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ABSTRACT

This paper is concerned with the formation of the shear bands by employing the finite
element method with a non-coaxial Cam-clay model developed in our last paper (Yatomi

et al., 1989).

This finite element method for finite strains is formulated as a soil/water
coupling form based on the updated Lagrangean scheme.

A demonstration of shear. bands

formation is given in a classical rigid punch problem without introducing any initial imper-

fections into the material elements.
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INTRODUCTION

In our last paper (Yatomi et al., 1989),
we presented a non-coaxial Cam-clay model
for finite strains in order to study the
formation of localized shear bands. In this
paper, we first give the finite element formu-
lation based on the updated Lagrangean
scheme. We then demonstrate shear bands
formation with a rigid punch problem.

The finite element method is formulated
as a soil/water coupling form initiated by
Biot (1956) for small strains, in which we
may consider the interaction between the
deformation of soils and the flow of pore
water. The equilibrium equation is, as

usual, discretized based on the principle of
virtual work, and the continuity condition of
the pore water is discretized in the form of
the finite difference approximation, which was
initiated by Christian (1968) and Christian
and Boehmer (1970). The finite element
program developed here for the shear bands
analysis has been named SHEBLA (SHEar
Band Localization Analysis). The accuracy
of SHEBLA can be demonstrated by a few
simple examples.

Under undrained plane strain conditions,
SHEBLA is applied to a rigid punch problem
to simulate the formation of localized shear
bands. The results show that shear band
localization takes place as both%the deforma-
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2 YATOMI ET AL.

tion of finite element meshes and also as
localized strain distributions ; the computed
pattern of deformation is very similar to the
classical slip line solution. It should be noted
that no initial imperfections are introduced
here in the material elements; and hence,
the development of the shear bands is not
artificial (cf. Prevost, 1984).

After examining the bearing capacity, we
shall discuss the trajectory path in the charac-
teristic regimes and the effective stress path
in the stress space for five typical material
elements. Finally, we will obtain the dis-
tribution of the footing stress.

GOVERNING EQUATIONS

" We will first summarize the governing
equations, which are the bases of our finite
element formulation in the soil/water coupl-
ing form, and then briefly review the con-
stitutive model.

Governing Equations
Assuming Darcy’s law to describe the pore
water flow, the basic governing equations are
summarized as follows (for ‘details, see
Yatomi et al., 1989 and Biot, 1956) :
a) continuing equilibrium equation
div S’z=0
b) effective stress concept T=T'—ul
c) constitutive equation _'Ie":ze[,'[l)]
(1)
d) continuity condition of pore water
tr D=K-grad(grad h,,) (2)
e) water head hA,=uly,+82 (3
with the appropriate boundary conditions and
the initial conditions.

Here, S, is the total nominal stress-rate,
T is the Cauchy stress tensor, 7"’ is the
effective stress tensor, u is the pore water

pressure, T’ is the co-rotational rate of
effective stress, D is the stretching, K is the
permeability tensor, 4, is the total head of
pore water, 7, is the unit weight of pore
water, and £ is the potential head. Note
here that we regard both tension and

extension as positive, and both compression
and contraction as negative, except u, 2/,
and the volumetric strain. Assuming that
permeability tensor K is isotropic, we may
write K=%1, where £ is called the coef-
ficient of permeability. When considering
anisotropy of K, we may express K as K=
k,i(0;Rb)), where b; (i=1, 2, 3) are the
reference unit vectors whose directions cor-
respond to the principal axes of anisotropy
(see Yatomi and Nishihara, 1984).

Constitutive Equation

The constitutive stiffness tensor of the
coaxial Cam-clay model for finite strains is
denoted as

L= (K"—g‘ é>5w5m+c (0420 51+04,032)

<€—SU_‘EK6U><*€—_—SM'—§K81€Z>

B G+RK+h ’

(4)
=~ 1+e , ~_310=2») ,
where K= P P/, G—_——_——Z(l—l—y) P,
B=—te (M—1), 7=—218|
V3 T2
77‘—‘«/—3--1-:7, and hz%—p',

Material parameters D, M, &, and v are the
coefficient of dilatancy, the critical state
parameter, the swelling index, and the
Poisson’s ratio in terms of effective stress,
respectively. Also, e is the void ratio, p’ is
the effective mean stress (=—7T"/3), and
S is the deviatoric stress tensor (=7"+p'1).
In order to obtain non-coaxial Cam-clay
model we need only introduce the following
transformation :
G — hlé~
h1+G’

where %, is the second hardening modulus
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SIMULATION OF SHEAR BANDS FORMATION 3

_B » ]
defined as J3A P’ with a positive mate

rial constant, A. For further details, please
refer to Yatomi et al., 1989.

FINITE ELEMENT FORMULATION

The coupling problem which considers the
interaction of soil/water is formulated for ap-
plication as a simultaneous system of equa-
tions consisting of the equilibrium equation
which is discretized based on the principle of
virtual work and the continuity condition
which is discretized in the form of the finite
difference approximation originally developed
by Christian (1968) (cf. Akai and Tamura,
1978 ; lizuka and Ohta, 1987).

Discretization of Equilibrium Equation
The principle of virtual work is expressed
as .

fAS.'VéLdv::fs.-Bvda, (5)

where L is the velocity gradient, s is the
total nominal traction-rate, and v is the
velocity vector.

Substituting

8,=8,—u1—u(trD)1+uL”
with
S,/ =T1"+T'(trD)— (T'D+DT") + LT

in Eq. (5), we have

f {T'-3D+T'(trD)-sD—(T'D+DT") -6 L
+LT'-6L—u(trD)(trdD)1
+uLT-5L}dv—f1Z(tr5D)1dv

v

=ﬁ.§-5vda. (6)

We note that under undrained conditions, the
terms with #D in Eq. (6) vanish.

We express the velocity field inside an
element as

{v}=[N]{v"},
where [N] is called the shape matrix and
{v¥} is the velocity at a nodal point.
Differentiating matrix [N], we obtain the
stretching and velocity gradient inside an

element as :
{D}=[B] {+"}, (7)
and {L}=[M]{o"}. (8)
On the other hand, the volume change is
presented by rearranging Eq. (7) to read

trD=[B,]{v"}. 9)

The change of potential head at the gravity
center 2, of the element is estimated as

rw@=7rsie=[Bs1{v"}. 10)
Substituting Egs. (7), (8), and (9) into
Eq. (6), the stiffness matrix equation for

an element yields : _
{ [ Brrcuma+ [ rrrresa
—2 [ [BYLT 1" (Blds
+ [ LT (Mo [ [BTuLB 1
+ [ et rna o0 - [ 8
= [ NI de, an

where [C] is the constitutive stiffness matrix
corresponding to Eq.(4). Hereafter, to
simplify our analysis, we shall limit our dis-
cussion to the case under plane strain con-
dition. Each term in Eq. (11) reduces to ;

i A
{D}=[D22 } (zy=ifel o )T

L} Ty |
2Dis H 1TJ
T, '
{T'}*={T’22 ,
T12
Ty, 0 T2
[T,]** = 0 175 le/Z ’
Tpl2 Tpl2 (T'4+T52
T'w 0 Ty O
x| 0 Tlaa 0 Ty
[T = T, 0 T 0 |
0 T12 0 Tlll
© 0 00
0 « 0 0
LOT*=10 6 0 uf
0 0 O
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We can ignore the second and fifth terms at
the left hand side of Eq. (11) under undrained
conditions (¢rD=0).

Substituting the time differentiation of
Eq.(3) into Eq. (11), we finally obtain the
following incremental form for Eq.(11),
using Euler’s difference approximation be-
tween #=t and t=t+4¢t:

{[K,J+[K,]—2[K;]+[K,]—[K;]

+[Ke]+[K,I[ B} {4d}

—I:Kv]!trwhwelwdl::{AF}—[Kv]lzrwhwelu

12)

where the total water head, h,, is used as
a variable in this paper rather than the
pore water pressure, #, which is converted
into %, by Eq.(0), i.e, #f=r,h,*—71wic
from Eq.(3), and then, du®=7,hytlia—
rwhotl,— dtywée.  The superscript e on hy
stands for the value at the gravity center
of an element. In Eq. (12) we write

(K= f [BIT[CI[Bldv,

[Cl=

[Ki)= [ (BFLTI*B1ds,
[K:)= [ [BILT/2**[Bld,
[K)= [ [MTLT I+ M1d,
(K= [ [B.JulBde,
(K= [ (MIFLUTCMId,
[K.]= [ [B.Jds,

[4F} = f [N (s} dtda,

and {4d}={v¥}4¢ is the increment of nodal
displacements.

Eq. (12) is formulated incrementally,
which can be regarded as Euler’s forward
difference. Such a discretized equation is
ready to be applied to the coupling form

as explained in the next section. This
calculation procedure, however, requires
time interval (4%) which is small enough
not to diverge. In our numerical simula-
tion, we solve Eq. (12) stepwise under given
boundary and initial conditions without
introducing any iterative techniques such as
the Newton-Raphson’s procedure. The major
advantage of adopting this calculation scheme
based on Euler’s forward difference method
is its simplicity in making the first trial of
simulation for shear bands formation in soil
materials easy to understand, even in the
cases where the pore water flow is coupled.
The improvement of this calculation tech-
nique which aims at solving the finite strain-
coupling problem more economically and
exactly shall be the future target of our
investigations.

Discretization of Continuity Condition

Consider an element M surrounded by
elements M1, M2 M3, and M4 (Fig.1).
Here, and in what follows, we shall assume
the isotropy for the permeability tensor,
i.e, K=Fk1. Integrating Eq.(2) over by
ment M and using the divergence theorem,
we get :

ftdevzkf (grad k) -nda, (13)

where n is an outward unit normal vector
to the element M. Using the backward finite

Y
A
e
oh3
(M3)
» X
Tig. 1. Element M and its neighboring

elements
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SIMULATION OF SHEAR BANDS FORMATION 5

differential scheme, we rewrite the right
hand side of Eq. (13) as : :

kf grad hylip s nda

1

=— (aruh wlesae

2;1 irwhweiltnd)’ (14)
where

f dyi f dxt
- —Ye’

Tw xG"’th 'L Tw
fd?/z R4t J;dxz
Ye—Yer’

Tw xG—th Tw
and (%g ¥g) and (%g; Yei) are the coordi-
nates at the gravity center of element
M and its neighboring elements, respec-
tively.
On the other hand, using Eq. (9), the left
hand side of Eq. (13) is rewritten as:

ﬁ tdez):( f [Bv]dv>{vN}=[Kv]T{0N}

=[K,J"|,{4d}] 4¢. (15)

Substituting Eqgs. (14) and (15) into Eq. (13),
we get the final form for the continuity
condition, namely,

[K, ]l {dd}=arwhulea

""; airwh’wel t+4t:

i | (16)
Combining Eqs. (12) and (16), we finally
obtain the finite element formulation for
a coupled problem as

l: [K] "“[Kv:l] { {4d} }
—-[K, 17 24 ‘t Ywhwl i

_{ {0} }_{{AF}—[Kv]Twhwelz}
Zi] it ohitilien) 0 ’

A7)
where [K]=[K,]+[K,]—-2[K;]+[K,]-[K;]
+[K¢]+[K,J[Bsz]. The finite element
program based on Eq. (17) is named SHEBLA
(SHEar Band Localization Analysis). For
later analyses, we will only consider the
undrained behavior and will neglect the change
in potential head ; therefore, [K.] [K;],
[K,], « and a;(i=1~4) in Eq. (17) vanish.

However, the over-constraint condition
should definitely be avoided: This condi-
tion arises when the number of unknown
values is less than the number of discretized
simultaneous equations represented by Eq.
(17). The continuity equation, Eq. (16),
under incompressibility conditions plays a
rule as the constraint condition on the equi-
librium equation of Eq. (12) (see Nagtegaal
et al., 1974 ; Kikuchi, 1983). In SHEBLA,

~ therefore, we employ the linear interpolation

function to discretize, spatially, the velocity
field in a quadrilateral finite element. We
also define the pore water head discretely at
the center of an element.

DEMONSTRATION OF ACCURACY OF
SHEBLA

To verify the accuracy of the numerical
method proposed here, we shall compare the
numerical results with the theoretical ones
in the simple laboratory tests under un-
drained conditions (Fig.2). Figs.3(a) shows
the stress strain relations and effective stress
paths for both coaxial and non-coaxial (A=
0,01) Cam-clay models in the case of uncon-
fined compression test. Results obtained
through use of the finite element method
coincide very well with the theoretical results
for both coaxial and non-coaxial models. .In
the case of plane strain compression, the
résults for the non-coaxial model coincide
with those for the coaxial model. Fig.3(b)
shows a comparison in the case of simple
shear test. The numerical results also agree
rather well with those obtained from theory.

These demonstrations confirm the useful-

Y b
4

V= 2UX V= 20y

Vy= 21y Ty V=0

) Y
»X : - X
Fig. 2(a) Fig. 2(b)

Unconfined compression Simple shear

test test
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6 YATOMI ET AL.

1.0 1

q/p'o

0.5

theoretical

e non-coaxial
o coaxial

generalized stress deviator

P !

JFEM

I

00 5 0 0.5 , 1.0
axial strain  €q (%) effective mean stress P/p,
Fig. 3(a). The stress-strain relations and the effective stress path for
an unconfined compression test
0.5 T tion to the width of the footing, this region
should be large enough and also should be
< divided into finer finite element meshes.
> B 7] However, we determine the geometry of
= the analytical region here by taking the
§ B R capacity of the computer and the availability
5 of the computation costs into consideration,
g .
< — theoretl'cal - ?—
- e non-coaxial FEM i
k] o -coaxial p—
F ] A:0-231 w=0.042 [/ £
s D=0.053 M=1-43 / analytical region g
< 0 | V:0333 esl5 % / ~
0 0.1 0_2 A=0.01 7
tan® F— 50cm
Fig. 3(h). Shear stress for a simple i’“cm@
shear test

ness of SHEBLA for practical problems.

SHEAR BANDS FORMATION IN A

PUNCH PROBLEM

Here we apply SHEBLA to a classical
problem, so-called ‘punch problem’. We do
this by employing the constant strain quadri-
‘lateral element consisting of 4 nodes, and
define the total water head at the center of
Fig.4 shows the geometry of
Particularly in rela-

the element.
the analytical region.

i
finite element mesh

Fig. 4. Geometry of the analytical region
and finite element meshes
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SIMULATION OF SHEAR BANDS FORMATION 7

$=0,025 cm S$=0.354 cm
}‘{ “Y:F
S=0,1 cm $=0,407 cm
§=0.15 cm §=0.452 cm
$=0,2 cm $=0.512 cm
EE e
S=0.25 cm $=0,533 cm
7S T
S it e
: : : aita
$=0.3 cm $=0.551 cm,

Fig. 5. The formation of shear bands

since our major purpose in conducting this
analysis is to show the principles of shear
bands formation rather than to solve the punch
problem correctly. Due to kinematic sym-
metry, we actually employed the right hand

region in the computations. The lower
figure in Fig.4 displays the finite element
mesh in the present calculations. The analy-
sis is carried out under the plane strain
conditions. We assume a rough interface
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8 YATOMI ET AL.

between the rigid loading plate and the
ground surface, so that the ground surface
beneath the loading plate can only move
vertically. Thus, the boundary conditions
under the loading plate are given by the
settlements, and the other locations on the
upper boundary are stress free. The bottom
boundary is fixed in all directions, while the
side boundaries are fixed in only the horizontal
direction, such that the vertical displacement
is allowed (Appendix). The ground is
assumed to be homogeneous; therefore, no
initial imperfections are introduced into the
material elements. The initial conditions are
p'=1.0kgf/cm? and »=0 at any point in the
material. The same material parameters are
used in our last paper (Yatomi et al., 1989)
and A=0.01 is assumed in the present cal-
culations. It should be noted here that shear
bands localization could not be observed in
the coaxial Cam~clay model, in which 4=0.

Fig.5 shows the process of formation for
shear bands in the ground. Around the set-
tlement S=0.3cm, the localized shear defor-
mation of the element just beneath the edge
of the loading plate becomes significant, and
the distorted elements link together in a
downward direction as the settlement in-
creases. At S=0.551 cm, the shear bands are
easily recognized as the localized deformation
of finite element meshes. After the shear
bands reach the symmetric axis, they seem
to extend on further to the right and the left
directions. The deformed pattern in the last
figure is very similar to the classical slip line
solution obtained by Prandtl.

The hahavior of shear bands formation can
be seen more clearly in a strain distribu-
tion. Fig.6 shows the contour lines of the
normalized strain defined by |le||=+/tr(ee?),

, ¢
in which e=f Dd:t. In Fig. 6, the prominent-
[}

ly localized zones of the normalized strain
occur just beneath the edge of the loading
plate and advance downward to the sym-
metric axis. Then they extend to both
sides, in the same fashion as the shear bands
formation in Fig. 5.

The relationship between the applied

footing stress and the settlement of the

loading plate is shown in Fig.7. In this
1
y/ 0.03
.02 0.01
S=0.15 cm
S=0.30 cm
S=0.412 cm
S=0.512 cm
— $=0.662 cm
Fig. 6. The distribution of normalized

strain
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SIMULATION OF SHEAR BANDS FORMATION 9

€ ] 1 I
{
g
® 2.0 _
e
@
o
£
3
(=}
1.0+ ]
R
&
o

0 ] ] |

0 0.2 0.4 06 08
settlement {(cm)

Fig. 7. The relationship between the applied

footing stress and the settlement

figure, the ultimate bearing capacity is not
recognized and the applied footing stress
exceeds the bearing capacity obtained by
Prandtl’s solution for small strains. This is
probably due to the fact that the bottom
boundary affected the shear bands formation
and raised the bearing capacity, since the
region analyzed in this computation was not
deep enough. In this case, the ultimate
bearing capacity by the Prandtl’s solution is
calculated as 1.87kgf/cm? using the equa-
tion of undrained strength under the plane
strain conditions proposed by Ohta et al.
(1985). A small drop is observed around
S=0.175cm. This point corresponds to the
settlement at which the stress state of an
element reaches the critical state. Although
the critical state need not be considered
in the theoretical framework of finite strains,
the Cam-clay model used here still has the
critical state at which the model shows
perfectly plastic behavior. In fact, the
existance of a few critical elements dose not
produce any instability in the numerical
calculations. :

Next, we shall discuss the trajectory path in
the characteristic regimes for the five typical
elements in Fig. 8 at each step of the settle-
ment. The trajectory paths derived by both
theory and the finite element method are
shown in Fig. 9. The solid line in each figure
represents the theoretical trajectory.

It is

(E- loading plate

RN

w2 0>

[
wn
w

Fig. 8. The elements chosen for the
trajectory path and the effective
stress path :

found that elements S1, S2, and S 3 travel
from the elliptic region (E) through the
hyperbolic region (H) and finally reach the
parabolic region (P). But each element
passes the E-H boundary at a different
time. Although the shear bands occur for
the first time just beneath the edges of the

loading plate (see Fig.5), the element S3

passes the E-H boundary long before the
element S1. On the other hand, elements
I and O do not pass the E-H boundary, but
remain in the elliptic region.

Fig. 10 shows the effective stress path in
the p’ vs. g stress space for each element.
Elements S1, S2, and S3 finally reach the
critical state, but both element I (in the
wedge surrounded by the shear bands) and
element S1 experience unloading once dur-
ing the extension of the shear bands.

Figs.11(a), (b), and (c) show the distribu-
tions of footing stress at S=0.10cm, 0.35
cm, and 0.551 cm, respectively. It is clear
that the stress initially becomes larger from
the center axis to the edge of the loading
plate, but finally becomes almost uniformly
constant under the loading plate at the
failure state. This behavior coincides with
the empirical results for cohesive soils.

CONCLUDING REMARKS
We offer the following remarks as some
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10 YATOMI ET AL.

conclusions to the present paper.
1) Assuming Darcy’s law for the

motion of pore fluid, we summarized 3.0 ,
the governing equations for the coupl- (H)
ing problem based on the finite strain theoretical
theory. (E)
2) We derived the finite element 2.0 045 _
formulation by discretizing the govern- 0-15
ing equations based on the updated < (P)
Lagrangean scheme. The program \N 0-4
created here is called SHEBLA. = 1.0 28%‘%
3) Without introducing any im- ) <0-2
perfections into the material elements, .\,ao/'z elm. S1
we demonstrated the formation of 520-05¢cm
shear bands in the ground for the .
punch problem as the deformation of 00 1.0 2.0 3.0
T
oy
T 3-0 T
IL-theoretical (H)
theoretical
€y || 0.2
2.0F _
0.2
£} 0-15 (P)
1 2D
1.0 { o
$=0:05 ¢m elm.S2
0 L . !
0 0-5 1.0 00 1.0 < 2.0 3.0
T/zu.. /ZIJ.'
T 3-0 u
0:45
1.0 )E‘he"'eﬁm' theoretical ‘(H)
035 (&)
0.30 (E) _/ A 0-20
/0.25 P 2.0 -
/ o . (p :
o (/,/”;’,»’ (P) g&
¢\V 0 54\ —6’1 . :‘_\ 0-15 (P)
< $20.05 cm 1.0
g
eim. O  $:0.05 cm elm.S3
0 1 0 i
0 0-5 1.0 0 1.0 2.0 3.0

T .
Vo “on

Fig. 9. The trajectory-path in the characteristic regime

NII-Electronic Library Service



SIMULATION OF SHEAR BANDS FORMATION 11

finite element meshes and also as the
localized strain distribution. LI L

4) Observing the process for the

; | elm. S1

formation of shear bands, we found 1-0
that the shear bands occur for the e
first time just around the edge of the §
loading plate and extend towards the -3'/0-!.5
symmetric axis. The stress state of
the elements which form the shear 0.5 S \ 7
bands reaches the hyperbolic region and f //'
then finally the parabolic region. The 0-3 2 0
element in which a shear band occurs 0.
first, however, does not necessarily pass
the E-H boundary first. 0 L *

[ 1 i 1
1.0 elm.I - 1.0F elm.S 2 -
2
&
. e /,0.25
‘a & a® S /0.2
o O
AN 5/ AN G015
05  §/0 0-5F . S 2 -
s/ 0 S
& g ¢ $=0.05¢m
0 0 . $
0 0 0-5 . 1.0
/p;
i ] 1] 1
10 elm.0 i .0 em.S3 ]
< <
Ny N
2/,0.551
e S/ 0 . &
\ ) L [o'd >
o 0_\ S=0.4¢cm \ ©4 015
&/ 045 0.35 i S Sz0.tcm R
0-5- & 0.3 7] 0-5- ¢
&/ 0.599 0.25%0.2 & 0.2
0-15 0.25 0.05
0.1
0.05
0 . 0 :
0 0.5 ., 1-0 0 0.5 1.0

Fig. 10. The effective stress path in the p’' vs. q stress space
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distance of footing
from the center (cm) : €
5.0 10.0 0

distance of footing
from the center {cm) ¢
5.0 10.0

distance of footing
from the center {cm)

T T 0

. (] ® & 0 0 0 @ o

...°‘° k * e ° © & L ® e ® e o .

o 2.0k J [+ 2.0 [ ] - o o
i 2.0 o .
w w0

s ¢ g *t

w o -

o @ o

£ = £

S 4.0 4 = 4.0k - B N

840 s:0.1em §40" s:0.35 cm 840 v

! !

0 5.0 10.0
T T

S$:0.551 cm

! ] 1 1

Fig. 11. The distribution of footing stress at each step

5) Observing the effective stress path, we
discovered that both the element .in the
wedge surrounded by the shear bands and
the element just beneath the loading plate
experience unloading once during the exten-
sion of the shear bands.

6) -And finally, we found that the distri-
bution of footing stress at each step is
simildr to the empirical results for cohesive
soils. ’
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NOTATIONS
[Bl=matrix related as {D}=[B]{v"}

[Bz]=matrix related as 702 =[Bgl{vN}.
[B,]=matrix related as irD=[B,]1{v"}
[Cl=constitutive stiffness matrix
D=stretching tensor
h=hardening modulus

h,=second hardening modulus - -

hyp=total head of pore water
K=permeability tensor
L =velocity gradient
[M]=matrix related as {L}=[M]{v"}
" [N]=shape matrix

S;, S';=total and effective nominal stress-rate
T, T'=total and effective Cauchy stress tensor

T" =co-rotational rate of effective stress tensor
#=pore water pressure
{v} =velocity vector
{v¥} =velocity vector at a nodal point
. {4d} =increment of nodal displacements
{4F} =load vector
" y=stress ratio defined as g¢/p’, in which
q=+3[2]|S]|
Q=potential head
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APPENDIX

The boundary conditions are summarized
in Fig. A 1.

Fig. A1l. The boundary conditions
of the coupling problem

S=I+7T, (kinematic ‘boundary),
and S=1"4,+ ["y,(drainage boundary),
where S is the surface boundary of a region
V at some given time ¢, and I'y;, Iy, 1y
and [I',, are subject to the total nominal
traction-rate, the (displacement) velocity,
the total water head, and the water velocity
flowing outward, respectively. On these
boundaries we need the known values as
follows :

§=S;n (on Iy,
v=v (on I,
hy=h, (on I'n,),
and - v,=K-grad(h,) (on I'y),

In our simulation of a ‘punch problem’, the
Cauchy traction ¢ and its rate # are equal to
zero on the free surface (I’y). Therefore, the

nominal traction-rate on its boundary is §=

0, since é=i‘+(trD~n-Dn)t,. On the other
hand, the drainage boundary in our simu-
lation is assumed to be impermeable
(v,=0) in order to fulfill the perfect un-
drained conditions.
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