMs can be 

taken to forecast local climate conditions in the future. In another demonstrative way, GCM 

simulations provide predictors to continue simulate local climate information or predictands 

(Trzaska and Schnarr 2014). Statistical downscaling holds within it a diversified collection of 

methods which very different in clarification and applicability. 

Statistical downscaling methods are easily to implement since it need a very small 

computation load. On the other hand, RCM model involving complex computing of physical 

processes that need significant amount of computational power and time. For that reason, 

statistical downscaling methods are a replaceable method for dynamical downscaling and 

sometimes advantageous alternative for researching organizations which cannot access to the 

computational power and technical knowledge needed for dynamical downscaling (Trzaska 

and Schnarr 2014). Different to RCMs which can provide downscaled details at a high spatial 

resolution of about 6-10 kilometres, statistical downscaling can provide up to station-scale 

climate information and even finer scale. 

Even when statistical method is flexible, computationally cheaper, and having of a 

diverse group of methods, it usually inherits the implicit assumptions as follows: 

- The empirical relationship generated from the large scale predictor and local climate 

condition remain constant over time and continue to hold true in the coming future. 

- The predictor always carries the climate change signal.  

- Relationship between the predictor and predictand is trong enough for making the 

realistic relationship   

- GCMs generate the predictor with high accuracy 

The first mentioned viewpoint is understood as the stationary hypothesis and indicate 

that the created empirical relationship remains stable which can be brought into the future. The 

fact that we need to accept that we cannot verify if this relationship will remain under future 

conditions. The second assumption is the GCM output can accurately represents the studying 
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climate condition and its simulated results could capture any variations that may be seen in the 

future. The third assumption believe that the significant of the statistical empirical relationship 

can be evaluated in advance to assess its validity and applicability. The last assumption is on 

the accuracy of GCM to reproduce historical climate events and also to simulate the future 

development of this climate condition. The validation process for predictors must be adopted 

first to demonstrate the use of GCM model in downscaling the climate characteristic of the 

selected domain. (Wilby et al., 2013). 

 

1.1.5.  Significance of coupling dynamical downscaling and statistical downscaling 

Rainfall is one of the most important meteorological phenomena on Earth. It not only 

provides a vital freshwater source supporting all life forms, but also causes various types of 

natural disasters such as floods, landslides, storms, and drought. It is important to have a deep 

understanding of the rainfall formation mechanism to forecast the timing, density, intensity, 

and trends in a specific region to better manage water resources, maximize the use of water for 

economic development, and minimize the impacts of extreme events. In many countries, 

including Vietnam, rainfall is the object of regional planning strategies involving the 

production and construction sectors. Since the efficiency of water resource management 

depends on the accuracy and detail of rainfall forecasts, a method to obtain reliable and accurate 

predictions of rainfall at high spatial resolution is indispensable (Arritt and Rummukainen 

2011; Caldwell et al. 2009; Giorgi and Mearns 1991). 

Multiple general circulation models (GCMs) have been developed by various research 

groups to provide future climate predictions using numerical weather simulation. GCMs 

represent the physical processes and feedbacks for the atmosphere and oceans, which can be 

used to forecast future climate changes. Although GCM models can make useful predictions 

about global large-scale climate indicators, their spatial resolution of 100–200 km are too 

coarse to satisfy the requirements of regional planning. A GCM simplifies the complexities of 

land-sea distribution, vegetation cover, topography, and terrain. Therefore, downscaling 

methods, which translate coarse-scale GCM to finer spatial scales, have been developed to use 

on limited-area domains at higher horizontal resolutions.  

Dynamical downscaling works by employing a regional climate model (RCM), which 

is based on the same principles as a GCM but has higher resolution over a limited area. An 

RCM uses large-scale atmospheric conditions as determined by a GCM for the lateral boundary 
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conditions. Higher resolution topography and land-sea distribution are incorporated to generate 

realistic climate information at a much finer spatial resolution (Seaby et al. 2013). Currently, 

RCMs are considered the most helpful method for producing climate information at the scales 

required for actionable strategic planning (Kjellstrom et al. 2016). 

Over the years, the applicability of dynamical downscaling has significantly improved 

owing to the continuous development of computing technology and advances in numerical 

models. Even though the use of dynamical downscaling has become easier, it continues to be 

an extremely demanding method that requires considerable computational cost, simulation time, 

and output storage. Statistical downscaling is an alternative to dynamical downscaling for high-

resolution climate downscaling that can overcome the drawbacks of dynamical downscaling 

methods. Statistical downscaling takes into account the empirical, spatial, and temporal 

relationships between large-scale climate indicators (predictors) and local-scale climate 

variables (predictands) and are trained on a historical period. Subsequently, these relationships 

are presumed to hold in the future, where they can be used to determine future predictands. 

Statistical downscaling methods are computationally inexpensive and significantly faster than 

dynamical downscaling, so they can be applied for even higher resolutions, up to station-scale. 

Since statistical downscaling methods rely on the assumption of an unchanged statistical 

relationship, they require long historical climate observation data for validation, which is not 

always available for every region. In contrast, dynamical downscaling operates based on 

physical realism with complex local processes, which allows it to map important fine-scale 

variations in climate that otherwise might not be included (Salathé et al. 2008; Pierce et al. 

2012; Walton et al. 2017).  

While statistical downscaling and dynamical downscaling methods are widely used in 

climatology research, both face drawbacks that limit their applicability. Recently, the approach of 

combining dynamical downscaling with statistical downscaling has been explored. Dynamical-

statistical downscaling is a blended technique, where an RCM model is initially adopted to downscale 

the GCM output, followed by the application of statistical formulas to further downscale the RCM 

output to a higher resolution. Dynamical downscaling methods can utilize the advantages of RCM to 

provide better predictors for use in statistical downscaling (Guyennon et al. 2013). Berg et al. (2015) 

demonstrated this promising method by using a hybrid of the Weather Research and Forecasting 

(WRF) model with the Empirical Orthogonal Function to effectively forecast precipitation changes. 

In other research, Walton et al. (2015) introduced a new dynamical-statistical downscaling method 

by coupling WRF with Principal Component Analysis. The statistical-dynamical downscaling 
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method is another approach for blending techniques where dynamical downscaling is applied after a 

selected statistical downscale. While statistical-dynamical downscaling is a more complex blending 

technique, it is computationally less expensive. These methods use a statistical approach to refine the 

GCM outputs into a few characteristic states, which can be later used with the RCM models (Fuentes 

and Heimann 2000). 

Limited efforts have been made to date to combine dynamical and statistical downscaling 

methods for precipitation research. In this study, we have introduced a combined dynamical-

statistical downscaling technique for rainfall using WRF with an Artificial Neural Network (ANN). 

The WRF-ANN method aims to downscale high-resolution daily rainfall data for a seasonal length 

to satisfy the requirements for purposes such as agriculture or water resources planning. This method 

works by making statistical relationships between moderate- and high-resolution WRF outputs using 

ANN. The statistical relationships can be used directly to downscale moderate-resolution WRF 

outputs to fine-resolution rainfall. In this method, we first validated the accuracy of the WRF model 

to reproduce known climate conditions. Subsequently, the WRF output was downscaled to a finer 

spatial resolution using ANN. While this method used atmospheric variables from WRF, the 

relationship between physical and dynamical processes could potentially be included in the ANN. In 

addition, a bias correction for the ANN input and output (rainfall) was applied to reduce error in the 

final output. Moreover, the sensitivity of each predictor was also considered to examine their 

statistical relationships with rainfall. 

 

1.1.6.  Objectives 

Firstly, the inundation and flood problems in future condition will be addressed in this study, 

using the combination of weather researching model and hydrological model driven by CMIP5 multi-

model dataset. 

There is a growing trend in the demands of using high-resolution climatological data for 

planning and management activities and that thus, raising the need of adopting weather downscaling 

techniques. The drawbacks of the available methods hinder the further application of these techniques 

while they are neither too costly nor too limited in reliability. The second aim of this study is to 

investigate the ability to couple both dynamical downscaling with statistical downscaling for high-

resolution rainfall forecasting that can be easily adopted whilst maintaining the accuracy. The case 

study chose in the Red River Delta in Vietnam. 

Finally, giving the key findings, research limitations and suggestion for future works in 

upgrading the proposed methods and extend its applicability.  
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1.2. Structure of the dissertation 

Chapter 1 gives the brief information about the background and literature reviews of the 

related researches on climatology and hydrology that have motivated this research. The next section 

was then followed by the research’s goals.  

Chapter 2 considers the data and methodologies used in this dissertation. The material and 

methods to study the possibility of coupling dynamical and statistical downscaling for high resolution 

rainfall are reviewed. The major focus is placed upon the use of WRF and ANN in climatological 

information downscaling. For the second major goal of this dissertation, the data and methods 

required to perform investigation of rainfall runoff and inundation condition of Cau-Thuong-Luc 

Nam watershed are also illustrated. 

The results for the first goal of this study – researching rainfall runoff and inundation 

condition of Cau-Thuong-Luc Nam watershed under global warming were discussed in Chapter 3.  

In Chapter 4, results for the second goal of this study – coupling dynamical and statistical 

downscaling for high-resolution rainfall forecasting, were shown in detail with discussion.  

In the last chapter, Chapter 5, the significant findings of this study were summarized with 

limitations and recommendation. 
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CHAPTER 2.  

DATA AND METHODOLOGIES 

 

2.1. Data and methodology in researching rainfall runoff and inundation in Cau-Thuong-

Luc Nam watershed in Vietnam under global warming 

2.1.1.  Research data and materials 

(a) In-situ daily observation data 

The in-situ rainfall data collected by the Vietnam National Centre for Hydro-

Meteorological Forecasting (NCHMF) at 56 rain gauges station from 2002-2009 provides a 

basis for this study. As river discharge data for verification of RRI simulation results, we used 

monitored data in July and August 2009 from Chu and Gia Bay hydraulic stations which locate 

in major branches of CTLN river system. Locations of hydro-meteorological stations are shown 

in Figure 2.1 (b). Northern Vietnam climate is distinguished by the Southeast Asia monsoon 

system with the hot-rainy season from Jun to August (JJA) then the cold-dry season from 

December to February (DJF). In this study, we focused on the hydro-meteorological condition 

of CTLN river system during JJA period. 

 

(b) Coupled Model Inter-Comparison Project (CMIP5) multi-model dataset 

For assessment of future global warming, this study based on the global warming 

experiments by the fifth phase of the Coupled Model Intercomparison Project (CMIP5). 

Numerous experiments provided by CMIP5 represent for the state-of-the-art international 

assessment of climate science. The future climate projections in CMIP5 are based on different 

future greenhouse emission scenarios known as representative concentration pathways (RCPs). 

Herein, we examined the daily precipitation for mid-21st century from 2060 to 2069. In 

Vietnam, progress of climate change is taking place faster than expected. Recently, Vietnam 

government has updated the high emission scenario RCP 8.5 in the national strategy on climate 

change to propose the action plan for extreme weather events under the worst case scenario 

(Thuc et al. 2017). In RCP8.5, the radiative forcing of the Earth become 8.5 W/m2 larger than 

before the industrial revolution. In this study, we used the output of two Atmosphere Ocean 

General Circulation Model (AOGCM) projections from NOAA Geophysical Fluid Dynamics 

Laboratory Climate Model version 3 (GFDL-CM3) (Griffies et al. 2011) and a new version of 
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Model for Interdisciplinary Research on Climate (MIROC-5) (Watanabe et al. 2010) for 

preparation of the future conditions.  

(c) Initial and boundary conditions for numerical weather simulation 

This study uses Japanese 25-year reanalysis (JRA-25) product by The Japan 

Meteorological Agency (JMA) for reproducing the present climate conditions which are also 

the base state for future (pseudo global warming) conditions. The global spectral resolution of 

JRA-25 kept at T106 with 40 vertical layers where 0.4 hPa was set for the height of the top 

level. Since the JRA-25 only provide the assimilation data from January 1979 to December 

 

Figure 2.2 Topography and land use inputs for RRI model 

 

Figure 2.1 Locations of CTLN watershed and hydro-meteorological stations 
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2004, the reanalysis product from the JMA Climate Data Assimilation System (JCDAS) has 

been used for the period from January 2005. JCDAS deploys the similar system as JRA-25 

which guarantee the homogeneous in quality and accuracy in the application of both datasets. 

The current climate conditions were obtained by performing dynamical downscaling to the 

2000-2009 data. Simulation results for climate condition (or control simulation) is called CTL.   

For land-surface boundary conditions for WRF model, we used the NCEP Final 

Operational Global Analysis data (NCEP FNL) (NCEP 2000). For the lower boundary 

condition over the ocean, the NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface 

Temperature Analysis (NOAA OI SST) (Reynolds et al. 2007) was used.  

(d) Topography and global land cover data 

Input data for RRI model was taken from the hydrological data and maps based on 

Shuttle Elevation Derivatives at multiple Scales (HydroSHEDS). Topography inputs of 15-arc 

second resolution (approximately 500m) for digital elevation model, flow accumulation, and 

flow direction was used for RRI model (Figure 2.2 (a, b, c)). Regarding the RRI requirement 

of land cover data, we used the Moderate Resolution Imaging Spectroradiometer (MODIS) 

based product of 0.5 km resolution.  

2.1.2.  Design of numerical simulation 

 

Figure 2.3 The target areas for WRF and ANN models, in 

which (a) The outer 30 km resolution (D01) and inner 10 km 

resolution domains (D02) are shown in the grey and white 

colors, respectively, the red rectangular indicate the 

locations of the researching area 



24 

 

(a) The Weather Research and Forecasting (WRF) model 

Downscaling of present and future climate condition was implemented using the WRF 

model version 3.4 (Skamarock et al, 2008). A two-level, two-way nesting system for WRF 

downscaling is shown in Figure 2.3, where D01 and D02 represented for the 30km and 10km 

grid spacing resolution, respectively. The CTLN watershed locates in the Northern Vietnam 

where placed the center of the D2 domain. The WRF Double-Moment 5-class scheme (WDM5) 

microphysics and Grell-Devenyi cumulus parameterization schemes were used to calculate 

precipitation in the model. Planetary boundary layer parameterization is used from the Mellor-

Yamada Nakanishi and Niino Level 2.5 PBL (MYNN2). The used parameterization for the 

surface layer and land surface are taken from Nakanishi and Niino PBL’s surface layer scheme 

and Noah land surface model, respectively. The new Rapid Radiative Transfer Model 

(RRTMG) schemes are selected for long wave radiation and shortwave radiation conditions. 

Detailed WRF configuration setting for researching the inundation and flood condition in 

CLTN river basin is illustrated in Table 2.1  

(b) High-frequency-anomaly Pseudo Global Warming (PGW) 

Future climate projections given by Atmospheric Ocean Global Climate Models 

(AOGCMs) often contain uncertainties which resulted from uncertainties from future climate 

scenario, the lack of completeness in initial and boundary conditions, the imperfection of 

climate model, or the imperfect understanding of global and regional climate systems. 

AOGCM incompleteness is one problem addressed in DDS future weather conditions. The 

process of reproducing the historical climate conditions using AOGCMs aims to establish the 

Table 2.1 Configuration of WRF model used in researching inundation and flood condition 

in CLTN river basin  

Version of model Version 3.4 

Microphysics WRF Single-Moment 5-class scheme 

Cumulus parameterization Grell-Devenyi schemes 

Land model Eta similarity 

Land surface scheme Nakanishi and Niino PBL’s surface layer scheme 

Long-wave radiation Rapid Radiative Transfer Model (RRTM) 

Short-wave radiation Rapid Radiative Transfer Model (RRTM) 

Planetary boundary condition Mellor-Yamada Nakanishi and Niino Level 2.5 PBL 

Length of simulation 92 days and 5 days for spin-up 
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general view of the climate we want to forecast, it is not to recreate the perfect reproduction. 

Hence, using DDS with initial and boundary conditions given by AOGCMs to evaluate the 

ability to reproduce the current climate condition is difficult. For that purpose, climatological 

reanalysis dataset can provide the input forcing for DDS of the past and current climates. For 

DDS future climate condition, Sato el al (2007) have introduced the pseudo global warming 

(PGW) method. In this method, the initial and boundary conditions for DDS were generated 

by combining 6-hourly reanalysis data and climatological monthly mean variations of future 

condition given by an AOGCM. The resulted PGW forcing data was feed in DDS to obtain 

final climate condition. Comparison results between dynamical downscaling applied for 

reanalysis data and AOGCM pointed out the better reproductive of DDS for rainfall when 

taking the boundary conditions from reanalysis dataset.  In this study, PGW conditions for 

downscaling were processed with future climatological high-frequency variation. (Taniguchi 

2016).  

Downscaling simulations for present and future climate condition were prepared with 

pseudo global warming forcing. The lateral boundary conditions for future were constructed 

by adding projected changes in AOGCM simulations to reanalysis climate. In this study, the 

high-frequency anomaly pseudo global warming (HF-PGW) methods were applied to prepare 

the initial forcing with future high-frequency anomalies. The future inter-annual variability and 

diurnal cycle can differ from the present climate. At first, six-hourly AOGCM and reanalysis 

dataset (RD) were divided into climatological monthly mean plus the short perturbation terms: 

 𝐴𝑂𝐺𝐶𝑀𝑃 = 𝐴𝑂𝐺𝐶𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑃 + 𝐴𝑂𝐺𝐶𝑀′𝑃                                                                  (10) 

𝐴𝑂𝐺𝐶𝑀𝐹 = 𝐴𝑂𝐺𝐶𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐹 + 𝐴𝑂𝐺𝐶𝑀′𝐹                                                              (11) 

𝑅𝐷𝑃 = 𝑅𝐷̅̅ ̅̅
𝑃 + 𝑅𝐷′𝑃                                                                       (12) 

The subscript P and F represent the present (2000-2009) and the future (2060-2069), 

respectively. Then the bias-corrected six-hourly AOGCM data for the future period,𝐴𝑂𝐺𝐶𝑀 ∗𝐹, 

was calculated by adding the climatology variation between future and present (𝐴𝑂𝐺𝐶𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐹 −

𝐴𝑂𝐺𝐶𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑃) and short term perturbation 𝐴𝑂𝐺𝐶𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐹′ to climatological mean reanalysis:  

𝐴𝑂𝐺𝐶𝑀 ∗𝐹 = 𝑅𝐷̅̅ ̅̅
𝑃 + 𝐴𝑂𝐺𝐶𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐹 − 𝐴𝑂𝐺𝐶𝑀̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑃  + 𝐴𝑂𝐺𝐶𝑀′

𝐹                                        (13) 

The inter-annual variation and diurnal circle were both included in HF-PGW conditions 

which are expected to greatly reduce the bias in AOGCM outputs.  

2.1.3.  River Runoff and Inundation (RRI) model setup 
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(a) Introduction of RRI model  

Rainfall-Runoff-Inundation (RRI) model was used to simultaneously simulate the 

conditions of rainfall-runoff and flood inundation for the research domain. RRI is a two-

dimensional hydrological model which can simulate rainfall-runoff and flood inundation 

simultaneously (Sayama et al., 2012, Sayama et al., 2015a, Sayama et al., 2015b). In RRI, 

slopes and river channel are processed separately. In a grid inside the river channel, both slope 

and river body are assumed within the same grid cell. The schematic diagram of RRI model is 

shown in Figure 2.4. The river channel is considered as a single line on the overlying slope 

cells. The 2-dimension diffusive wave model was adopted to calculate the flow over slope grid 

cells, while the 1-dimension diffusive wave model was applied for the main channel flow. For 

the simulation of river runoff and inundation processes, the RRI incorporate both lateral 

subsurface flow, vertical infiltration flow and surface flow. This boundary condition is 

especially important to present the hydrological condition of the mountainous areas, it is 

considered in the form of hydraulic-discharge gradient connection and take into account both 

saturated subsurface and surface flows. Besides, the vertical infiltration flow is estimated by 

using the Green-Ampt model. The interaction between the river flow in channel and slope is 

computed using on various overflowing formulation which depend on water height and current 

levee conditions.  

 

Figure 2.4 Schematic diagram of Rainfall-Runoff-

Inundation (RRI) Model 
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Governing Equation of RRI model 

A method to calculate lateral flows formed on  slope grid-cells is characterized as “a 

storage cell-based inundation model" (e.g. Hunter et al. 2007). The used equations were derived 

using the following mass balance equation (1) and momentum equation (2) which made for  

gradually varied unsteady flow. 

𝜕ℎ

𝜕𝑡
+

𝜕𝑞𝑥

𝜕𝑥
+

𝜕𝑞𝑥

𝜕𝑦
= 𝑟 − 𝑓                                                                                                 (1) 

𝜕𝑞𝑥

𝜕𝑡
+

𝜕𝑢𝑞𝑥

𝜕𝑥
+

𝜕𝑣𝑞𝑦

𝜕𝑦
= −𝑔ℎ

𝜕𝐻

𝜕𝑥
−

𝜏𝑥

𝜌𝑤
                                                                               (2) 

𝜕𝑞𝑦

𝜕𝑡
+

𝜕𝑢𝑞𝑦

𝜕𝑥
+

𝜕𝑣𝑞𝑦

𝜕𝑦
= −𝑔ℎ

𝜕𝐻

𝜕𝑦
−

𝜏𝑥

𝜌𝑤
                                                                               (3) 

In which, the water height from the local surface, qx and qy are the unit width discharges 

in x and y directions, u and v are the flow velocities in x and y directions, r is the rainfall 

intensity, f is the infiltration rate, H is the height of water from the datum, wis the density of 

water, g is the gravitational acceleration, and x and y are the shear stresses in x and y directions. 

The second terms of the right side of (2) and (3) are calculated with the Manning’s equation. 

The model can also consider percolation and groundwater flow governed by Darcy’s law. Then, 

the spatial differentiation in the mass balance equation (1) is discretized by the first-order finite 

difference method, and the time differentiation is solved by the fifth-order Runge-Kutta 

formula. 

A one-dimensional diffusive wave model is applied to river grid cells. The geometry is 

assumed to be rectangle, whose shapes are defined by width W, depth D and embankment 

height He. When detailed geometry information is not available, the width and depth are 

approximated by the following function of upstream contributing area A [km2].  

 

Figure 2.5 Surface and subsurface flow conditions considered in RRI 
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𝑊 = 𝐶𝑤𝐴𝑆𝑤                      (5) 

𝐷 = 𝐶𝐷𝐴𝑆𝐷           (6) 

where CW, SW, CD and SD are geometry parameters. Here the units of W and D are meters 

For each land cover class, decide (A), (B) or (C) in the following figure depending on 

infiltration and subsurface processes, so that the number of calibration parameters will be 

limited.  

(b) Design of RRI model 

Since the original MODIS product includes 16 types of land use which is too detailed 

to designate all the parameters, similar land cover types were combined into four major 

categories and also overlaid with river floodplain region. The detailed information about the 

original and reclassified land use types is shown in Table 2.2, the spatial distribution of 

reclassified land use types in demonstrated in Figure 2.6.  

For better representation the rainfall-runoff-inundation processes of CTLN watershed, 

the surface/subsurface condition parameterization was enabled with vertical Green-Ampt 

Table 2.2 Original and Reclassified MODIS land cover types 

No 

MODIS land cover dataset 

Original land use types Reclassified land use type 

1 Water Crop land 

2 Evergreen Needleleaf forest Grass and shrub land 

3 Evergreen Broadleaf forest Mixed forest 

4 Deciduous Needleleaf forest Residental Areas 

5 Deciduous Broadleaf forest Flood plain 

6 Mixed forest 
 

7 Closed shrublands 
 

8 Open shrublands 
 

9 Woody savannas 
 

10 Savannas 
 

11 Grasslands 
 

12 Permanent wetlands 
 

13 Croplands 
 

14 Urban and built-up 
 

15 Cropland/Natural vegetation mosaic 
 

16 Barren or sparsely vegetated 
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model infiltration flow. Human management activities to control and regulate the river channel 

was considered by dam model. Evaporation parameter in RRI model was disable due to the 

lack of detailed monitored evaporation data.  Simulation result of RRI for 2009 was used for 

model verification.  

 

2.1.4.  Conclusion 

In conclusion, this part has demonstrated the method of using of the Weather Research 

and Forecasting model and River Runoff and Inundation model for researching river runoff 

and inundation condition for the Cau-Thuong-Luc Nam watershed under global warming.  

The hindcast simulation for historical flood event in Cau-Thuong-Luc Nam watershed 

in 2009 was performed for the verification of models’ configurations. The variation of 

precipitation during the rainy season in the future was investigated using the numerical weather 

simulations under the high frequency pseudo-global warming conditions, constructed with the 

fifth-phase results of Coupled Model Inter-comparison Project multi-model global warming 

experiments (CMIP5 – RCP8.5). The runoff and inundation conditions of the Cau-Thuong-Luc 

Nam watershed in the mid-21st Century were investigated by inputting the future rainfall 

conditions from WRF in to RRI model. 

The simulation results for this section were indicated in Chapter 3 of the dissertation.  

 

 

Figure 2.6 Spatial distribution of Reclassified Land cover types 
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2.2. Data and research methodology in coupling dynamical and statistical downscaling 

for high-resolution rainfall forecasting 

2.2.1.  Domain and data 

(a) Study area 

The research area used for downscaling by WRF is shown Figure 2.7 (a). The two-

domain nesting method is applied with 30 km and 6 km horizontal grid resolutions for outer 

and inner domains (hereafter, D1 and D2 domains), respectively. While the D1 domain, placed 

in Southeast Asia, covers the entire Vietnam region, the D2 domain was selected in the 

Northern part of the country. The D2 domain has a complex topography, including alternating 

mountain range, midland, lowland, and a small proportion of the East Sea (Figure 2.7 (c). The 

study for precipitation estimation using ANN was carried out for a smaller rectangular area, 

which was placed inside the D2 (hereafter, D2T; Figure 2.7 (b)). This target domain was placed 

inland, defined between the latitudes 20.5 °N–22.5 °N and longitudes 104 °E–107 °E. The 

selection of D2T covering the large Red River Delta region including the capital Hanoi City. 

The area defined by D2T is not only the most important municipal areas in Vietnam but it also 

has the long and reliable climatological records. The weather in northern Vietnam is 

characterized by the tropical climate system, distinguished by the hot, rainy season from Jun 

 

Figure 2.7 Target areas for downscaling with WRF and ANN. (a) The outer 

(D1) and inner (D2) domains are indicated by gray shade and white, 

respectively. The spatial resolution was 30 km for D1 and 6 km for D2. (b) The 

target area for ANN downscaling (D2T) is indicated by a rectangle inside D2. 
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to August (JJA), followed by the cold, dry season from December to February (DJF) (Figure 

2.9). The average rainfall during ranges from 750 to 1.100mm which accounts for over 70% of 

the annual precipitation with about. Rainfall is the vital water source for the development of 

the region and also the cause of many water borne disaster. In this study, we focused on 

precipitation during the JJA period.  

 

 

 

Figure 2.9 Averaged rainfall in JJA and DJF in northern 

Vietnam from 2002 to 2014 

 

Figure 2.8 Geographical distribution of the 38 rain gauges providing 

data for this research are indicated by black dots. 
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(b) In-situ observation data 

The in-situ rainfall data was collected from the Vietnam National Centre for Hydro-

meteorological Forecasting (NCHMF), using the rainfall measured by rain gauges. Rain gauge 

reports are prepared and recorded every six hours, being further processed by the NCHMF for 

monitoring climate anomalies. The rainfall data for the JJA season covering the years 1996, 

1997, 1998, and 2006 provided the basis for this research. Specific criteria were applied to 

selected weather station data. These criteria include the following: (i) rain gauge stations 

positioned inside the D2 domain and must use the same monitoring techniques to minimize 

biases in the recorded data; (ii) a month during JJA is considered as sufficient data if the number 

of missing days is less than or equal to 5; (iii) a year is considered complete if all the months 

in JJA satisfy item (ii); (iv) a station that covers the all years of the research period, without 

missing any year, is considered to have complete data. After screening through these criteria, 

38 stations were selected for the validation of WRF output (Figure 2.8). 

(c) JRA-55 

This study uses the Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015), 

developed by The Japan Meteorological Agency (JMA), for WRF initial and boundary 

conditions. Simulation outputs serve as the control run for testing the accuracy of WRF 

simulations (hereafter, simulations of climate in the past are called CTL). JRA-55 was 

improved from the JMA’s former reanalysis (JRA-25 (Onogi et al. 2007) by deploying a more 

sophisticated data assimilation scheme to reduce biases in stratospheric temperature, as well as 

to improve the temporal consistency of temperature analysis. The spectral resolution of the 

global model projection in JRA-55 was maintained at T319L60 Gaussian grid data (equal to a 

55-km horizontal grid) and 60 vertical layers, where 0.1 hPa represents the highest level of the 

model. The dataset employs the advanced four-dimensional variational data assimilation 

method, along with the global spectral model, to generate 6-hourly atmospheric variables and 

forecasting cycles. JRA-55 dataset is the third-generation global atmospheric reanalysis, which 

covers the period from 1958 to present.  

The WRF control simulation is forced by the assimilation data obtained from JRA-55 

for the years 1996, 1997, 1998, and 2006. The WRF CTL outputs for all the target years were 

used for downscaling validation, while the outputs for the first three years from 1996 to 1998 

are used as inputs for artificial neural network (ANN) training. The CTL output for the year 

2006 was utilized as an independent testing set for ANN. 
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(d) The sea surface temperature 

For the lower boundary conditions of WRF simulation over the ocean, the NOAA 

Optimum Interpolated 1/4 Degree Daily Sea Surface Temperature Analysis (NOAA OI SST) 

was used (Reynolds et al. 2007). It is a global-scale reanalysis dataset, constructed by merging 

observations from various methods, including satellites, ships, and buoys. The complete global 

sea surface temperature (SST) map was produced by numerical interpolation. This product 

provides a spatial resolution of 0.25° × 0.25°, with a temporal resolution of one day. NOAA 

OI SST uses Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST 

data, which supports relatively high-resolution observation data. However, it cannot see 

through clouds. Therefore, since 2012, Microwave Instruments Advanced Microwave 

Scanning Radiometer (AMSR) has been used along with AVHRR to measure SSTs in most 

weather conditions. 

 

(e) Land surface condition 

For land-surface boundary conditions, we used the NCEP Final Operational Global 

Analysis data (NCEP FNL; NCEP, 2000). These boundary conditions are prepared at a spatial 

resolution of 1° × 1° gridded data in the form of reflected solar radiation, surface emissivity, 

the turbulent exchange of heat-moisture conditions in canopy and soil, and surface exchange 

momentum with the lower atmosphere. The magnitude of these processes forms the land-

surface meteorological function.  

 

2.2.2.  Experimental setup 

(a) Introduction of the Weather Research and Forecasting (WRF) model 

The Weather Research and Forecasting (WRF) Model is a widely adopted mesoscale 

numerical weather prediction system which is developed for not only atmospheric research but 

also for practical forecasting purposes. WRF is featured by two dynamical cores, a system to 

execute data assimilation as well as a software structure that supports simultaneously 

computing and system extensibility. WRF model offers a huge range of application in terms of 

meteorology researches with the spatial resolution factor from dozens of meters up to thousands 

of square kilometres. WRF was initial developed in late 1990's which was born from a 
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collaborative joint research of the National Center for Atmospheric Research (NCAR), the 

National Oceanic and Atmospheric Administration (represented by the National Centers for 

Environmental Prediction (NCEP) and the (then) Forecast Systems Laboratory (FSL)), the 

(then) Air Force Weather Agency (AFWA), the Naval Research Laboratory, the University of 

Oklahoma, and the Federal Aviation Administration (FAA). 

For deep meteorological researches, WRF model supports simulations using on real 

climate conditions such as from observations data and also from idealized conditions. WRF 

provides practical forecasting using a flexible and effectively computing system, while still 

update recent advancements in physics, numeric, and data assimilation contributed by 

developers from the vast user’s research community. WRF model is utilized in practical 

simulation at NCEP as well as other meteorological centers around the world. WRF is also 

adopted in real-time forecasting configurations. 

The core components of the WRF modelling system are illustrated in Figure 2.10. The 

WRF Software Framework (WSF) offers the working structure that connecting the dynamics 

solvers, physics packages that working with the solvers, programs for initialization, WRF-Var, 

and WRF-Chem. WSF contains two dynamic solvers: the Advanced Research WRF (ARW) 

solver developed primarily at NCAR, and the NMM (Non-hydrostatic Mesoscale Model) 

solver developed at NCEP. We adopted the Advance Research WRF in this study. 

The Advanced Research WRF (ARW) modeling system has been developed and 

continue to improve for years, the latest release is Version 3 that available for free access in 

2008. The ARW is constructed as a flexible, state-of-the-art meteorological simulation system 

 

Figure 2.10 The infrastructure of the WRF software 
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that is easy to use and effectively build into the available parallel computing systems. ARW 

modules provide a huge range of applications of different spatial scales varies from several 

meters to tens of thousands kilometres, including: 

 Idealized simulations (e.g. LES, convection, baroclinic waves) 

 Parameterization research 

 Data assimilation research 

 Forecast research 

 Real-time NWP 

 Hurricane research 

 Regional climate research 

 Coupled-model applications 

 Teaching 

The detailed components of WRF modeling system is shown in the Figure 2.11. WPS 

is a program used primarily for real-data simulations. Its functions include 1) defining 

 

Figure 2.11 WRF system flow chart. In this study, External data is fed into the WPS module which 

output the domain containing meteorological data then this data is inputted to the ARW model 

solver.  
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simulation domains; 2) interpolating terrestrial data (such as terrain, landuse, and soil types) to 

the simulation domain; and 3) degribbing and interpolating meteorological data from another 

model to this simulation domain. Its main features include: 

  GRIB 1/2 meteorological data from various centers around the world 

  USGS 24 category and MODIS 20 category land datasets; USGS GTOPO30 

elevation dataset; Global 5-minutes United Nation FAO, and North-America 

STATSGO 30 sec soil category dataset; 10-min greenness fraction data based 

on AVHRR and 30-sec greenness fraction data based on 10 years MODIS; 

MODIS-based leaf-area index; 0.15 degree monthly albedo and snow albedo 

data; and 1-degree deep soil temperature data; plus a few specialized datasets 

 Map projections for 1) polar stereographic, 2) Lambert-Conformal, 3) Mercator 

and 4) latitude-longitude 

 Nesting 

 User-interfaces to input other static data as well as met data 

ARW Solver is the key component of the modeling system, which is composed of 

several initialization programs for idealized, and real-data simulations, and the numerical 

integration program.  

There are a various types of graphic tools to view and access the output. In this study, 

we utilized ARWpost module.  

(b) Numerical weather simulation 

In this study, the Weather Research and Forecasting (WRF) version 3.6 (Skamarock 

and Wang 2008) was used. The WRF model is widely used by both, operational and research 

communities. It represents the up-to-date techniques in mesoscale model development. WRF 

is a non-hydrostatic model, which was developed to inherit much of the dynamical and physical 

algorithms similar to the Fifth-Generation Mesoscale Model (MM5), introduced by the 

Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR). WRF 

has a wide range of physical options for parameterization, which can be combined in various 

ways. 

In the context of this study, the selected physical parameterization setting is the optimal 

combination of schemes used in various studies across Asia. Cloud microphysics was used 

from the WRF Single-Moment 5-class scheme (Hong et al. 2004). The Kain-Fritsch scheme 

was used for cumulus parameterization. For surface layer physics, the ETA models based on 
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Monin-Obukhov, with Carslon-Boland viscous sub-layer, were used. As a land surface model, 

the Noah Land Surface Model (Chen and Dudhia 2001) was applied. The Bougeault and 

Lacarrere (BouLac) (Bougeault and Lacarrere 1989) scheme was used for the planetary 

boundary layer. Dudhia’s scheme (Dudhia 1989; Mlawer et al. 1997) and the Rapid Radiative 

Transfer Model (RRTM) were selected for short-wave radiation and long-wave radiation 

conditions, respectively. The spectral nudging option was enabled to include the global-scale 

effects on a smaller scale, to ensure the simulated result is more consistent with the observation 

(von Storch et al. 2000). The outline for the model configurations is provided in Table 2.3. 

Since this research targets the rainfall season, dynamical downscaling was applied to 

each JJA period of the research duration. For the initial and boundary conditions, downscaling 

simulations used JRA-55, NCEP-FNL, and NOAA OI SST datasets. 

The goal of the WRF model is to accurately reproduce detailed information about 

rainfall in the target domain. Here, we evaluate the WRF’s ability to reproduce daily rainfall 

by comparing to surface observations data (see Figure 2.7 (c)) for the spatial distribution of 

rain gauges). The downscaling experiments were implemented for each JJA period in 1996, 

1997, 1998, and 2006. While evaluating the reproducibility of the WRF model, we omitted the 

results from the first five days, or a spin-up period of 5 days from May 27th to May 31st. After 

the spin-up period, the 92-day simulation was carried out from the first day of Jun to the end 

of the JJA period on 18Z, August 31st. The model performance was evaluated by computing a 

series of statistical measurements for simulated rainfall against the observed rainfall, including 

the mean absolute error (MAE), (Pearson) correlation (R), root mean square error (RMSE), and 

the index of agreement (IOA). The statistical measures are defined as follows: 

Table 2.3 Configuration of WRF model used in coupling DDS and SSD 

Version of model Version 3.6 

Microphysics WRF Single-Moment 5-class scheme 

Cumulus parameterization Kain-Fritsch scheme 

Land model Eta similarity 

Land surface scheme Noah Land Surface Model 

Long-wave radiation Rapid Radiative Transfer Model (RRTM) 

Short-wave radiation Dudhia’s scheme 

Planetary boundary condition BouLac scheme 

Length of simulation 92 days and 5 days for spin-up 

 



38 

 

MAE =
1

𝑁
∑|𝑂𝑖 − 𝑆𝑖|

𝑁

𝑖=1

                                                                                                            (7) 

𝑅 =

[
 
 
 

∑ (𝑂𝑖 − �̅�)(𝑆𝑖 − 𝑆̅)𝑁
𝑖=1

√∑ (𝑂𝑖 − �̅�)𝑁
𝑖=1 √∑ (𝑆𝑖 − 𝑆̅)𝑀

𝑖=1 ]
 
 
 

                                                                                 (8) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑂𝑖 − 𝑆𝑖)2

𝑁

𝑖=1

                                                                                                   (9) 

𝐼𝑂 = 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑁
𝑖=1
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                                                                              (10) 

where N is the number of grid observation sites O; �̅� and 𝑆̅ correspond to the average rainfall 

measured from the rain gauges and simulation result, respectively. The IOA index returns the 

degree of model prediction error, varying between 0 and 1, with the higher value indicating 

better agreement between the model predictions and observations, while the lower value 

indicates weak agreement.  

WRF outputs have a higher precision than the observation. Such difference in resolution 

of rainfall may cause biases in WRF output. Rain gauge sensors currently in use can only detect 

the accumulated rainfall of more than 0.5 mm per day. In contrast, the frequency of wet days 

with very low rainfall, for example a resolution of 0.0001 mm per day, can be projected by 

WRF. This means the WRF rainfall output might not be consistent with the observation, even 

if its projection perfectly matches with the reality. To reduce the bias in WRF output, while 

negating the accumulation effect when downscaling with ANN, all rainfall output values less 

than 0.5 mm (wet-day-threshold) were treated as dry day events (hereafter, DRE). This wet-

day-threshold was applied to all the WRF simulated data in this research.  

 

(c) Artificial Neural Network (ANN) 

The term Artificial Neural Network (ANN) is a mathematical concept of artificial 

intelligence that mimics the network of billions of interconnected neurons in the human 

nervous system. In this, the basic information processing system, like the human brain, is 

composed of nerve molecules as the core processing unit. In ANN, these core processing units 

are called neurons, which possess the natural characteristics of processing the information and 
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storing analyzed data as experimental knowledge for later use. ANN comprises of a number of 

simple processing elements connected to each other by different weights, according to a 

specified architecture. During the learning process, ANN gradually adjusts the connecting 

weights to reproduce the training dataset effectively. ANN has been considered as one of the 

most effective alternatives to traditional methods for solving the nonlinear time series problems 

that can yield results in a short period (Liu et al. 2009; Yu et al. 2006).  

ANN offers a variety of network architectures suitable to different fields of application. 

In this study, we adopted the most widely implemented architecture of feed-forward artificial 

neural network (FFANN) in the climatology field (Abhishek et al. 2012), which is a multi-layer 

perceptron, trained using the back-propagation learning algorithm (MLP-BP), for downscaling 

WRF rainfall output from the mother domain to the child domain. When first introduced by 

Rosenblatt (1958), the simplest ANN model, the single layer perceptron (SLP), offered only a 

strictly limited transfer function, which was suitable to deal with linear problems. The MLP 

overcomes many limitations of the SLP by adding one or more hidden layers of neurons 

between the input and output layers, which includes the capabilities of solving the non-linear 

problems, based on the non-linear relationships among the neurons (Lippmann 1987). 

Figure 2.12 depicts the simplified architecture of an MLP-BP network implemented in 

this study. The network contains a set of neurons organized in layers from the input layer on 

the left to the output layer on the right. All the processing neurons are fully connected with 

other neurons in the following layer, while there is no connection between neurons of the same 

 

Figure 2.12 Simple multilayer perceptron ANN 
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layer. The input layer is neither designed for processing data nor generating inputs of its own. 

It simply stores the input values to be processed in the next layer. After the input layer, one or 

more processing layers, called the hidden layer, follow. The last layer is the output layer, 

containing processing neurons to generate a simulated value. The connections between neurons 

are made with the associated weights. The network illustrated in Figure 2.12 represents a three-

layered ANN with an input layer of i input neurons (X1, X2, …, Xi), one hidden layer 

with j neurons (H1, H2, …, Hj), k output neurons (Y1, Y2, …, Yk), with connections from the 

output of one layer to the next layer. The superscript h and o indicate that the calculations are 

implemented in the hidden layer and output layer, respectively. The input values calculated by 

the model for the mth neuron in the hidden layer are the weighted sum of i inputs to which the 

bias value 𝑏𝑚
ℎ  is added: 

𝑛𝑒𝑡𝑚
ℎ = ∑ 𝑊𝑚,𝑛

ℎ 𝑋𝑛 + b𝑚
ℎ   ;  = 1, 2, … 𝑗 ,                                                                        (11)

𝑖

𝑛=1

 

where 𝑊𝑚,𝑛
ℎ  is the associated weight matrix for the connection between the input 

neurons and the neurons in the hidden layer. Then, the 𝑛𝑒𝑡𝑚
ℎ  vector is entered into a non-linear 

activation function g( ), which is essential for an ANN model to solve the nonlinear problems, 

wherein the most useful and widely adopted functions are hyperbolic tangent or logistic 

sigmoid (Bodri and Čermák 2001). The output of neuron 𝑜𝑢𝑡𝑚
ℎ  in the hidden layer 

subsequently becomes: 

𝑜𝑢𝑡𝑚
ℎ  = g(𝑛𝑒𝑡𝑚

ℎ )                                                                                                                (12) 

The input of the lth neuron in the output layer is calculated as the weighted sum of those 

activations plus the bias neurons 𝑏𝑙
𝑜: 

𝑛𝑒𝑡𝑙
𝑜 = ∑ 𝑊𝑙𝑚

𝑜 𝑜𝑢𝑡𝑚
ℎ + 𝑏𝑙

𝑜  

𝑗

𝑚=1

;  𝑙 = 1, 2, … 𝑘.                                                                  (13) 

The same activation function g( ) that was applied to the hidden layer is applied to the 

input layer. The final network output 𝑜𝑢𝑡𝑙
𝑜  for the lth output of the model is subsequently 

obtained using the following function: 

𝑜𝑢𝑡𝑙
𝑜 = g(𝑛𝑒𝑡𝑙

𝑜)                                                                                                                     (14) 

As the goal of training is to minimize the difference between the actual output (desired 

output) and the simulated output of the network, the network error is computed at this stage. 
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This error is subsequently inserted back into the input layer, where the initial connecting 

weights and biases are adjusted according to the magnitude of the error. The supervised 

learning is repeated until the ANN is converged, reaching an error smaller than the threshold. 

In this study, the connection weights were updated after each training itinerary. ANN was 

trained by using the Levenberg Marquardt training algorithm, which is proven to be a fast and 

efficient update rule for medium-sized FFANN (Yu and Wilamowski 2011).  

(d) ANN downscaling experiment  

The goal of an optimal ANN architecture is to minimize the error between the simulated 

output and the desired value with the most (possible) compact and simple structure. There are 

several most essential factors affecting the performance of ANN, like, (1) selection of the 

predictor, (2) building the number of layers and neuron structure (network structure), and (3) 

specifying the training algorithm for connecting weights. Input predictors are usually 

independent variables, believed to have some predictive power over the dependent variable 

being predicted (predictand). Normally, useful predictors could be selected by looking at the 

Table 2.4 Predictor variables considered in the preliminary test 

No. Parameter Description Unit 
Correlation 

with RD2T 

1 Rd1 Rainfall taken from D1 mm 0.89 

2 v10 Vertical wind speed at 10m m.s-1 0.02 

3 u10 Horizontal wind speed at 10m m.s-1 0.04 

4 hgt Terrain height m 0.01 

5 t_diff Temperature different between tk and t2 K -0.12 

6 slp Sea level pressure Pa 0.18 

7 tk Temperature at 1400m height K 0.23 

8 t2 Temperature at 2m K 0.08 

9 q2 Specific humidity at 2m kg.kg-1 -0.2 

10 psfc Surface pressure Pa 0.12 

11 vasso Variance of sub-grid scale orography m -0.04 

12 pblh Planetary boundary layer height m -0.05 

13 tslb Soil temperature K -0.19 

14 smois Soil moisture m3.m-3 0.21 

15 grdflx Ground heat flux W.m-2 0.24 

16 canwat Canopy water kg.m-2 0.14 

17 sfroff Surface runoff mm -0.05 
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correlation and cross-correlation between the predictors and predictand. However, the 

combination of two or more uncorrelated predictors might potentially become a strongly 

correlated variable (Castellano and Fanelli 2000). In contrast, two or more highly correlated 

predictors might exacerbate the small change in the model, potentially increasing the error. 

With regard to the network structure issue, while an insufficient number of hidden neurons 

might lead to low accuracy in training, an excessive number of hidden neurons tend to add 

unnecessary training time, with marginal improvement or memorizing, instead of learning 

(overfitting; Castellano and Fanelli 2000). There is no specific method to find the optimal 

number of layers and hidden neurons, except for the commonly used trial and error approach 

(Zhang and Goh 2016). On the last issue related to training algorithm, there are several training 

functions available to obtain the connection weights, as well as to adjust the weights. The 

selection of training algorithm is made based on the type of network, input data, and 

occasionally, computer power. 

In this study, CTL outputs of D1 and D2 from 1996 to 1998 were used for ANN training. 

Since the application of ANN for rainfall downscaling was limited within the D2T region 

(Figure 2.7 (b)), the high-resolution rainfall output in the rectangular region of D2T was 

prepared as the predictand variable for ANN, with the predictand rainfall being called RD2T. 

Predictor variables, on the other hand, were taken from the coarser domain D1. The principle 

behind selecting the variables to project RD2T is briefly illustrated in Figure 2.13, in which, a 

grid in D2T (predictand grid) is simulated by the four adjacent grids (predictor grids) in D1. 

 

Figure 2.13 Predictor and predictand grid selection principles 
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Since the predictors considered in this research were present in a large number, we depended 

on the correlation coefficient between RD2T and the proposed predictors. Correlation 

coefficients were calculated between RD2T and the mean value of four predictor grids for each 

variable. Firstly, the effectiveness of combining several highly correlated predictors was 

examined. The screening would continue with other combinations, including those 

uncorrelated with the correlated predictors. This selective combination of predictors aims to 

project data onto a lower dimension space, while retaining as much information as possible by 

eliminating the correlated information caused by overlapping input instances. 

The variables considered in this study are described in Table 2.4, along with their 

correlation coefficients with RD2T. Predictor variables were subsequently selected and tested 

using the trial-and-error method, from a simple network of several correlated variables to the 

larger sets, including the combination of uncorrelated variables. To increase the efficiency of 

the training process, all the selected variables were normalized using the feature scaling method 

described in Equation 9 to transform all the values into the range [0:1], where a(g) is the 

original value before normalization occurs, while zg is the normalized value of a(g). The reason 

for normalization is to avoid a very high resultant value, when the original data is entered into 

ANN, which could potentially cause the activation function to exhibit a low performance to 

resolve the small changes in input data, thus losing sensitivity.  

𝑧𝑔 =
𝑎(𝑔) − 𝑚𝑖𝑛(𝑎)

𝑚𝑎𝑥(𝑎) − 𝑚𝑖𝑛(𝑎)
,where a =  (𝑎1, . . . , 𝑎𝑛)                                                          (9) 

In the next step, the number of hidden layers and neurons were determined according 

to the quantity of variables, gradually increasing the network size from a small neuron number 

until the desired accuracy is obtained. A common method for ANN training is to separate data 

into independent training and testing sets. However, it has been proven that better-trained 

models are not necessarily associated with better estimation capability. An excessively 

complex network with high parameters/observations ratio might lead to overfitting, which is a 

model with very low predictive power, even when it was well-trained. A practical way to avoid 

overfitting, while improving the estimation capability of the network at the same time, is to 

create a small set of data from the training set for cross-validation. The errors in the training 

set and validation set are compared during the training stage. As the error in the validation set 

continues to increase, the training process will be stopped when the best performance of the 

network is achieved. We adopted the cross-validation approach to train the ANN model in this 

study. The data used in the training stage was randomized to avoid bias, subsequently being 
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divided into 3 independent datasets, in which 75% of the data was set as the training set, 15% 

as the testing set, with the remaining 10% being set aside for cross-validation. During the 

preliminary stage, numerous ANN models were tested to find the most effective network 

design for rainfall downscaling. In this section, several distinctive models, whose structures 

were considered as the most presentable for the trial-and-error tests, are presented, with the 

details of these models summarized in Table 2.5.  

The M1 model series includes 3 models, M1n, M1a, and M1s. The first model (M1n) 

was the simple MPL network structure, composed of 16 neurons of input layer and one neuron 

of the output layer, with 3 hidden layers positioned between the input and output layers, 

containing 10, 5, and 3 neurons, respectively (16-10-5-3-1). The transfer function adopted for 

neurons was the logistic sigmoid (LS) function. M1n was provided with predictor variables 

extracted from the 4 predictor grids, including sea level pressure (slp), temperature at 2 m (t2), 

terrain height (hgt), and planetary boundary layer high (pblh), which brought the total number 

of predictors to 16. The variables directly extracted from the CTL result will be hereafter called 

NV. The network output was RD2T, which was the daily precipitation in the D2T domain. The 

following two models, M1a and M1s, were designed based on the structure of M1n, with 

different input features and number of neurons. M1a utilized the averaged input of the 4 

predictor grids (AV), while M1s utilized the standard deviation of the 4 predictor grids (SV) as 

inputs. Therefore, both, M1a and M1s, are one-fourth the size of M1n (4 features, as opposed 

to 12 features). The MLP structure was adjusted with respect to the network size reduction (4-

4-4-4-1). 

The M2 model series (M2n, a, s, d, e) aimed to further test the differences between the 

types of input features (NVs, AVs, and SVs) by increasing the complexity of the training set. 

The models, M2n, M2a, and M2s, adopted the same LS transfer function and input variables 

as the M1 model series, with the addition of D1 rainfall (Rd1). The features used for each model 

are NV, AV, and SV, respectively. M2d differed from M1n by replacing the LS transfer 

function with the hyperbolic tangent sigmoid (HTS) function. M2e was slightly redesigned 

from M2d by increasing the neurons in the hidden layers (20-20-10-5-1). 

The subsequent model, M3n, also used the HTS function and NV features of the M2e 

model, with different input variables and architecture. The reason behind the changes in the input 

combination was to examine the contribution of different correlated variables to the network 

accuracy. Hung et al. (2009) depicted the essence of self-learning algorithm allowing ANN to 

forecast without significant prior knowledge of all the processes involved. However, a deep 
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understanding of the interaction between the physical processes is helpful in identifying the 

appropriate variables to be used in the training stage. Thus, a batch of multiple combinations of 

physical processes was tested. The M3n model is one representative of the test process, which uses 

7 variables including slp, temperature at 1400 m (tk), hgt, pblh, vertical and horizontal wind speed 

(v10 and u10), and ground heat flux, while excluding R1d—the variable expected to be most 

closely correlated to RD2T. Since the dimension of the dataset is bigger compared to the M2e 

model, the numbers of neurons in the network layers of M3n were increased (28-20-10-7-1). 

The models in the M4 series, including M4n, M4a, and M4as, have the same input variables, 

which continued to increase by the rule-of-thumb, adding up to a total of 8 variables, including Rd1, 

tk, hgt, slp, grdflx, surface pressure (psfc), pblh, and q2. The M4n model adopted the NV variables, 

adding up to 36 input features. As the network size increased, the network architecture was adjusted 

to meet the requirements (32-25-20-10-1). The M4a models inherited the AV features of 8 variables, 

while the M4as included both, AV and SV features, which doubled the input features to 16. The 

M4 model series used the same HTS transfer function. The M5n models used the same setup as 

M4n, although it was trained for rainfall events (RE) only. Contrary to DDE, daily precipitation 

higher than the wet-day threshold of 0.5 mm were considered as RE events. 

ANN models developed with the 1996–1998 dataset were applied to the WRF output of 

2006. The aim of this application was to study in depth, the stability and applicability in actual 

WRF-ANN downscaling. Since the testing stage targets the model reproducibility for any weather 

condition, the model that was designed to train with rainfall events only (RE-ANN), i.e. the M5n 

model, is expected to experience difficulty in reproducing DDE cases. Therefore, its simulation 

output will be calibrated to minimize the bias. We tested the correlation of DDE cases in both, D2T 

and D1, finding a very strong connection between DDE grids at the high-resolution scale with the 

DDE grids at the coarse scale. Spatially, there are 99.44% DDE grids in D2T, located completely 

inside the DDE grids in D1. Additionally, any grid in D2T partly overlapping with an DDE grid in 

D1 also has 98.27% chance of being an DDE grid. This result demonstrates that any grid in the 

mother domain has a significant similarity in rainfall condition to the child grids within and around 

it. Therefore, any grid in the RE-ANN model output, with a spatial connection to an DDE grid in 

D1, will be treated as an DDE grid. This treatment process of the DDE grids in the model output is 

called RE-ANN calibration. The RE-ANN calibration method was also applied to the M5n model 

during the preliminary test. 
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2.2.3.  Conclusion 

In conclusion, this part has outlined the general technical principles of the Weather 

Research and Forecasting model and the Artificial Neural Network method. The detail 

configuration and setup for both WRF and ANN were given. 

The method and steps of experimenting and verification of the coupling WRF-ANN 

method were presented. A two-levels, two-ways WRF downscaling was implemented for a 

selected region with 30km and 6km spatial resolution for mother domain and child domain, 

respectively. It was followed by the ANN training process which utilized WRF output as input 

data. Then, the results from ANN training stage were applied to an independent dataset to 

further check the effective of the combined method. 

The simulation results of coupling dynamical and statistical downscaling for high-

resolution rainfall forecasting were presented in Chapter 3 of this dissertation. 
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CHAPTER 3.  

RESULTS AND DISCUSSION OF RESEARCHING  

RAINFALL RUNOFF AND INUNDATION IN  

CAU-THUONG-LUC NAM WATERSHED IN VIETNAM  

UNDER GLOBAL WARMING 

 

3.1. Introduction 

This chapter gives the detailed results and discussion of the research on rainfall runoff 

and inundation in Cau – Thuong – Luc Nam watershed in Vietnam. WRF model was applied 

for the present and the future climate condition over the Cau – Thuong – Luc Nam river basin. 

Rainfall outputs from WRF were feed in RRI model to investigate the hydrological condition 

of the river during the rainy season. In this chapter, the total rainfall during rainy season in the 

future was taken into account with the duration and spatial distribution of extreme flood events. 

 

3.2. Simulation result of historical flood inundation 

In this section, we verify the accuracy of rainfall downscaling by WRF from 2002-2009 

by using the observation data (OBS) from 56 rain gauges. The RRI simulation results has also 

been examined for the 2009 flood event at Chu and Gia Bay hydro stations. 

 

3.2.1.  Reproducibility of WRF model 

Figure 3.1 compares the JJA rainfall averaged for 56 rain gauges and corresponding 

CTL grids from 2002 to 2009. It can be seen from the results that JJA rainfall reproduced by 

CTL varied from 72.1% to 90.0% of observation data and consistently underestimated. 

Average spatial correlation coefficient for 8 years (2002-2009) calculated between CTL and 

OBS was 0.78, indicates the relatively good agreement between simulation results and 

observation. Regarding the temporal variation of rainfall, correlation coefficients between CTL 

and OBS averaged for JJA periods in 8 years in 56 observation sites range from 0.51 to 0.9 

with an average of 0.71 (details not shown). Verification result indicates the WRF model can 

be used for rainfall downscaling in CTLN watershed with reasonable accuracy. 
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3.2.2.  Simulation of RRI models for historical flood events 

Observation rainfall data in July-August 2009 was fed into RRI model to examine the 

accuracy of the model to represent the flood events. Comparison of river discharge between 

RRI simulated results (RRI-CTL) and observation data was shown in Figure 3.2. The Nash-

Sutcliffe efficiency coefficient (NSE) was used to quantitatively describe the predictive power 

of RRI model outputs for river discharge. NSE indexes in Gia Bay and Chu stations are 

calculated 0.77 and 0.73, respectively. NSE results showed the good match between simulated 

results and OBS in the decreasing trend of river discharge at the end of the rainy season. Since 

the NSE index in sensitive to extreme value, the high NSE results also suggested that extreme 

discharge periods were relatively well predicted. Simulation results slightly overestimated the 

peaks of river discharge in both Gia Bay and Chu stations. However, peaks of large and small 

 

Figure 3.1 JJA rainfall averaged for 56 observation sites and 

corresponding grids in CTL from 2002 to 2009 (mm) 

 

Figure 3.2 Basin mean precipitation and river discharge by RRI model and observation data in Gia 

Bay and Chu stations during JJA in 2009  
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floods are correctly reproduced for each stations in RRI simulation. Verification results show 

the good applicability of adopting RRI model to further investigation of the future hydrological 

condition of CTLN river system. 

 

3.3. Future flood forecasting 

3.3.1.  Future trend in rainfall intensity 

WRF daily rainfall outputs during JJA for 10-years periods of CTL (2000-2009), 

GFDL-CM3 and MIROC-5 (2060-2069) was used as inputs for RRI model to examine the 

variation of rainfall distribution over the CTLN river basin. Spatial distribution of 10-years 

average JJA rainfall clearly shows the future higher intensity of rainfall throughout the 

 

Figure 3.4 Spatial distribution of 10-years average JJA rainfall 

 

Figure 3.3 Daily precipitation and river discharge for present and future condition at Chu and Gia 

Bay stations 
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watershed (Figure 3.4). Average JJA rainfall indicated by CTL, GFDL-CM3, and MIROC-5 

were 607 mm, 872 mm, and 682 mm, respectively. While MIROC-5 predicted small rainfall 

variation (9% increment), there was a significant gap between GFDL-CM3 and CTL (44% 

increment). Rainfall forecasted by GFDL-CM3 was 28% greater than MIROC-5.  Tran and 

Taniguchi (2014) used 19 CMIP5 models ensemble and found the same increasing trend of 

rainfall over the northern of Vietnam at the second half of 21st century. The same results also 

found by experts of MONRE (MONRE 2012). Future scenario forecasted by both GFDL-CM3 

and MIROC-5 indicated the similar rainfall distribution patterns with present where the major 

amount of JJA rainfall concentrated on the upper river basin, especially the far north and eastern 

corner. The featured distribution of rainfall pattern in CTLN watershed results from its typical 

topographic condition. 

  

3.3.2.  Future trend of flood and river runoff 

Future precipitation was predicted to increase during mid-21st century. Increasing river 

discharge is found in Figure 3.3. RRI simulated river runoff in CTL (2000-2009) were 

comparable with GFDL-CM3 and MIROC-5 (2060-2069) in the first period of the rainy season 

with no significant difference in average river discharge. Differences caused by higher rainfall 

intensity in the future scenario was found mostly in the latter half of the rainy season when 

future river discharge was projected larger than CTL. In the late JJA period, GFDL-CM3 model 

showed average river discharge will significantly increase, almost double as in CTL in both 

Chu and Gia Bay station. Meanwhile, MIROC-5 exhibited lower average river discharge than 

GFDL-CM3 as expected while future precipitation in GFDL-CM3 is projected much higher 

than in MIROC-5. Future river discharge in MIROC-5 is slightly larger than in CTL at during 

the peak runoff period and equal to CTL at the end of rainy season. In Gia Bay station which 

 

Figure 3.5 Maximum level of inundation depth in CTLN watershed during JJA 



52 

 

locates in the largest branch of CTLN watershed, MIROC-5 show clear higher average 

discharge than in CTL. In Chu station, MIROC-5 exhibited higher discharge at late July-early 

August and similar to CTL at the end of JJA. 

Figure 3.5 illustrates the maximum inundation depth by CTL and future projections. 

The distribution map for maximum depth was prepared by selecting the highest value of depth 

for every grid in the CTLN watershed during a 10-year period. Variation of maximum 

inundation depth represents the changes in the worse situation might happen. Both GFDL-CM3 

and MIROC-5 show the huge difference in maximum inundation level than in CTL. The worst 

CTL situation indicates the inundation level of about 0.5 to 1.5 meters depth at the areas far 

from the river channel; closer to the river channel, the influence level becomes greater of 1.5 

to 2 meters depth and up to 4-5 meters at some few locations (excluding river channel). 

Projection by GFDL-CM3 and MIROC-5 both indicate the more severe inundation in the lower 

river basin, about 0.5-1 meters higher than in CTL. Extreme flood (inundation depth > 3 meters) 

occur in more locations with extended inundation radius. Closer to main river channels at the 

downstream, the common inundation depth caused by the worst future flood situation in 

GFDL-CM3 and MIROC-5 are 2-3 meters, much higher than CTL. Compare between GFDL-

CM3 and MIROC-5, the worst inundation situation in MIROC-5 was more intense for the most 

locations. Luc Nam river in the east branch watershed was unaffected by heavy inundation in 

 

Figure 3.6 Average period of inundation depth of over 100 cm 

 

Figure 3.7 Maximum period of inundation depth of over 100 cm 
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CTL but under severe flood in future projection. Increase in the mean JJA rainfall and river 

discharge is larger in GFDL-CM3 than in MIROC-5. However, the maximum inundation depth 

is larger in MIROC-5. These result suggests the amplitude of climate variability in MIROC-5 

is stronger than in GFDL-CM3. Since the comparison between CTL and future river runoff 

only exhibits the clear differences on from late July/early August, it is projected that the severe 

future flood conditions tend to occur in the late JJA period. 

 

3.3.3.  Duration of extreme flood events 

To obtain the overview of future flood condition in CTLN watershed, we further 

assessed the influences of the heavy flood by calculating the duration of inundation depth of 

over 100cm (IDO100) during JJA. The maximum duration of IDO100 were calculated for 

every grid in 10-year periods in present (2000-2009) and future condition (2060-2069).  

Figure 3.6 compares the average duration of IDO100 between CTL, GFDL-CM3, and 

MIROC-5. According to CTL results, some areas adjacent to the left downstream river branch 

and some small areas in the right branch are frequently affected by the heavy flood with an 

average period of 0.5 – 0.8 days. The lower river basin region is quite safe without significant 

impacts by a long flood. In contrast, Both GFDL-CM3 and MIROC-5 projected more severe 

flood trend not only at near river channel but also in the lower river basin. The major part of 

the lower river basin will frequently be affected by the flood with larger flood radius and 

prolonged period. GFDL-CM3 projected the annual IDO100 will be longer, 0.3 to 0.8 days at 

the buffer zone, and up to 1 days at the places close to the river channel. In MIROC-5 models, 

the situation was projected even more severe when average duration of IDO100 at the lower 

river basin might be prolonged to 3 days. 

The results of the maximum period of IDO100 for all cases shown in Figure 3.7 also 

indicated the same findings as in Figure 3.6 when projection from both GFDL-CM3 and 

MIROC-5 were worse than in CTL. The heavy flood might occur with IDO100 from 3-8 days 

in GFDL-CM3 and from 8-10 days in MIROC-5. Again, worst flood indicated in MIROC-5 is 

stronger and larger extent than in GFDL-CM3 by a significant gap. While precipitation in 

GFDL-CM3 is larger than in MIROC-5, both maximum inundation depth and duration of 

IDO100 in MIROC-5 are projected more severe in GFDL-CM3 suggested the harsh climate 

conditions in MIROC-5, especially at the end of JJA. The heavy rainfall at the end of JJA is 

believed the cause of this phenomena in MIROC-5.  
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Compared to CTL, future climate models projected higher flood impacts on the lower 

CTLN basin at mid-21st century. Since agriculture fields and residential areas are mostly 

placed at lower river basin (Figure 2.6), the result of this study indicated the increasing risks 

for the social-economic development of the region. 

 

3.4. Chapter Summaries 

This chapter has pointed out the significance of researching flood and inundation 

conditions over the CTLN watershed under global warming. Since the frequency and intensity 

of flood occurrence in CTLN watershed have been gradually increasing. There is an urgent 

need to establish the countermeasures for this key economic region based on the deep 

understanding of the hydro-meteorological characteristics of the watershed.  

The reproducibility of WRF model for the CTLN regions was assessed by comparing 

the simulation results with observation daily rainfall from 2002 to 2009. Verification process 

indicated that the selected WRF setting can be applied with reasonable accuracy. Besides, the 

verification results for RRI model using observation rainfall and CLTN river discharge in 2009 

have also shown the good reproducibility. 

The future climate conditions for the region was given by the MIROC5 and GFDL-

CM3 using RCP8.5 scenario. Simulation results indicated an increase of total rainfall over 

CTLN river basin. Consequently, the basin region was projected to be under the influence of 

more severe extreme flood events, especially in the lower river basin areas. 
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CHAPTER 4.  

RESULTS AND DISCUSSION OF COUPLING DYNAMICAL  

AND STATISTICAL DOWNSCALING FOR HIGH-RESOLUTION 

RAINFALL FORECASTING:  

CASE STUDY OF THE RED RIVER DELTA, VIETNAM 

 

4.1. Introduction 

This chapter begins with the literature review and significance of the study on coupling 

dynamical and statistical downscaling in climatological research. It was followed by the detail 

verification and testing results of the combined WRF-ANN method. Firstly, dynamical 

downscaling by WRF was performed for weather information over the Red River Delta (RRD) 

and verified with observation data. Secondly, WRF outputs for 30km and 6km resolution were 

used as predictors and predictand inputs for the preliminary training stage with ANN. Thirdly, 

an independent dataset was used to further testing the applicability of the WRF-ANN for high-

resolution rainfall downscaling. Finally, the comprehensive assessment for the method was 

finished by adding the sensitivity analysis for predictors and calculating the benefit of 

computational cost reduction. 

 

4.2. Results of coupling dynamical and statistical downscaling for high-resolution rainfall 

4.2.1.  Dynamical Downscaling Experiment 

This section evaluates WRF’s ability to reproduce weather conditions in D2T. Table 

4.2 shows evaluation statistics for the spatial distribution of mean rainfall from CTL for D1 

and D2 as compared with observed rainfall at 38 rain gauges in 1996, 1997, 1998, and 2006, 

along with the statistical measures R and IOA. According to Table 4.2, the JJA rainfall in CTL 

was noticeably underestimated in both D1 and D2, as illustrated in the average accumulated 

values of 784 mm in D1 and 799 mm in D2, versus 1107 mm in the observation data. 

Furthermore, the rainfall projections at all observation locations were lower than the observed 

values. The summarized statistic indicated that simulated rainfall in D2 was slightly closer to 

the observation data than it was in D1. Both spatial correlation and IOA between observation 

data and CTL results exhibited slightly better values in D2 than in D1. This finding indicates 

that, in addition to the spatial resolution advantages, D2 can better resolve the finer resolution 
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than can the D1. In D2, the ratio of the precipitation average for D2T between CTL and the 

observed value was consistently lower than 1, ranging from 0.65 to 0.82, with an average of 

0.72. Both spatial correlation and IOA between D2 and the observations were relatively high, 

at 0.66 to 0.77 and 0.71 to 0.78, respectively. This indicates reasonable accuracy for the CTL 

in reproducing the spatial distribution of JJA rainfall. Regarding the underestimated rainfall in 

the CTL output, several studies (Bukovsky and Karoly 2011; DeMott et al. 2007) have 

experienced the same problem. A common insufficiency of climate models is that they often 

underestimate extreme precipitation events, while overestimating the occurrence of light 

precipitation events. In this study, we focused on the rainfall season of a tropical country, where 

intense rainfall is a regular occurrence. Thus, it is not surprising to find that rainfall is 

underestimated in our simulation.  

In addition to the spatial distribution of JJA accumulated rainfall, the temporal 

variations of daily rainfall between CTL and observations for D2 were examined at 38 locations 

Table 4.2 Statistical measures for WRF simulated rainfall over JJA periods 

Year 

Mean 

Obs 

(mm) 

D1 D2 

Mean 

CTLa 

(mm) 

CTL/

Obs 
R IOA 

Mean 

 CTL 

(mm) 

CTL/

Obs 
R IOA 

1996 1078 679 0.63 0.77 0.65 701 0.65 0.78 0.66 

1997 983 764 0.75 0.73 0.75 772 0.78 0.74 0.77 

1998 1167 903 0.77 0.71 0.75 893 0.77 0.71 0.74 

2006 1198 974 0.81 0.71 0.7 983 0.82 0.71 0.7 

Average 1107 784 0.74 0.73 0.71 799 0.76 0.74 0.72 

a Mean CTL was calculated by averaging the simulated rainfall from 38 locations in CTL 

corresponding to the locations of rain gauges 

IOA: Index of agreement; Obs: Observation 

R: Spatial Correlation (Pearson) 

Table 4.1 Temporal correlation, RMSE, and MAE between CTL and 

Observation daily rainfall averaged for 38 locations for the JJA period in 

1996, 1997, 1998, and 2006 

  D2 RRD NMR 

Number of rain gauge 38 12 14 

R 0.63 0.7 0.5 

RMSE (mm) 14.53 9.12 17.98 

MAE (mm) 4.67 3.52 7.21 

*RRD: Red River Delta; NMR: Northern mountainous regions 
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using the metrics of temporal R, MAE, and RMSE (Table 4.1). The CTL results for JJA during 

the research period suggest a moderate temporal agreement with observations, in which the 

average correlation coefficient for all 38 locations was 0.63. However, there was substantial 

variation in the correlation coefficients across the study site. While the temporal correlations 

for daily rainfall in midland and lowland areas, i.e., the Red River Delta, were high (average 

0.7), the CTL output for the high mountainous regions was in low temporal agreement with the 

observations (average 0.5), especially in the areas between alternating high mountain ranges 

(as in the western part of D2T, see Figure 2.7 (c)). This finding highlights the limitation of 

WRF in resolving micro-climatological conditions and covering complex topography 

effectively. The same conclusion was arrived at by Li et al. (2016) in their research on the 

influence of topography on precipitation distribution.  

The average MAE for the testing locations was 4.67 mm, while the average RMSE was 

significantly higher at 14.53 mm. Since the RMSE tends to amplify large biases, the large gap 

between the two values reflected the underestimation of heavy and extreme rainfall cases in 

the CTL, which partly resulted in underestimation of the accumulated rainfall mentioned above. 

The average correlation coefficient for all 38 locations indicates a moderate agreement, but 

there was large variation in correlation coefficients between the locations (detail not shown). 

JJA accounts for over 70% of the annual rainfall, which begins in June, peaks in late July, and 

decreases through August. The correlation coefficient results indicate that the proposed WRF 

setup can reproduce seasonal variation in rainfall relatively well, especially for the lowland 

region where D2T is located. 

To examine the significance of the calibration method for DDE (omitting values less 

than 0.5 mm per day), we directly compared DDE during the JJA period from the CTL results, 

and CTL calibrated results, and observed values for each observation location. The maximum, 

minimum, and average DDE percentages in D2T at the 38 locations are presented in Table 4.3. 

The summarized results clearly show miscalculation of DDE by CTL. The percentage of DDE 

in the CTL results ranged from 4.5% to 8.6% of the total grid cells in D2, which were 4 to 6 

times lower than the actual data across all years. The application of a wet-day-threshold showed 

a good result in eliminating the biases between simulated and observed data, with a large 

improvement in the calibrated CTL results. Even when the ranges of maximum and minimum 

percentage DDE did not perfectly match the observations, the average DDE results for JJA in 

the calibrated CTL were very close to the observed average. However, quantitative assessment 

of the reduction in total rainfall owing to DDE calibration indicates that the mean total rainfall 
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decrease is 0.28% for D1 (detailed result not shown here). Thus, the calibration helps WRF 

better capture DDEs, with a negligible effect on total rainfall. WRF simulation results for D2T 

after calibration were expected to be a good predictand for the ANN training stage. 

 

4.2.2.  Results of the ANN preliminary training stage 

This section describes the training stage results of rainfall downscaling, using the MLP-

based ANN on different model configurations as mentioned in Table 2.5. To compare the 

predicted model outputs with the desired output, various statistical measurements were adopted. 

Their results are presented in Table 4.4, while regression plots for the testing set are shown in 

Figure 4.1. Results of the training stage show substantial variations in performance among the 

models. The training results improved with regard to higher model complexity; however, there 

was clear consistency in network performance, with most models exhibiting similar correlation 

coefficients in the training and test sets. The cross-validation method was proven to be effective 

in detecting the best generalization point and stopping the training process before the model 

shifted to over-learning.  

The simplest designs in the M1 model series provided the worst results (very low 

accuracy and large RMSE) and were unable to forecast DDE cases. Figure 4.1 indicates that 

the M1n, M1a, and M1s models heavily underestimated RD2T, which might be attributed to 

the low predictive power of the combination of variables sea level pressure (slp), temperature 

at 2m (t2), geographical height (hgt), and planetary boundary layer height (pblh). However, the 

R2 coefficient indexes suggest that M1n was a better model than M1a and M1s. While the M1n 

Table 4.3 Comparison of the percentage of DDE in JJA among 38 rain gauge locations 

Year 
Observation (%) CTL (%) Calibrated CTLd (%) 

Maxa Minb Averagec Max Min Average Max Min Average 

1996 51.2 18 32.5 8.6 4.5 5.6 43.1 17.5 26.49 

1997 56.5 18.5 28.6 7.3 4.5 5.3 38.7 12.5 26.53 

1998 56.4 18.6 31.4 6.5 4.8 5.1 45.1 16.3 30.27 

2006 52.1 16.2 32.5 6.6 4.5 6.3 45.9 10.4 28.18 

a, b, c Max, Min, and Average correspond to the maximum, the minimum, and the averages of DDE 

cases during JJA among 38 rain gauge locations, respectively. 

d Calibrated CTL: the CTL daily rainfall was calibrated with wet-day-threshold 
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Figure 4.1 Correlation coefficients for the ANN model test sets 
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setting used the NV input features, which might be better than AV and SV, the accuracy levels 

of the M1 model series were too low to determine any differences. The M2 model series 

showed significantly better fitting and bias results compared to the M1 series. Except for M2s, 

with R2 for the test data of 0.76, the other M2 models yielded at least 0.85 for R2 in the test set. 

The large improvement in the M2 series was achieved by incorporating the rainfall in D1 (RD1), 

which is highly correlated to RD2T (Table 2.4). The sudden drop in the predictive power of 

the M3n model also indicates the significance of RD1 in model design, since M3n eliminated 

the RD1 variable in the training stage. With the same settings, the M2n and M2a models 

showed significantly better correlation to RD2T than did M2s, thus indicating a lack of signal 

strength in SV features. Although M2s appears to be weaker, its simulated DDE percentage 

was 21.94%, which was close to that of RD2T (27.74%). The ability of M2s to resolve DDE 

was significantly better than those of M2n and M2a, whose DDE percentages were 10.34% and 

3.24%, respectively. The reduction of DDE percentage in M2a reflected the drawback of the 

AV features, compared to the NV features, since the average value reduces the variation signal 

in the predictors. On the other hand, M2d and M2e exhibited slightly better results than did 

M2n, especially with regard to the reproducibility in DDE cases (11.14% and 11.84%). The 

large number of neurons and the high rescaling range—[-1:1] of HTS to [0:1] of LS—made it 

more convenient for the network to detect very small rainfall values. 

The M4 series and M5n were clearly better than the other models, as their predictions 

were close to that of RD2T, yielding significantly lower RMSE. Adding more predictor 

variables have proven to be helpful in increasing model accuracy. There was variation in the 

behaviors between the models in the M4 series, despite their skillful results. Even though the 

RMSE of M4a was lowest at 8.67 mm/day, its ability to map small rainfall signals was 

significantly lower than those of M4n and M4as. M4a indicated 11.59% DDE, while M4n and 

M4as indicated 14.53% and 20.53%, respectively. Compared to the DDE percentage of 27.74% 

in RD2T, M4as was clearly the best at forecasting small rainfall values. The study results 

indicate that a combination of AV and SV features might be better in detecting DDE. The 

higher RMSE values in M4n and M2n, as compared to the other M2 models, might be attributed 

to the interaction of highly-correlated inputs among the NV features. The same behavior was 

also demonstrated by Wendemuth et al. (1993), who found that the combination of correlated 

inputs potentially adds more weight not only to the predictive information, but also to the biases. 

M5n discarded rainfall event information during the training stage, which understandably 

resulted in higher RMSE than the M4 model series. The RE-ANN calibration method was 
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employed for the M5 model to successfully map a total of 27.43% DDE grid cells, which was 

smaller than that of RD2T by a small margin. 

 

4.2.3.  Results of WRF-ANN downscaling of an independent dataset 

The second testing stage in this study aimed to further assess the applicability of 

coupling ANN to WRF output for high-resolution rainfall downscaling and compare it with the 

interpolated data using a bilinear interpolation method. We selected the ANN architectures that 

demonstrated the most promising global approximation abilities during the training stage (the 

M4 model series and M5n) to apply for an independent dataset for the year 2006. In addition, 

we also used bilinear interpolation to downscale RD1T from 30 km to 6 km (denoted BIP- 

Table 4.5 The second stage testing results of ANN models 

  M4n M4a M4as M5n BIP-RD1 2006-RD2Ta) 

Spatial correlation for 2006-dataset 0.9 0.91 0.91 0.91 0.84  

RMSE for 2006-dataset (mm/day) 14.21 11.27 10.24 12.42 16.93  

DDE in 2006-dataset (%) 9.54 15.94 19.48 23.84 17.43 23.78 

a)2006-RD2T: RD2T of the 2006 dataset 

 

Figure 4.2 Regression plots for target and forecasted rainfall in 2006 
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RD1). The summarized results of the tests are presented in Table 4.5, while regression plots 

for the target and forecast rainfall are plotted in Figure 4.2. All models in the second stage 

continued to show predictive consistency in performance with the 2006 dataset. Differences in 

correlation coefficient metrics were observed, although they were insignificant. The correlation 

coefficients (> .9) for simulation outputs in this stage were comparable to results from the 

preliminary stage, indicating good model reproducibility. However, in the 2006 dataset, the 

simulation results also exhibited more prediction errors, as can be seen in the RMSE. The 

unexpected reduction in model stability may be due to imperfect model design or a lack of 

representative information in the training dataset (Sánchez Lasheras et al. 2010). Sometimes, 

the incomplete nature of model development may also contribute to the problem (Tu 1996). 

The models that adopted NV variables, including M4n and M5n, were observed to have higher 

biases than those that adopted AV and SV variables, including M4a and M4as. Highly 

correlated NV inputs seemed to yield more error than their generalized features. Both M4a and 

M4as proved better than M4n at predicting the DDE percentage, with 15.94% and 19.48%, 

respectively, compared to 9.54%. Between the two, the M4as model, which inherited the 

predictive power of both SV and AV features, outperformed M4a in every measure. However, 

M5n is the model that delivered the best forecast of DDE percentage, at 23.84%, which was 

within 0.1% of the 2006-RD2T of 23.78%. Since M5n was designed with the same setting as 

M4n, the RE-ANN calibration method was proven effective in locating DDE cases. Results of 

the bilinear interpolation method, BIP-RD1, on the other hand, showed noticeably lower spatial 

 

Figure 4.3 Histogram plot of JJA rainfall (mm) in 2006 
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correlation coefficients and higher RMSE values than did the ANN downscaling. DDE 

percentage determined by BIP-RD1 was 17%, much lower than the observed value of 24% in 

2006-RD2T. The bilinear interpolation method generates estimated values between grid points. 

It is a simple and fast method, but lacks important embedded dynamical processes that are 

contained in the WRF models. The ANN method, on the other hand, performs downscaling by 

creating statistical relationships between high-and intermediate-resolution WRF outputs. ANN 

incorporates the dynamical processes given by WRF during the training processes. This added 

value provided by ANN helped to capture fine-scale variations in the downscaling results. It is 

therefore reasonable to find that downscaling with ANN outperformed the bilinear 

interpolation method.  

Comparisons between the ANN models and target data with regard to the frequency of 

dry days, wet days, and extreme rainfall events is shown in Figure 4.3. The rainfall frequency 

illustrated by all models was similar to that of RD2T, wherein the dry day and low rainfall (less 

than 20 mm) cases accounted for most of the days during JJA. Regarding the distribution of 

 

Figure 4.4 Spatial distribution of cumulative rainfall (mm) in JJA of 2006 
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very low rainfall cases (less than 5 mm) and extreme rainfall cases (higher than 100 mm), the 

M4n and M4a models showed weakness in their underestimation of low rainfall cases. These 

two models failed not only in resolving the DDE cases as illustrated in, but also in projecting 

small rainfall values. BIP-RD1 exhibited better DDE percentages than did the M4n and M4a 

models, but these were still much lower than the observed values. Meanwhile, the M4as and 

M5n were nearly identical, with rainfall frequencies in these two models being similar to the 

observed values. Both M4as and M5n showed significant improvement over M4n and M4a in 

locating small rainfall ranges.  

The distribution maps for cumulative JJA rainfall in 2006 by M4n, M4a, M4as, M5n, 

and BIP-RD1 are depicted in Figure 4.4, in comparison with RD2T (2006-RD2T) and RD1 

(2006-RD1). Owing to the high correlation with 2006-RD2T, ANN downscaled the rainfall in 

all models, clearly demonstrating a good pattern-correlation. The highest rainfall areas were 

accurately located in the southwestern corner of D2T, and rainfall gradually decreased towards 

the northeast. While the spatial correlations of cumulative rainfall were similar among the 

models, the rainfall distribution results indicate an absolute strength of NV input features over 

AV and SV features, as pertains to the downscaled detail. We can explicitly recognize the 

smoother transition of rainfall withdrawal from higher to lower rainfall areas in the M4n and 

M5n models than is demonstrated in the M4a and M4as models. Compared to the 2006-RD2T 

distribution pattern, the rainfall transition patterns in M4n and M5n showed a loss in detail; 

even so, its resolution was sufficiently high to distinguish minor changes. The essence of the 

WRF-ANN downscaling method was the use of four D1 grid cells to predict one spatially-

overlapped grid cell in D2. When the resolution of D2 was too high for comparison with D1, 

it was unavoidable that some adjacent cells in D2 would have the same predictor values. This 

problem results in predicted values repeating for some cells. Less detail was expected in M4n 

and M5n than in 2006-RD2T, since increasing resolution from 30 km to 6 km is a large jump. 

As expected, both the M4n and M5n models showed significantly higher resolution than that 

of the 2006-RD1. In contrast, M4a and M4as had significantly lower resolution and coarse 

rainfall patterns. The differences between M4a and M4as were too small to indicate any 

advantages from combining both AV and SV features for prediction. Even with their higher 

resolution, neither M4a nor M4as demonstrated better changes in the minor rainfall pattern. In 

this test, simulation results suggest that generalized features might be more effective in bias 

control. However, this approach loses essential information for examining the spatial 

distribution of precipitation, which leads to similar generalized results. On the other hand, 
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while the original NV predictor exhibited a larger bias, it better mapped the variability in 

rainfall. BIP-RD1 showed larger increase in spatial resolution than did RD1T, but failed to 

generate the wide range of rainfall variation present in RD2T. It tended to overestimate rainfall 

in light rainfall grid cells and underestimate rainfall in heavy rainfall grid cells.  

The differences between cumulative JJA rainfall simulated by M4n, M4a, M4as, M5n, 

and BIP-RD1with RD2T are indicated in Figure 4.5. All models exhibited larger estimation 

errors in the northwestern part of D2T, especially in the high terrain and surrounding area. 

However, these large errors were not a surprise because this area accounts for the highest JJA 

rainfall (Figure 4.4). The BIP-RD1 model showed slightly larger error than the other models, 

while both M5n and M4n overestimated the total JJA cumulative rainfall, with M4n having the 

larger overestimation, as reflected in its RMSE. Since M5n neglected very small rainfall values 

during calibration, it potentially avoided bias intensification by small rainfall values during 

training. Moreover, in a comparative study on software estimation efforts, Nassif et al. (2012) 

also found an overestimation tendency by MLP-ANN, especially for an MLP trained with a 

complicated range of inputs. The model behavior suggests that small rainfall values, which 

accounted for 10% to 40% of the dataset, were difficult to reproduce by ANN. However, they 

can be addressed using the RE-ANN calibration methods.     

 

 

Figure 4.5 Differences between simulations in cumulative rainfall (mm) in JJA of 2006 results and 

RD2T. The purple contour dash lines indicate the areas with terrain height of over 1.000m     
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4.2.4.  Predictor sensitivity analysis 

To obtain a comprehensive view on the applicability of coupling WRF and ANN to 

downscaling, the influence of each input predictor on the output should be investigated. 

Normally, variables with a higher correlation to the predictand are expected to be more helpful 

in forecasting. However, an unusual combination of correlated or uncorrelated variables might 

also be useful. In this study, we considered 17 variables (Table 2.4), gradually fine-tuning their 

combination through the trial and error method. Although we could not cover all possible 

combinations, our best effort so far—as used in the M5n model—demonstrated promising 

results. Sensitivity analysis was conducted for each variable input for the M5n model to 

examine their significance to the ANN outputs. The sensitivity analysis method used in this 

study was introduced by Hung et al. (2009), in which each input parameter in the M5n model 

was alternately removed from the ensemble, subsequently comparing the performance statistics 

with the original. Since the M5n model utilized eight variables, including RD1, atmospheric 

temperature at 1400 mm (tk), hgt, slp, ground heat flux (grdflx), surface pressure (psfc), pblh, 

and humidity at 2 m (q2), there were eight models included in the sensitivity test. The results 

of the sensitivity test are presented in Table 4.6.  

As can be seen in Table 4.6, RD1 has the largest impact on the predictand. Excluding 

RD1 substantially reduced network performance. Meanwhile, the model indicated the second 

largest impact by q2, while the third and fourth most important parameters were tk and slp, 

whose results were very similar to each other. Among the remaining variables, grdflx differed 

from the others by a higher RMSE, achieving the fifth position. The remaining variables pblh, 

psfc, and hgt were the least important, since the models trained without them were comparable 

to the original M5n model.  

Apart from input variables, it is also important to consider sensitivity to the treatment 

methods used for the input variables, which classify the variables into NV, AV, and SV features. 

Table 4.6 Performance statistics for ANN sensitivity analysis for 1996-1998 dataset 

  M5n 
W/o  

Rd1 

W/o  

tk 

W/o  

hgt 

W/o  

slp 

W/o  

grdflx 

W/o  

psfc 

W/o  

pblh 

W/o  

q2 

R2 of Training set 0.92 0.48 0.88 0.92 0.88 0.9 0.91 0.91 0.86 

R2 of Test set 0.92 0.47 0.87 0.91 0.86 0.89 0.89 0.88 0.85 

RMSE for all 

dataset (mm/day) 
10.42 24.52 15.29 10.82 15.24 13.48 11.37 10.98 17.43 

W/o : Without 
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While NV features tend to yield more error, they can resolve the spatial variability of rainfall. 

Meanwhile, generalized features such as AV and SV can better control the bias in prediction 

values, but have lower effective resolution. NV features were concluded to be the best fit for 

making WRF-ANN models.   

 

4.2.5.  Computational Cost 

The expected results when adopting WRF-ANN over WRF include a comparable 

downscaling quality with reduced computational load and time. Since the step of downscaling 

from 30-km to 6-km resolution using ANN gives results instantly, the advantage of using WRF-

ANN methods was measured by comparing the time consumption needed by WRF to 

downscale rainfall to 30 km or to 6 km. Our measured results indicate that WRF downscaling 

to 6-km resolution took 9.3 times longer than downscaling to 30-km resolution. Rainfall 

downscaling using the WRF-ANN method can therefore save up to approximately 89% of the 

computational cost, as compared to downscaling using WRF alone.  

 

4.3. Chapter Summaries 

This chapter has indicated the advantages and disadvantages of both dynamical and 

statistical downscaling. Since dynamical downscaling is excessively required computational 

power and time consuming, it has incorporate the physical processes of the global which 

generally can better simulate the weather conditions of complicated different conditions and 

regions. On the other hand, statistical downscaling works based on the empirical statistical 

relationship between large scale predictors and small scale predictand which can give results 

instantly but limited in accuracy. The combination of both methods is expected to be the 

reliable and fast way for climate researchers. This proposed method, however, is quite new 

without many studies published so far. This dissertation has partly contributed for the 

improvement of the new approach on downscaling weather information. 

The WRF-ANN method has taken into account both WRF and ANN models. WRF 

downscaling was applied for the Red River Delta in Vietnam for 30km and 6km resolution for 

mother and child domain, respectively. The configuration setting for WRF used in this study 

showed the reasonable accuracy in reproducing historical climate data in the period 1996-1998 

and 2006.  
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WRF outputs for 1996-1998 was used as inputs for ANN preliminary training stage 

where climate variables from 30km resolution domain was taken as predictors and rainfall from 

6km resolution was taken as predictand. Various ANN settings were tested using the traditional 

trials and errors approach during the training stage. The RE-ANN calibration method was 

developed to increase the performance of the model. The M5n model was be best model tested 

during the preliminary stage that was a MLP-BG network of three hidden layers using the 

hyperbolic tangent sigmoid activation function. 

WRF-ANN results of the preliminary training was used for an independent dataset of 

2006. Application of WRF-ANN method for the 2006 produced high-resolution rainfall 

patterns that are highly correlated with WRF (r = 0.91) and have low RMSE (12 mm/day). 

Despite of the loss in spatial resolution, the WRF-ANN downscaling results have showed the 

significant improvement compare to the WRF-30km resolution data and had the good 

agreement with WRF-6km resolution data. 

The predictor sensitivity analysis and computational cost sections have illustrated the 

significant of each variables and the benefit of WRF-ANN method. 
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CHAPTER 5.  

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1. Conclusions 

5.1.1.  Research problems and overview of the thesis aims 

Since Vietnam is considered among the five countries heavily influenced climate 

change. This projection has been authenticated through the increasing trend of climate related 

disaster in Vietnam, especially the northern region. The number of flood and inundation 

occurrence in Cau-Thuong-Luc Nam river basin has been increased considerably since the 

beginning of the 21st century. For the better support the decision maker to prepare the response 

plan for the coming condition. We proposed our first aim of this study is to researching the 

inundation and flood conditions of the Cau-Thuong-Luc Nam river basin under climate change. 

Decision makers need increasingly demands for local scale climate information to 

address the risk posed by projected climate changes and their related impacts. To meet the 

desire to derive climate projections at scales that can support decision makers, a process termed 

downscaling has been developed. Downscaling consists of a variety of methods, each with their 

own merits and limitations. Since dynamical downscaling is reliable but require significantly 

amount of computational power and time consuming, statistical downscaling is generally very 

fast but having a lot of constraint on downscaling results. The blended methods that use both 

dynamical downscaling and statistical downscaling is quite new without many researches have 

done so far. The second aim of this study is to investigate the ability to couple dynamical and 

statistical downscaling for high-resolution rainfall forecasting. 

In general, the objectives of the study have been achieved: for the first target of the 

study, inundation and flood conditions over the Cau-Thuong-Luc Nam river basin under global 

warming have been researched; the coupling dynamical downscaling with statistical 

downscaling for high-resolution rainfall forecasting - case study of the Red River Delta in 

Vietnam was also successfully developed. 

- Firstly, researching inundation and flood conditions of Cau – Thuong – Luc Nam river 

basin under global warming was conducted. The WRF model provide the high-resolution future 

rainfall data that can be put into RRI model to investigate the coming hydrological conditions. 

 



71 

 

- Secondly, for the purpose of researching the ability to couple dynamical downscaling 

and statistical downscaling, the WRF and ANN models were used. We selected the Red River 

Delta as the domain for the research. The essential of the coupling method is to use the 

intermediate downscaling output from WRF to feed into ANN for high-resolution downscaling. 

 

5.1.2.  Key findings 

(a) Coupling WRF and ANN for high-resolution rainfall forecasting 

The possibility of coupling WRF and ANN for high-resolution rainfall downscaling 

was investigated with a case study from the Red River Delta in Vietnam. The evaluation shows 

that the WRF modeling system can reproduce temporal variation in the JJA daily rainfall 

reasonably well, but underestimates the total precipitation. Owing to the higher precision of 

WRF, the region appears to have more drizzle, resulting in significantly fewer dry days than 

were observed. However, by implementing a wet-day threshold of 0.5 mm, we were able to 

correct this issue. 

The best performing ANN model, M5n, produced high-resolution rainfall patterns that 

are highly correlated with WRF (r = 0.91) and have low RMSE (12 mm/day). High-resolution 

rainfall in each grid cell was downscaled by taking the climatological variables from the four 

grid cells in the coarse domain. The M5n model was configured as an MLP-BG network with 

three hidden layers using the hyperbolic tangent sigmoid activation function. The optimal 

predictors for M5n were rainfall in D1 (RD1), atmospheric temperature at 1400 mm (tk), 

geographical height (hgt), sea level pressure (slp), ground heat flux (grdflx), surface pressure 

(psfc), planetary boundary layer height (pblh), and humidity at 2 m (q2). In addition to having 

high accuracy, applying WRF-ANN is also expected to reduce computational costs. Running 

30-km WRF and using ANN to downscale to 6 km is 89% less expensive than running nested 

30-km and 6-km WRF simulations. We developed a calibration method (RE-ANN) to help 

ANN better capture dry days. This method treats a grid cell in D2T as dry if it was touching a 

dry grid cell in D1. This improved our simulation of dry days with ANN. The network trained 

for RE events and calibrated with the RE-ANN calibration method delivered the best prediction 

for our study area and period. Statistical relationships created by ANN can be used to directly 

downscale climate information from 30-km WRF output to a 6-km grid with reasonable 

accuracy. The application of ANN with WRF was effective for rapidly downscaling daily-basic 

rainfall data in a season at low computational cost.   
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(b) Inundation and flood in Cau-Thuong-Luc Nam river basin under climate change 

In this study, the present and future rain-fall-runoff and inundation conditions of CTLN 

river basin during JJA were also examined using the combination of WRF and RRI models. 

While simulation results of WRF for the present precipitation showed reasonable accuracy for 

temporal and spatial distribution, reproductive RRI results for CTLN river discharge came 

relatively close to OBS. Generally, both WRF and RRI models are capable of deploying further 

assessment on the future river basin condition. 

The future downscaling results by GFDM-CM3 and MIROC-5, indicated heavier 

rainfall conditions in the mid-21st century and consequently cause more severe inundation 

conditions. At the first half of JJA, there is no significant difference in average river runoff 

conditions between CTL and future projections, heavy rainfall and inundation were expected 

to increase in the second half of JJA. In both GFDL-CM3 and MIROC-5, the impacted areas 

due to flood will increase in both spatial and temporal extent, intensity, and density. MIROC-

5 model forecasted the extreme flood might occur in late JJA. Future inundation condition will 

affect mostly the agricultural and residential areas in the lower CTLN river basin. 

 

5.2. Limitations of the study 

Inundation and flood in Cau-Thuon-Luc Nam river basin under climate change 

The current outcome of the study have not yet determine the influence level of 

inundation and flood for the specific aspects of socio-economic development. Future climate 

condition given by only MIROC5 and GFDL-CM3 models might be the good representative 

inputs for the research of global warming. However, the results from two models cannot be 

considered as the reliable sources for any conclusion why there is always a significant variation 

between global climate models. A set of models or an ensemble of models is the alternative 

approach has been widely use to give the more consistent forecasting results although this 

method is very demanding. In this study, using RCP8.5 scenario – the high emission storyline, 

is suggested by the Vietnam ministry of Natural Resources and Environment. Comparison 

between RCP4.5 and RCP8.5 results is still needed to have the complete overview of the 

problems. 

Coupling WRF and ANN for high-resolution rainfall forecasting 
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The target of this dissertation to research the possibility of coupling dynamical 

downscaling with statistical downscaling has been conducted successfully when the coupling 

WRF-ANN method can give comparable results to downscaling by WRF with 89% less time 

consuming. However, the spatial distribution of rainfall output by WRF-ANN is still lower 

than the output by WRF due to the big jump in resolution increasing. This has reflected the 

limitation of the current method to apply to more ambitious research works. Hence, to increase 

the applicability of the method, the current algorithm of selecting variables for ANN training 

must be revised. On the other hand, the outcome of this research so far has not determined the 

accuracy of WRF-ANN downscaling method for high and extreme rainfall events. Such 

objectives are necessary to be included to enhance the credibility of the method. 

 

5.3. Future research and some recommendation 

Inundation and flood in Cau-Thuon-Luc Nam river basin under climate change 

This study suggests further assessments on the impacts of the future flood to agriculture 

and environment as well as the needs of study on an adaptive management plan. For the reliable 

forecasting results, it is necessary to include a model ensemble in the assessment since model 

ensemble can minimize the bias caused by single model. Detailed research on the frequency 

and intensity of rainfall is also important to accurately assess the impact of extreme weather 

events. 

Coupling WRF and ANN for high-resolution rainfall forecasting 

To further improve predictive skill of the WRF-ANN model, an additional analysis of 

the model biases will be required, e.g., sources of overestimated cumulative rainfall during JJA. 

Such analysis will require more detailed and extensive comparison of the various model 

configurations and predictor combinations in ANN. Using the coupling methods, we plan to 

extend the applicability of WRF-ANN to an ensemble of climate models, in which the principal 

components of the model ensemble can be considered as inputs for ANN downscaling. This 

approach will potentially help facilitate the use of ensemble model prediction, without the need 

for excessive time and computational power. Additionally, we plan to experiment with even 

higher resolution (finer than 6 km) downscaling using WRF-ANN. 
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APENDIXES 

Appendix 1: Weather stations used in this dissertation 

ID Station name Commune District Province Lon Lat Time in Operation 

1.  Điện Biên Bản Bôn Na Mường Thanh Lai Châu 10300 2122 01/06/58 

2.  Lai Châu Thị Xã Lai Châu Lai Châu 10309 2204 01/04/56 

3.  Mường Tè Bản Nậm Củm Mườngtè Lai Châu 10250 2222 01/02/61 

4.  Pha Đin Đỉnh Pha Đin Tuần Giáo Lai Châu 10331 2134 01/01/64 

5.  Sìn Hồ Thị Trấn Sìn Hồ Lai Châu 10314 2222 01/03/61 

6.  Tam Đường Bản Giáng Phong Thổ Lai Châu 10329 2225 01/05/73 

7.  Tuần Giáo Quai Long Tuần Giáo Lai Châu 10325 2135 01/01/61 

8.  Bắc Yên Thị Trấn Bắc Yên Sơn La 10425 2115 01/06/73 

9.  Cò Nòi Cò Nòi Mai Sơn Sơn La 10409 2108 01/01/64 

10.  Mộc Châu Thị Trấn Mộc Châu Sơn La 10441 2050 01/06/61 

11.  Phù Yên Thị Trấn Phù Yên Sơn La 10438 2116 01/01/61 

12.  Quỳnh Nhai Thị Trấn Quỳnh Nhai Sơn La 10334 2151 01/02/61 

13.  Sơn La Thị Xã Sơn La Sơn La 10354 2120 01/12/60 

14.  Sông Mã Thị Trấn Sông Mã Sơn La 10344 2104 01/01/62 

15.  Vạn Yên Taân Phong Phù Yên Sơn La 10444 2003 01/01/00 

16.  Yên Châu Thị Trấn Yên Châu Sơn La 10418 2103 01/01/61 

17.  Chi Nê Lạc Long Lạc Thuỷ Hoà Bình 10547 2029 01/01/73 

18.  Hoà Bình Thị Xã Hoà Bình Hoà Bình 10520 2049 01/09/55 
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ID Station name Commune District Province Lon Lat Time in Operation 

19.  Kim Bôi Thị Trấn Kim Bôi Hoà Bình 10532 2040 01/11/62 

20.  Lạc Sơn T.T Vụ Bản Lạc Sơn Hoà Bình 10527 2027 01/02/61 

21.  Mai Châu Phố Vàng Mai Châu Hoà Bình 10503 2039 01/01/61 

22.  Bắc Mê Thị Trấn Bắc Mê Hà Giang 10522 2244 01/01/64 

23.  Bắc Quang Thị Trấn Bắc Quang Hà Giang 10452 2230 01/06/61 

24.  H-su Phì Phố Huyện Hoàng Su Phì Hà Giang 10441 2245 01/07/56 

25.  Hà Giang Khu Đoàn Kết Vị Xuyên Hà Giang 10458 2249 01/07/56 

26.  Bắc Hà Thị Trấn Bắc Hà Lào Cai 10417 2232 01/02/61 

27.  Phố Ràng Thị Trấn Bảo Yên Lào Cai 10428 2214 01/06/74 

28.  Sa Pa Thị Trấn Sa Pa Lào Cai 10349 2221 01/10/57 

29.  Than Uyên Mường Can Than Uyên Lào Cai 10353 2157 01/02/61 

30.  Lục Yên Thị Trấn Lục Yên Yên Bái 10443 2206 01/01/61 

31.  Mù Căng Chải Kim Noi Mù Căng Chải Yên Bái 10403 2152 01/05/62 

32.  Văn Chấn Khu II T.T Nghĩa Lộ Yên Bái 10431 2135 01/01/61 

33.  Yên Bái Thị Xã Yên Bái Yên Bái 10452 2142 01/09/55 

34.  Chiêm Hoá Vĩnh Lộc Chiêm Hoá Tuyên Quang 10516 2209 01/01/61 

35.  Hàm Yên Cây Số 41 Hàm Yên Tuyên Quang 10502 2204 01/01/61 

36.  Tuyên Quang Thị Xã Tuyên Quang Tuyên Quang 10513 2149 01/01/60 

37.  Bắc Cạn Thị Xã Bắc Cạn Bắc Cạn 10550 2209 01/08/56 

38.  Chợ Rã Thị Trấn Chợ Rã Bắc Cạn 10543 2227 01/06/61 
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ID Station name Commune District Province Lon Lat Time in Operation 

39.  Ngân Sơn Thị Trấn Ngân Sơn Bắc Cạn 10559 2226 01/05/61 

40.  Định Hoá T.T Chợ Chu Định Hoá Thái Nguyên 10538 2155 01/02/61 

41.  Thái Nguyên Thị Xã Thái Nguyên Thái Nguyên 10550 2136 01/10/58 

42.  Minh Đài Minh Đài Thanh Sơn Phú Thọ 10503 2110 01/06/72 

43.  Phú Hộ Phù Ninh Phong Châu Phú Thọ 10514 2127 01/05/62 

44.  Việt Trì P.Tiên Cát T.P Việt Trì Phú Thọ 10525 2118 01/12/60 

45.  Tam Đảo Tam Đảo Vĩnh Yên Vĩnh Phúc 10539 2128 01/12/61 

46.  Vĩnh Yên Thị Xã Vĩnh Yên Vĩnh Phúc 10536 2119 01/01/60 

47.  Bảo Lạc Thị Trấn Bảo Lạc Cao Bằng 10540 2257 01/01/61 

48.  Cao Bằng Thị Xã Cao Bằng Cao Bằng 10615 1140 01/08/56 

49.  Nguyên Bình Thị Trấn Nguyên Bình Cao Bằng 10557 2239 01/01/61 

50.  Trùng Khánh Thị Trấn Trùng Khánh Cao Bằng 10631 2250 01/01/61 

51.  Bắc Sơn Hữu Vĩnh Bắc Sơn Lạng Sơn 10619 2154 01/12/62 

52.  Đình Lập Thị Trấn Đình Lập Lạng Sơn 10706 2132 01/01/63 

53.  Hữu Lũng Sơn Hà Hữu Lũng Lạng Sơn 10621 2130 01/02/61 

54.  Lạng Sơn Mai Phá  Lạng Sơn Lạng Sơn 10646 2150 01/10/55 

55.  Thất Khê T.T Thất Kh ê    Tràng Định Lạng Sơn 10628 2215 01/01/60 

56.  Bắc Giang Thị Xã  Bắc Giang Bắc Giang 10613 2218 01/01/60 

57.  Hiệp Hoà Thị Trấn Hiệp Hoà Bắc Giang 10558 2121 01/01/71 

58.  Lục Ngạn Thị Trấn Lục Ngạn Bắc Giang 10633 2123 01/01/61 



77 

 

ID Station name Commune District Province Lon Lat Time in Operation 

59.  Sơn Động Thị Trấn Sơn Động Bắc Giang 10651 2120 01/01/61 

60.  Bãi Cháy Thị Xã Bãi Cháy Quảng Ninh 10704 2058 01/01/60 

61.  Cô Tô Đảo Cô Tô Cô Tô Quảng Ninh 10746 2059 01/10/58 

62.  Cửa Ông Thị Trấn Cửa Ông Quảng Ninh 10721 2101 01/01/60 

63.  Quảng Hà Thị Xã  Móng Cái Quảng Ninh 10745 2127 01/03/79 

64.  Tiên Yên Thị Xã  Tiên Yên Quảng Ninh 10724 2120 01/02/56 

65.  Uông Bí Yên Chung Uông Bí Quảng Ninh 10645 2102 01/01/65 
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