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ORIGINAL ARTICLE

Single-nucleotide polymorphisms in HORMAD1 may be a
risk factor for azoospermia caused by meiotic arrest in
Japanese patients

Toshinobu Miyamoto1, Akira Tsujimura2, Yasushi Miyagawa2, Eitetsu Koh3, Mikio Namiki3,
Michiharu Horikawa1, Yasuaki Saijo4 and Kazuo Sengoku1

Genetic mechanisms are implicated as a cause of some male infertility, yet are poorly understood. Meiosis is unique to germ cells and

essential for reproduction. The synaptonemal complex is a critical component for chromosome pairing, segregation and recombination.

Hormad1 is essential for mammalian gametogenesis as knockout male mice are infertile. Hormad1-deficient testes exhibit meiotic

arrest in the early pachytene stage and synaptonemal complexes cannot be visualized. To analyze the hypothesis that the human

HORMAD1 gene defects are associated with human azoospermia caused by meiotic arrest, mutational analysis was performed in all

coding regions by direct sequence analysis of 30 Japanese men diagnosed with azoospermia resulting from meiotic arrest. By the

sequence analysis, three polymorphism sites, Single Nucleotide Polymorphism 1 (c. 163A.G), SNP2 (c. 501T.G) and SNP3 (c.

918C.T), were found in exons 3, 8 and 10. The 30 patients with azoospermia and 80 normal pregnancy-proven, fertile men were

analyzed for HORMAD1 polymorphisms. Both SNP1 and SNP2 were associated with human azoospermia caused by complete early

meiotic arrest (P,0.05). We suggest that the HORMAD1 has an essential meiotic function in human spermatogenesis.
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INTRODUCTION

One of the most serious social problems facing Japan today is the

declining birth rate. However, it is generally not well recognized that

the number of infertile couples is on the rise in Japan. Although

social and environmental factors—such as social progress for

women and the resulting increase in the age at which women marry,

pollution and global warming—are behind part of the increase in

the number of patients with infertility, approximately half of all

cases of infertility are generally caused by factors related to the

man. To date, a variety of treatments have been developed for male

infertility, and these are steadily producing results. At present, how-

ever, there is no effective treatment for patients with non-obstruct-

ive azoospermia, in which there is an absence of mature sperm in the

testes. Although evidence suggests that many patients with azoos-

permia have a genetic predisposition to the condition, the cause has

not been elucidated in the vast majority of cases.1 The most frequent

genetic cause of azoospermia is represented by Klinefelter syn-

drome,2 and many cases of meiotic arrest (MA) are caused by the

presence of balanced chromosomal translocations.3 More genetic

causes of azoospermia in humans include Y-chromosome micro-

deletions and mutations in specific genes, including SYCP3, PRM1,

SPATA16, AURKC and KLHL10.4–8 As Y-chromosome deletions

account for only 9.4% of the cases of male infertility,9 azoospermia

may be caused by autosomal gene mutations. Genetic polymorph-

isms also increase susceptibility to some forms of male infertility,

e.g., the human SPATA17, PARP-2 and UBR2 genes are linked to

male infertility.10–12 Meiosis is a fundamental process in sexually

reproducing species that allows genetic exchange between maternal

and paternal genomes.13 Genetic regulation of meiosis in mammals

is poorly understood when compared to that in lower eukaryotes

such as yeast.

Proteins that contain a HORMA (Hop1, Rev7 and Mad2)-domain

regulate interactions between homologous chromosomes during mei-

osis in a wide range of eukaryotes. Biochemical and cytological obser-

vations demonstrate that a mouse HORMA domain-containing

protein, HORMAD1, is associated with the meiotic chromosome

axis.14 Hormad1 is essential for mammalian gametogenesis as knock-

out male and female mice are infertile.15 Hormad1-deficient

(Hormad12/2) male germ cells arrest in the early pachytene stage,

and synaptonemal complexes are not evident in electron micrographs

of Hormad1-deficient male germ cells. HORMAD1 is a critical

component of the synaptonemal complex, which affects synapsis,

recombination and meiotic sex chromosome inactivation and tran-

scriptional silencing.15

1Department of Obstetrics and Gynecology, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan; 2Department of Urology, Osaka University Graduate School of
Medicine, Suita 565-0871, Japan; 3Department of Integrated Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-1192,
Japan and 4Division of Community Medicine and Epidemiology, Department of Health Science, Asahikawa Medical University, Asahikawa 078-8510, Japan
Correspondence: Dr T Miyamoto (toshim@asahikawa-med.ac.jp)

Received: 18 September 2011; Revised: 22 October 2011; Accepted: 8 December 2011; Published online: 12 March 2012

Asian Journal of Andrology (2012) 14, 580–583
� 2012 AJA, SIMM & SJTU. All rights reserved 1008-682X/12 $32.00

www.nature.com/aja

www.nature.com&sol;aja


Here, we analyzed possible associations between HORMAD1 muta-

tions and azoospermia caused by MA in humans.

MATERIALS AND METHODS

Study participants

Japanese patients with azoospermia caused by MA (n530) were

included in the study, and 80 healthy, pregnancy-proven, Japanese

fertile men were examined as controls. All normal controls had normal

sperm inspections, in addition to all having a child by spontaneous

pregnancy. All subjects were Japanese and provided written informed

consent for molecular blood analysis. This study was approved by the

local ethics committee.

Azoospermia in each patient was confirmed by two consecutive

semen analyses obtained after 5–7 days of sexual abstinence and by

examination of a centrifuged semen pellet. Patients with defective

spermatogenesis following infection, or due to obstruction of the

seminal tract, pituitary failure or other causes of possible testicular

damage revealed at clinical examination were excluded from the study.

Final diagnosis of azoospermia was carried out by histological exam-

ination. Samples from each patient were subjected to more than one

pathologic test. All patients included in the study had a normal 46: XY

karyotype based on chromosome analysis of peripheral lymphocytes.

There were no patients with Klinefelter syndrome and no patients with

balanced chromosome translocations. In addition, no patients had

Y-chromosome microdeletions.

Mutation screening

We screened 30 Japanese patients with azoospermia secondary to MA

for mutations in the HORMAD1 gene. Full-length cDNA sequences

(NM_032132) were compared to human genomic sequences

(NW_923184.1) by BLAST, and all exon/intron borders were deter-

mined. The following HORMAD1 primers were used for mutational

analysis: Exon 2: E2F1 and E2R1; Exons 3: E3F1 and E3R1; Exon 4:

E4F1 and E4R1; Exon 5: E5F1 and E5R1; Exon 6 and Exon 7: E6F1 and

E6R1; Exon 8: E8F1 and E8R1; Exon 9: E9F1 and E9R1; Exon 10: E10F1

and E10R1; Exon 11 and Exon 12: E11F1 and E11R1; Exon 13: E13F1

and E13R1; Exons 14: E14F1 and E14R1; and Exon 15: E15F1 and

E15R1. Sequences of oligonucleotide primers are listed in Table 1.

PCR was performed using primers for each intron region (Table 1):

with a final volume of 25 ml, consisting of genomic DNA (50 ng),

dNTPs (0.32 mmol l21 each), two primers (0.2 mmol l21 each),

0.2 mmol l21 Taq polymerase (0.625 IU) and reaction buffer contain-

ing MgCl2 as follows: initial denaturation at 95 uC for 150 s, followed

by 32 cycles of denaturation at 95 uC for 30 s, annealing at (primers Tm

25 uC) for 90 s and extension at 72 uC for 90 s. PCR products were

purified using a QIAquick PCR Purification kit (Qiagen, Tokyo,

Japan), and each product was sequenced directly. To confirm the role

of the detected polymorphisms in azoospermia, the coding region

of the HORMAD1 gene of 80 healthy, fertile control men was also

analyzed by direct sequencing and subsequent sequence analysis.

Sequence analysis was carried out on the patients with polymorphisms

four times and two times on normal controls; the patients and controls

were sequenced simultaneously.

Genotyping and statistical analyses

Single-locus analysis. To investigate the role of HORMAD1 poly-

morphisms in azoospermia, Fisher’s exact test was used to identify

meaningful differences. Hardy–Weinberg equilibrium was tested

using SNPAlyze software (Windows 2000/XP/Vista/7, 32-bit version;

Dynacom, Chiba, Japan). Linkage disequilibrium of all possible two-

way combinations of single-nucleotide polymorphisms (SNPs) with

the absolute value of the correlation coefficient (D9) were tested. P

values were determined by x2 approximation. Haplotype frequencies

were estimated by the maximum likelihood method based on the

expectation–maximization (E–M) algorithm under the assumption

of Hardy–Weinberg equilibrium. Linkage disequilibrium and haplo-

type frequencies were tested using SNPAlyze software. P values were

determined by x2 approximation; P,0.05 was considered to be sta-

tistically significant.

RESULTS

Mutation analysis of the HORMAD1 gene in the 30 patients revealed

three nucleotide changes: c. 163A.G in exon 3, c. 501T.G (Met 128

Arg) in exon 8, and c. 918C.T in exon 10. These changes, or SNPs,

were based on comparisons with the sequences published in the NCBI

dbSNP database. Only SNP3, c. 918C.T in exon 10, had been reported

previously; the others were newly identified SNPs (Table 2). Among

the three coding SNPs (cSNPs)—SNP1, 2 and 3, only SNP2 was non-

synonymous. The non-synonymous cSNP, SNP2, was tested using two

software tools, SIFT (free web site by University of British Columbia,

Canada) and PolyPhen (free web site by Harvard Medical School,

USA). The SIFT score of the Met128Arg change was 0.96 (.0.50),

and the Met128Arg was designated ‘benign’ based on the PolyPhen

analysis. Genotyping for the HORMAD1 SNP alleles among the 30

patients and 80 controls revealed significantly different genotype dis-

tribution and allele frequencies of SNP1 and SNP2 between the two

groups (P,0.005) (Table 2).

At the c. 163A.G site (SNP1), the proportion of GA heterozygote/

AA homozygote was 0.33/0.67 in the patient group and 0.00/1.00 in

the control group (P,0.001). The allele frequency of c. 163A.G was

Table 1 Sequences of oligonucleotide primers used for mutational screening of HORMAD1

Forward primer Reverse primer

Exon 2 E2F1: 59-TGTATAGGGAATAAAAATAGGA-39 E2R1: 59-AATACTTCAGCAAATATCTTCAT-39

Exon 3 E3F1: 59-CTTTTGGGGGATTACTAACC39 E3R1: 59-ACAAGTGAACTGTCAGGTACG-39

Exon 4 E4F1: 59-TGTCACCGCACTCCATCCT-39 E4R1: 59-GGGGCACAAAATAAAGAAACA-39

Exon 5 E5F1: 59-CCGAAGTTTTCCTCTCCTTG-39 E5R1: 59-ATTCAGACTGACCTACACTC-39

Exons 6, 7 E6F1: 59-TTTGTTCTTTGTTGTATTTCAGC-39 E6R1: 59-TCCTAAAACTCAAGCCCTTTCA-399

Exon 8 E8F1: 59-AGACTGAAGCCCCAAACCCAAAC E8R1: 59-CTAATCACCTAAGTTCTCTTTCCAC-39

Exon 9 E9F1: 59-GTGGAAAGAGAACTTAGGTGATT-39 E9R1: 59-ATTTGAGTGAGGTTATACTTCACA39

Exon 10 E10F1: 59-ACAGACAGTCAAGTGAAGAAA-39 E10R1: 59-CAATGTTGTTTGGGCTAAGTA-39

Exons 11, 12 E11F1: 59-CTTCCAAAGTGCTAGTAATA-39 E11R1: 59-TAAACAAATCCACCAGTAATAT-39

Exon 13 E13F1: 59-TGGTACTTTCTCAGTTCAGTGG-39 E13R1: 59-TTCTTTGTGCCTATGTAGCCTA-39

Exon 14 E14F1: 59-TTAAAAAAATTGTATATCCAGC-39 E14R1: 59-AATGAGACAGGAGATGTTTA-39

Exon 15 E15F1: 59-GAAACCCAGATATAGTTATGCT-39 E15R1: 59-AGTAAAAAGTGAATCCATACCA-39
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0.17/0.83 in the patient group and 0.00/1.00 in the control group

(P,0.001). At the c. 501T.G (SNP2, Met128Arg) site, the propor-

tion of GT heterozygote/TT homozygote was 0.13/0.87 in the

patient group and 0.00/1.00 in the control group (P,0.05). The

allele frequency of c. 501T.G (Met128Arg) was 0.07/0.93 in the

patient group and 0.00/1.00 in the control group; the difference was

significant (P,0.05) (Table 2). In the Hardy–Weinberg equilib-

rium test of the distribution of genotypes for each SNP of the

patient group, there were no SNPs showing a significant deviation

(P.0.05). Haplotype analysis revealed similar haplotype frequen-

cies estimated for all three polymorphisms in the groups (P.0.05).

Haplotype estimation and linkage disequilibrium analysis also

revealed no critical differences (P.0.05).

DISCUSSION

We predicted that mutations or polymorphisms in the HORMAD1

participate in azoospermia caused by MA. Based on these results, we

could not state that HORMAD1 mutations directly caused azoosper-

mia. The number of analyzed patients is not enough to achieve a

final decision. However, we identified three cSNPs in HORMAD1.

The present association study revealed significantly different allele

frequencies at SNP1 (163A.G) and SNP2 [501T.G (Met128Arg)]

between patients with azoospermia caused by MA and fertile men.

These findings indicated that A allele at nt 163 in exon 3 and T allele

at nt 501 in exon 8 or their flanking regions may play a role in the

disruption of spermatogenesis in Japanese patients. The genotype

and allele frequency of SNP1 and SNP2 were much higher in the

azoospermia men than in the controls, indicating that HORMAD1

might play a key role in human spermatogenesis, although the num-

ber of patients analyzed was not large enough to allow a definitive

conclusion to be drawn. Regardless, the biochemical effects of the

changes at SNP1 and SNP2 are unknown. However, both SNP1 and

SNP2 were never detected in 80 normal controls. Then, the detected

SNP1 and SNP2 might be in linkage with other genes in the same

locus. There is a possibility that some genes playing the critical roles

in human spermatogenesis will be found in this region in the future.

In addition, the RNA including these two SNPs may translate a

different protein compared to the normal one. We believe that ana-

lysis of 30 men is far too small for an association study. However,

azoospermia caused by MA is very rare and our histological dia-

gnostic criteria are very strict; we have DNA samples from more

than 5000 patients with azoospermia, but only 30 of these patients

had azoospermia caused by MA.

In vitro fertilization is often an efficient way to resolve infertility

associated with female factors, but it is not as effective for severe

oligospermia in males. Although testicular sperm extraction–intracy-

toplasmic sperm injection is now performed for many patients with

azoospermia, it cannot benefit patients that lack spermatozoa in their

testes because of a complete failure in spermatogenesis. Therefore,

treatment for infertility due to non-obstructive azoospermia is an

important topic for advances in assisted reproductive technology.

In conclusion, this is the first report showing that HORMAD1 SNP

may predispose men to a defect in spermatogenesis, although the causal

and potential mechanistic relationships between these HORMAD1

SNPs and azoospermia remain unclear. Our results may provide insight

into the molecular basis of MA as a cause of non-obstructive azoosper-

mia. Additionally, whether this association exists in similar patients

from other ethnic groups must be determined in future studies.
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