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ABSTRACT

In order to simulate the formation of localized shear bands, which is commonly observed
during large deformation of soils, we first present a systematic extension of the well known
Cam-clay model developed for small strains to the model for finite strains/deformations and

then incorporates a non-coaxial term in the model.

Finally, confining the deformation to

undrained plane strain conditions, we examine the effects of the non-coaxial term on the

shear bands formation.
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INTRODUCTION

The purpose of this paper is to give the
theoretical basis to simulate the formation
of localized shear bands, which is commonly
observed during large deformation of soils
(see, Photo.1) ; for instance, the slip lines
observed in the laboratory test specimen, the
sliding failure of embankment foundation,
and the fault caused by the orogenic move-
ment. Such simulation of shear bands form-
ation may lead to clarify the occurrence
mechanism of their phenomena and also make
it possible to explain the soil behavior con-
sistently from the beginning of deformation
up to the limit failure state.

Localization analyses on soil samples have
been presented by Prevost and Hughes (1981)
and Borst (1988). Yet, their analyses are
restricted to small strains/deformations and,
therefore, in order to have shear band
bifurcation, materials are assumed to be the
strain-softening elasto-plastic model or the
hardening model with a non-associated flow
rule. The behavior of clay is, however, well
explained by the elasto-plastic model with
an associated flow rule and the slip lines are
usually observed before the peak load in the
unconfined compression test ; hence, the
observed softening seems to be a structural
effect due to the development of shear bands
rather than a material property.
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Photo. 1.

Prevost(1984) has presented the localiza-
tion analysis for finite strains and showed
that the localization could be captured in
finite element models by employing, in the
case of symmetrical configuration, an imper-
fection in the form of a weak element. How-

ever, introduction of such an imperfection -

in the material element would result in
an artificial result. Also, the geometry of
shear bands and the limit load which is found
depend on the particular imperfection which
is introduced.

This paper is concerned with a shear band
analysis for finite strains/deformations in
hardening materials and without introducing
any imperfections in the material element ;
therefore, the softening is here regarded as
a consequence of the shear bands development
and the development of shear bands is ex-
pected to occur naturally. The material
employed here is the well-known Cam-clay
model developed for small strains by Roscoe,
Schofield and Thurairajah (1963), which is a
coaxial hardening elasto-plastic model up to

Shear band formation (after Tani et al, 1987)

a critical state, that is, the principal direc-
tions of the plastic stretching are coaxial with
those of the stress tensor. We then first
extend the coaxial Cam-clay model developed
for small strains to the model for finite
strains.

However, as is explained in detail later,
it is argued that the predictions from the
coaxial model about the conditions at the
initiation of shear bands are not in accordance
with the experimental data and that in
granular materials the existence of micro-
scopic localized deformations may not result
in coaxiality. In order to obtain the rea-
sonable predictions, a number of writers
then propose the non-coaxial models. We
propose a new model which incorporates a
non-coaxial term in the extended Cam-clay
model, simply following the basic procedure
of Rudnicki and Rice (1975).

Finally, confining the deformation to
undrained plane strain conditions, we ex-
amine the effects of the non-coaxial term
on the shear bands formation.
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THEORY OF SHEAR BANDS FORMATION 43

CAM-CLAY
STRAINS

We first present a systematic extension of
the well known Cam-clay model developed
for small strains to the model for finite
strains and then incorporate a noncoaxial
term in the model.

MODEL FOR  FINITE

Coazxial Cam-Clay Model

It has been well recognized that the con-
stitutive relations for saturated clays should
be based on the effective (Cauchy) stress
tensor T', which is defined by

T'=T+ul.

Here, T is the total Cauchy stress tensor, u
is the pore water pressure, and 1 is the
unit tensor. ;

We then define the effective mean normal
stress p’ and the generalized stress deviator
q as

p’z——:jl{trT’,

a=,/ 218,

where 8 is the deviatoric part of 7.

Note that, here and in what follows, we
regard tension and extension positive and
compression and contraction negative except
«#, p', and the volumetric strain ov;an
ordinary exchange of the sign in soil me-
chanics needs a special care and makes the
discussion troublesome since stress rates em-
ployed in finite strain theory are not merely
the rate of stress.

Consider a motion of a body x=y(X,?),
and let F'=0x/0X denote the deformation
gradient corresponding to a given reference
point X. We assume that F is smooth with
strictly-positive determinant ;

J=det F>0.
Then
L=FF-,
is the velocity gradient,

D=%(L+LT),

the stretching tensor, and

W=-§’<L—LT>,

the spin tensor.
We adopt the following decomposition ;

D=D:+D>. @D)

Here superscript e stands for the elastic part,
and superscript p for the plastic part.

Consider an isotropic consolidation. The

increment in void ratio é associated with

any increment of effective mean normal stress

P’ is given by
h!
g=—2 }1},—,

and hence the volumetric strain rate is

9(=—trD=—J|J=¢é/(1+e))

4 P
- 1+e Pl ’ (2)
where 1 is the compression index. Similar-

ly, for an isotropic swelling, we have

L kP
V= l+e p/ ’ (3>
where « is the swelling index ; then we call
> l4e
K= — 7',
the bulk modulus and
~ 3(1-2v)

the shear modulus with v as the Poisson’s
ratio. The volumetric strain rate for dila-
tancy is given by

vofg) @

where D is the coefficient of dilatancy, which
is related to the critical state parameter M as
(Ohta, 1971)

A—k
M(1+e) "
Finally, by Egs.(2), (3), and (5), the
total volumetric plastic strain rate is
.. A—k P’ q\
P = i
U THe Y +D<z>’>'
Here we note that the void ratio e at the
current time is not, in general, constant for

finite strain theory and is related the void
ratio ¢, at the reference time as

D=
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‘1+e=J (1+e) ;
besides, J=detF is given by D as

12
J=exp<f tdet).
0

Similarly to the definition of the yield
function in Cam-clay model for small strain
theory (Roscoe, Schofield and Thurairajah,
1963), it is then natural to define the yield
functional for finite strains in the form

/

f—f i+’e‘ i,+Dﬁ>dt~vP, (6)
where ¢?=0 at ¢=0, and g=gq/p".
It is important to note that, under the
undrained condition with trD=0, we have
J=1 (i.e. 14+e=1+z¢,) ; hence, the integrand
in (6) is integrable on the stresses and f
becomes a (yield) function of the stresses as
for small strain theory. Differentiating f
with respect to #, we obtain

f:=NijT/7:j—1}p, (7)

where, for simplicity, we set

sz:‘D(M'L ap' + oy >’

pl 0Ty, " 0Ty
_D(3 Sy 1 )
with f=M-—7z.

We assume that the elastic part of stretch-
ing tensor D¢ is related to the co-rotational
(Jaumann) rate of effective stress,

T'=T"-WT'+T'W,
by means of a relation similar to Hooke’s
law :

T7i=E%; Do, (8)
where

Eewkz=<K——§—G)&ﬁkz+G(51k3n+3uam) .

The plastic part of stretching tensor DP? is
expressed as

Do {=AN” if f=0 with N,,77;,>0,
Y 1=0if £<0, or if f=0 with N,,;T",,<0.
(9)
Here, noting that N“-T’ij=Nij’Z°”ij holds, we
get a scalar function 4 by Egs. (@), (7
with f=0, (8), and (9), as

A= E¢,;..Ny;Dy,
Ely 55 NiyNy—Nip
Finally, Eqs. (), (8), and (9), provide
a complete set of Cam-clay constitutive rela-
tions for finite plastic deformations in the
form

70"'1;’-‘—‘ {<K_%é>5z;3kz+G(3zk3ﬂ+5u§jk)

( G Su= KBBUX—G—SM—I?E&M)
- k G+K32+h

}IDRh

(10)
where B—=,B/\/—3—, 7=||S(/¥/ 2, and A is the

hardening modulus given by

__PB
=73 D
hence, the Cam-clay model is a hardening
material up to a critical state g=0.

Non-coaxial Cam-Clay Model
Introducing Eq. (9) into Eq. (7), we obtain

kR
’

where D*? is the deviatoric part of D?. Since
the principal directions of D*? are coaxial
with the principal directions of S, we call
the above constitutive relations the coaxial
Cam-~clay model.

It is well known, however, -that the pre-
dictions of the initiation of shear bands in
metal based on the coaxial (flow theory)
model with the smooth yield surface are
not in accordance with experiments (see
e. g., Anand and Spitzig, 1980). In order to
obtain the reasonable predictions, a number
of writers then propose the non-coaxial (flow
theory) models with a vertex-like theory
(see e.g., Rudnicki and Rice, 1975 ; Storen,
and Rice, 1975 ; Iwakuma and Nemat-Nasser,
1982 ; Gotoh, 1985). It is also argued in
granular materials that the existence of
microscopic localized deformations may result
in such non-coaxiality (see, Mehrababi and
Cowin, 1980 ; Anand, 1983).

Since our final purpose is also to simulate
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THEORY OF SHEAR BANDS FORMATION 45

the formation of such localized shear bands
in soils without introducing any initial im-
perfections in the material elements, it seems
necessary to incorporate a non-coaxial term
in the coaxial model. Our numerical ex-
amples in a separate paper (Yatomi et al.,
1989) actually demonstrates the localized
shear bands could not observed in the extend-
ed coaxial Cam~clay model. However, since
we don’t have reliable experimental data for
such non-coaxiality in soils, we here make a
model simply following the basic procedure of
Rudnicki and Rice (1975). In the next sec-
tion, we examine in detail the effects of
non-coaxiality on the formation of shear
bands.

Rudnicki and Rice (1975) consider an ad-
ditional (non-coaxial) term to D*?, which is
work-less and, therefore, makes no contribu-
tion to the rate of plastic energy loss as

_1 SZJ<Skl —’kak>
=55 w83

T ;(éw S“S’” Sm> an

Here h, is the second hardenzng modulus,

2D*?,,

which is, for simplicity, assumed in the
similar form as the hardening modulus % as
__pPb 'B

where A is a positive material constant.
As a result, the effect of incorporating the
modulus A, is merely exchanging the coef-

ficients in Egs. (10) as
h,G VP—B
G 17 _3A G
MG pB +G ’
V3 A
£ (M=K 1 7
R SN U
T hi—h a3
mh D
= R =p=ah
and
~  hB D
By —n=p=a"

CONDITIONS FOR SHEAR BANDS
FORMATION UNDER UNDRAINED
PLANE STRAIN

Cam-clay model in Eq. (10) is a compres-
sible material. The theoretical conditions on
the shear band bifurcations for a compressible
material are not, however, very simple (see
e.g., Rudnicki and Rice, 1975). We then
find that confining the deformation to
undrained plane strain conditions makes the
discussion exactly the same simple one as
developed for an incompressible material by
Hill and Hutchinson (1975).

Field Equations
Regimes

In equilibrium and in the absence of body
forces the surface traction vector t must
satisfy at each time

L tda=0, (14)

for any closed surface a. Using then the
divergence theorem and a relation ¢=Tn
with n as an outward unit normal to a, we
obtain the well known equilibrium equation
divT=0. as)
Noting that ﬂ:(trD—nl)n)da (see, Ap-
pendix 2), the differentiation of Eq. (14)
with respect to time ¢ yields

f sda=0, (16)
where 8=+ (rD—n-Dn)t is called the

total nominal traction-rate and S; defined

by

and  Classification of

s=8,n
is the total nominal stress-rate; thus S, is
given by
8, =T—-TL"+ (DT,
or =T+T(trD)—TD+WT.
Since then T'=T'—ul and, therefore, T'=
T'—ul, we mnote that for saturatedJclays
the total nominal stress-rate 8, is related to
the effective nominal stress-rate 8, as
8,=8,/—ul—uGrD)1+ul’,  (17)
where 8, is defined by
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S/ =T"+T'(trD)—T'D+WT'.  (18)

Using the divergence theorem in Eq. (16),
we finally obtain the continuing equilibrium
equation

divS,=0. 19
Note that Eq. (19) is also a direct result of
the material time derivative of Eq. (15).

In what follows, we confine our attention
to a study of the formation of shear bands
under quasi-static undrained plane strain
conditions in the absence of body forces.
We consider a pure homogeneous plane de-
formation process which starts from an
isotropically consolidated state ; at any time
thereafter, up to the instant of shear band
formation the state of uniform stress is as-
sumed and the directions of the coordinates
x; x, and z; are conincident with the
principal stress axes.

In terms of the effective co-rotational rate
of the Cauchy stress T, and the stretching
D, the constitutive relations Eq. (10) for
continuing undrained plastic loading may be
then written as

?'11—%'22=2#*(D11—D22)» } (20)
T7,=2 #Dlz,
with
D,,+D,,=0 and D,;=0.
Here the instantaneous shear moduli p* and
p are given in the form

«_ Gh
LR
with
h=KpB*+h,
and
u=G.

Since our constitutive relations Eq. (20)
and the continuing equilibrium equation Eq.
(19) under undrained plane strain conditions
are exactly the same ones that Hill and
Hutchinson (1975) developed for an incom-
pressible material, we here simply follow
their results.

Let (v;, v,) be the (x,, z,) components of
velocity and introduce a stream function
¥(x,, z,) such that

I 4

 ——
T
x2

Inclination of a shear band

L or
Tk, P ox, "
Substituting Eq. (17) with Eq. (18), and
Eq. (20) into Eq. (19), with the assumptions
that the current stress is uniform and un-
drained conditions D=0, we have

Fig. 1.

o " o
(ﬂ+T>5x—l4+2(2ﬂ *ﬂ)m
o
+(M-T)8724—0, 2D
where we put
T= Tlll_‘lez or Su“‘Szz.

2 2

With n denoting an unit vector normal to
a shear band(see, Fig. 1), Hill and Hutchinson
(1975) then introduce a velocity field for
which the stream function is of type

V=F(n,z,+nsx,) (22)
which represents an inhomogeneous simple
shear parallel to planes #n,x,+n,z,=con-
stant.

Introducing Eq. (22) into Eq. (21), then
obtain a characteristic equation
(p+o)n* 422 p*— p)nyin,?
+(p—1)nt=0. (23)

The elliptic (E), parabolic (P), and hyper-
bolic (H) regimes are identified depending
on whether there are 0, 2, or 4 real values
of ny/n,, respectively, that satisfy Eq. (23) ;
they are classified as follows under the
restrictions '

p*>0, 4u>0, v>0:

E:2u*>u—vuf—7%,
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H: 2 p*<p—+/ p2—77,
P:u<lc.

An overview of these regimes is shown in
Fig. 3.

Effects of the Non-coazxial Term on Shear
Bands Formation

Here we examine the effects of the non-
coaxial term on shear bands formation. The
discussions and the numerical examples are
confined to the constitutive relations Eq. (11)
with the second hardening modulus 4, in the
form of Eq. (12).

(1) Effects on the instantaneous shear
moduli

When the non-coaxial term is incorporated
“as Eq. (A1), G, K, h, and B change their
forms as Eq. (13) ; hence,

F=REho il

1

and therefore
G
G+h
nG  hh
. m+G h—h _ Gh_
hG hih G+h’
hz"l‘é kl“‘ﬁ
that is, ¢* is independent of the non-coaxial
term.
On the other hand, Eq.(13); shows that

SN

u*=

+

hG ~
, hy+G (<&,
that is, the incorporating the modulus #4,
makes the value of u smaller.

Thus we conclude that the incorporating
the non-coaxial term has no effect on the
instantaneous shear modulus g* for the
normal effective stress difference T7;;,—T"y
and it makes the instantaneous shear modulus
p for the shear stress T’;, smaller. Here
we set a=¢g/Mp'; thus,

GoB__M1-a)
v V3

Note that 0=a=1; a=0 corresponds to the

initial isotropically consolidated state and

u=G—

1'0 T 1 1 1 i i ] i 1]

Curves of the instantaneous
shear moduli vs. «

Fig. 2.

a=1 the critical state.

The instantaneous shear moduli u* and p
are then both monotone decreasing function
on « ;see Fig.2, in which G, is the shear
modulus in the case of coaxial model. We
find that, as we expected, the bigger A
makes ¢ smaller.

Here and in what follows, the soil parame-
ters are taken to be

A=0. 231,
£=0.042,
y=0. 333, 24
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M=1.430,
and
e=1.5 (=¢,), (.. D=0.053),
which are determined from the experimental

results on triaxial tests of Umeda Clay, re-
ported by Sekiguchi (1977).

(2) Effect on the behavior in the charac-
teristic regimes

For a given constitutive relation Eq. (10) it
is not difficult to show that if 27T/;=T"',,+
T’,, initially, the same relation holds for
any time ; the initial isotropically consolidat-
ed state satisfies its relation.

Since then S;,;=7, Sy=-—7, and S;=0,
we have

z=|7r| and ¢=+/ 3|7 ;
hence
!
r=%%—a¢ if 7>0.

We then obtain the trajectories of (z/2y*.
z2p*) for 0= a =1 (see Fig.3).
Note that

3.0

1.0

O H

o B -
1.0 '

Fig. 3. Trajectories of (z/2p, p/24*) and

the dependence of 7/2u* on «

T

Tu* ,

D

2ut 2A°
as a—1.
For A=0.01, the trajectory is (E)—(H)—
(P), but for A=0.05, it passes directly
into (P) from (E).

The dependence of z/2p* on « in Fig.3
shows that when the trajectory passes the
E/H boundary « is nearly 1, that is, the
stress state is very close to the critical
state ; moreover, the smaller A becomes, the
more « is close to 1.

(3) Effects on the accessibility to the
transition boundary and the angle of shear
band inclination at the boundary

Here we examine in detail the effect of
non-coaxial term. When the trajectory pas-
ses the E/H boundary we have

ti=4u*(u—u*) (25)
with
pl2p*>1.
Using Eq. (25) with the soil parameters in
Eq. (24), we obtain the exact dependence of
a on A when the trajectory passes the E/H

boundary (see Fig.4). We then find that
the non-coaxial term makes easy of access to

0.03 T T T T
0.02+
<
0.01
0 !
0-95 0.97 1.0
¢4
Fig. 4. A vs. ajwhen the trajectory passes

the E/H boundary
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90 T T

@
(3
:’.', -
=2
1<)
30| : -
0 ] |
0 0.01 0-02 0.03
A
Fig. 5. Inclination of the shear band vs.

A when the trajectory passes the
E/H boundary

the E/H boundary. For a coaxial model with
A=0, we have a=1 when the trajectory
passes the E/H boundary; namely, the
stress state is on the critical state.

If a shear band occurs at the instant when
the trajectory passes the E/H boundary, the
angle of shear band inclination is given by
a solution of Eq. (23) as

() =222
n, u—7

Fig.5 shows that the inclination angle
f(=tan"'(ny/n,)) of the shear band to the
maximum (effective) principal compressive
stress (see Fig.1) is bigger than /4 and the
angle becomes bigger with the bigger A.

Consider an example for A=0.05 in Fig.
3 ; the trajectory passes directly into (P)
from (E). At the instant when it passes
the E/P boundary, we have

=t

hence, by Eq.(@23) n;=0.
direction of shear band inclination is per-
pendicular to the maximum (effective)
principal compressive stress, which seems to
be unrealistic.

(4) Effect on simple shearing modulus
Most theoretical analyses on the shear band

That is, the

X1

Fig. 6. Simple shearing

bifurcation (e.g., Rudnicki and Rice, 1975 ;
Stéren and Rice, 1975 ; Anand and Spitzig,
1980) are, as stated above, confined to the
discussion at the instant of a failure of el-
lipticity under the uniform field. —More-
over, it is nothing but a necessary condition
for the existence of shear bands as the discon-
tinuity of strain-rate. However, for the
non-uniform fields under the actual given
boundary value problems, even the material
elements in elliptic regime may have some
effects on the accessibility to shear bands
formation. Even if we observe the shear
bands formation in finite element deformed
meshes, in which shear strains grow locally
very large, the continuing equilibrium equa-
tion in that region may still be elliptical.

We then propose a new measure to see the
accessibility to shear bands formation. Con-
sider a simple shearing L=a®n with n=
(n,, my) as an arbitrary unit vector (which,
in general, has nothing to do with shear
bands inclination) and @=(n; —n,) the unit
normal vector to n (see Fig.6). Note that
we here confine our discussion to deformation
under the undrained condition ;i.e. ¢rD=
a-n=0.

Then if

£f==£;n'1::>0

holds for all (rank one) tensors L=a®n, it is
called the strong ellipticity condition (see
e.g., Ogden, 1984). If there exists n such
that g=0, the continuing equibulium equa-
tion ceases to be elliptic and becomes para-
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bolic or hyperbolic. In fact, noting that
1.L=0 and L7-L=0 for L=a®n, we easily
find that '

gzsc'L,

==St’,-_L,

=(p+Int +2@Cu*— p)n’n’+ (u—1Inyt,
which is exactly the same as the left-hand
side of Eq. (23).

This motivates us that the positive magni-
tude of g reveals a distance from the E/P
or E/H boundary, in other words, from a
necessary condition for the existence of shear
bands. Since here L=a®n is a simple shear-

ing and then g=S8,-L is a kind of rigidity
for the shearing, we call g the simple
shearing modulus. o

Let n,=cos - and
simple shearing modulus

9(0; @, A)=(u—p*)cos?2 0
+rcos20+p*, (26)

may be regarded as a function of the shearing
angle @ with parameters @ and A.

We note that, in particular,

900; a, A)=u+r,

g<§ @, A>=u—r,

ny=sin @ ; then the

1 “PL . I I . T [
- - (b) ®=0.88 -
: _ . =0.90
y 5:0 ®=0.92 7]
-] ’ qzo.gl.
a=0.96
|
®=0.92 - “a a=1.00
®=0.94 o
®=0.96 -
a=0.98 ~ '
T=1.00 0 —
N A=0_ R | A=0.01 ]
-3.0 ] I ' | 1 1 -3.0 1 ] 1 L !
0 30 60 90 0 30 : 60 90
0 (degree) - © (degree)
] 1 ] 1 1 ‘
L (e) ]
5.0 ®=0-88 .
a=0-90
a=0-92 -]
c=0-94
- 2=0-96 -
< «=0-98
o a‘]‘
o
0 &
| A=0.05 " -
-3. ! { i 1 i
3% 30 60 90
- o (degree).

Fig. 7. Simple shearing modulus vs.

shearing angle-¢ with parameter o
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and

g<g— ; a,A>=ﬂ*,

where p* is independent of A.

Since =0 in Eq.(26) for small strain
theory, introducing the relations p*=
Gh|(G+h) and ,u=é into Eq. (26), we have

gz?;%%c cos?20+h) ;
hence, if the shear modulus é>0, the shear
bands as the discontinuity of strain rate can
not occur in the hardening material 7>0.

In Fig.7, g/p’ is plotted in the neighbor-
hood of critical state a=0.88~1.00 for A=
0, 0.01 and 0.05 with the soil parameters in
‘Eq. (24). Here we may observe the transi-
tion of the characteristic regimes in Fig.3
from the simple shearing modulus viewpoint.
The shearing angle § which has the mini-
mum value of g/p’ may be the direction
which is most easy to deform in shear. We
find that for A=0, i.e. for a coaxial model,
g|p' is relatively large except around 0= z/4.
For A=0.01 and 0.05, i.e. for non-coaxial
models, g/p’ becomes smaller for all § (0=
0=<z/2) than for A=0, even before g/p’
reaches to zero. This predicts, in the neigh-
borhood of critical state, that the non-
coaxial models are easier to deform in shear
for any directions than the coaxial model ;
therefore, the non-coaxial model are, inde-
pendently of the kinematic constraint, more
inclined to instability by localization of
deformation than the coaxial model.

CONCLUSION

We first present a systematic extension of
the well known Cam-clay model developed for
small strains to the model for finite strains.
We then propose a new model which incor-
porates a non-coaxial term in the extended
Cam-clay model. Finally, confining the
deformation to undrained plane strain con-
ditions, we examine the effects of the non-
coaxial term on the shear bands formation.
As a result, we conclude :

1) The incorporation of the non-coaxial

term has no effect on the instantaneous shear
modulus for the normal stress difference and
it makes the instantaneous shear modulus
for the shear stress smaller ; ,

2) The non-coaxial term makes easy of
access to the elliptic/hyperbolic boundary ;

3) The behavior of the simple  shearing
modulus, which is proposed here as a new
measure to see the accessibility to shear bands
formation, shows that, in the neighborhood
of critical state, the non-coaxial models are,
independently of the kinematic constraint,
more inclined to instability by localization of
deformation than the coaxial model.
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NOTATION

A =positive material constant indicated non-
coaxiality _ ‘
a=unit normal vector to n
D =coefficient of dilatancy
D =stretching tensor
D¢ =elastic part of the stretching tensor
D?=plastic part of the stretching tensor
D*?=deviatoric part of D?
da,dA=area vectors at the current and reference
time, respectively :
E¢, ;5 =elastic stiffness
e,eo=void ratio at the current and reference
time, respectively
F =deformation gradient
f=yield functional
G =shear modulus ,
 Gy=shear modulus in the case of the coaxial
model '
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g=simple shearing modulus
h=hardening modulus
hy=second hardening modulus
J=Jacobian of F
K =bulk modulus
L =velocity gradient
n=unit normal vector
(ny, ng) = (%4, o) components of n
p'=effective mean normal stress
g=generalized stress deviator
S=deviatoric part of 7"
S;=total nominal stress-rate
S';'=effective nominal stress-rate
s=total nominal stress traction rate
T =total Cauchy stress tensor
T'=effective (Cauchy) stress tensor
T''=co-rotational (Jaumann) rate of effective
stress
t=time
t =surface traction vector
u=pore water pressure
v=volumetric strain
9P =volumetric plastic strain rate
vy, v2) =(%1, ) components of velocity
x, X=material point in the current state and in
the reference state, respectively
W=spin tensor
1=unit tensor

a=q/Mp'
B=M—y
B=BIV3

0;;=1, j component of Kronecker’s delta
p=stress ratio (=g¢q/p")
O=shearing angle
£ =swelling index
A=non-negative scalar function in Eq. (9)
A=compression index
M=critical state parameter
p=instantaneous shear modulus for the shear
stress
u*=instantaneous shear modulus for the normal
effective stress difference
v=Poisson’s ratio
7=normal effective stress difference in Eq. (21)
T=|IS|I/v2

¥ =stream function
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APPENDIX 1

Mathematical Symbols

Light-face letters indicate scalars ; bold-
face letters indicate vectors or tensors; we
use standard indicial notation and Cartesian
coordinates, x;, i=1,2,3. If A, B are second
order tensor and @, b are vectors,

AT is the transpose of A,
A~! is the inverse of A,
(AB);j=AwBj
tr A= A,

A-B=tr(ABT)=A;;B;j,
| All=+tr (AAT),

(Ab),=Ayjb;,
a-b=ab;,

and
(@®@b)j=a;b;.
If A is defined in a field,
(divA) ;= Ayj, 5= 04,5/ 0%;.

APPENDIX 2

Let da and dA be the area vectors at the
current and reference time, respectively.
Since then

da=JF""dA

p.46), material time

(see e.g., Eringen,
derivative of

dat: =da-da=JF"dA-F-'dA
becomes
2da212=2—f—(da>2+2 JH(F-T)'dA-F-TdA,

=£jl—(da)2+2(F‘T) ‘F'da-da,

=33‘-7-<da>2—2 L'da-da,

=2(trD—n-Dn)(da)?
which yields the final result.
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