Characteristics of non-tectonic tremors around the Lützow-Holm Bay, East Antarctica, during 2013–2015

メタデータ	言語: eng
	出版者:
	公開日: 2019-03-18
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00053789

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1	Characteristics of non-tectonic tremors around the Lützow-Holm Bay, East
2	Antarctica, during 2013–2015
3	
4	Yuya Tanaka ^a , Yoshihiro Hiramatsu ^{b,*} , Yoshiaki Ishihara ^{c,1} , Masaki Kanao ^d
5	
6	^a Graduate School of Natural Science and Technology, Kanazawa University
7	Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
8	
9	^b School of Natural System, College of Science and Engineering, Kanazawa University
10	Kakuma, Kanazawa, Ishikawa, 920-1192, Japan
11	
12	^c Japan Aerospace Exploration Agency
13	Yoshinodai 3-1-1, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
14	
15	¹ Current affiliation: National Institute for Environmental Studies, 16-2, Onogawa,
16	Tsukuba, Ibaraki 305-8506, Japan.
17	
18	
19	^d National Institute of Polar Research, Research Organization of Information and
20	Systems
21	10-3, Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
22	
23	*Corresponding author. E-mail address: yoshizo@staff.kanazawa-u.ac.jp (Yoshihiro
24	Hiramatsu)
25	
26	Other authors' e-mail address: mail2ytanaka@gmail.com (Yuya Tanaka),
27	ishihara.yoshiaki@nies.go.jp (Yoshiaki Ishihara), kanao@nipr.ac.jp (Masaki Kanao)

28 Abstract

30	Characteristics of non-tectonic tremors, excited mainly by the interaction within the
31	cryosphere, were investigated using seismic waveform data of 2013-2015 recorded at
32	broadband stations on the east coast of the Lützow-Holm Bay (LHB), East Antarctica.
33	The tremors were classified into three types by spectral and waveform features. Type A
34	events have long durations, typically several hours to days, with high amplitudes of
35	spectra over 1-8 Hz. They occur dominantly in austral summers. Type B events have
36	characteristically irregular variations in discrete dominant frequencies in spectra. Type
37	C events are harmonic tremors with discrete dominant frequencies in spectra that vary
38	regularly with time. Type B and C events show similar seasonal variations: they are
39	numerous around April and less so in austral winter. Comparison of spectra between
40	seismic waves and infrasound, together with satellite images, suggests that type A
41	events originated from storm-induced swells near off-LHB. Source locations of type C
42	events and satellite images suggest that type C events are likely to result from the
43	collision/crevassing of ice blocks in fast-sea-ice in LHB. Similar seasonal variations of
44	type B and C events imply that these two events have similar origins.

46 Keywords:

47 cryosphere; fast-sea-ice; harmonic tremor; microbaroms; MODIS

1. Introduction

51	Non-tectonic tremors and quakes, which are excited by physical interactions among the
52	atmosphere, oceans, cryosphere, and the surface of the solid Earth, have often been
53	observed in polar regions (e.g., Kanao et al., 2012; MacAyeal et al., 2008, 2009; Nettles
54	and Ekström, 2010; Peng et al., 2014). Some tremors are caused by ice-related
55	phenomena such as collision of sea-ice, opening and closing of oceanic tide cracks,
56	collapse of icebergs, and the movements of glaciers and ice sheets. Moreover, ice-
57	related phenomena are useful as a proxy to assess climate change in polar regions.
58	Ekström et al. (2006) found clear seasonal variation of the occurrence of glacier
59	earthquakes in Greenland, with the greatest number in summer, and increase of their
60	annual number, reflecting a change in climate conditions in the Arctic. In this regard,
61	the monitoring of ice quakes and tremors is important to elucidate the long-term
62	variation of the surface environment in polar regions.

64	Along the eastern coast of Lützow-Holm Bay (LHB) in East Antarctica, seismic
65	observations with broadband seismographs have been conducted at Syowa Station
66	(SYO; 69.0°S, 39.6°E) and near the outcrop field sites. Non-tectonic tremors and quakes
67	have been recorded around LHB. Kanao et al. (2012) reported a tremor with harmonic
68	overtones in 1997 winter that might be related to a sea-ice discharge event, which were
69	imaged clearly by the National Oceanic and Atmospheric Administration (NOAA)
70	satellite. Kanao et al. (2012) also reported microseisms in the frequency range of 0.05-1
71	Hz at SYO and their weakened amplitude in austral winter. Expansion of the sea-ice
72	spreading area and the increase of their thickness depressed the oceanic swell energy
73	recorded at SYO seismograms. It is particularly interesting that they also pointed out
74	some non-tectonic signals with frequencies higher than 1 Hz, implying that these signals
75	are of local surface origin, presumably associated with ice-related phenomena.
76	
77	Recently, Kanao et al. (2017) reported ice-related tremors around LHB, particularly in
78	April 2015, by checking the power spectral density (PSD) of short-period and
79	broadband seismograms at SYO. Comparison with Moderate Resolution Imaging
80	Spectroradiometer (MODIS) imagery and tremor activities suggested that the tremors
81	occurred along large cracks inside the fast-sea-ice, between offshore icebergs and the

82	edge of the fast-sea-ice, between the fragmented fast-sea-ice and packed-sea-ice, or
83	other origins. Nevertheless, the tremors source locations have not been identifiable from
84	seismic waveform data alone. Furthermore, Kanao et al. (2017) focused only on the
85	harmonic tremors and causes of other tremors, which we describe later, has not been
86	specified.
87	
88	Another tool to monitor the surface environment in polar regions is infrasound.
89	Infrasound observations have continued since 2008 at SYO (Ishihara et al., 2009).
90	Ishihara et al. (2015) analyzed infrasound waves recorded at SYO in 2008–2010. They
91	demonstrated that the amplitude of microbaroms became low during austral winters and
92	inferred that a larger amount of sea-ice, distributed around the LHB, decreased ocean
93	wave loading effects. Murayama et al. (2017) presented information related to the
94	source locations of tremors in April 2015. By analyzing infrasound waveforms recorded
95	at two tripartite arrays on the east coast of LHB during the same period as that examined
96	by Kanao et al. (2017), they located infrasound sources of which frequencies were
97	higher than 1 Hz. Most of the infrasound sources were located within the sea-ice area in
98	LHB. The MODIS imagery implied that these sources corresponded to locations near
99	the fragmentation of icebergs and within the packed-sea-ice areas. However, the

100	consistency between infrasound observations and seismic observations has not been
101	examined. If we locate a tremor source and compare it to the infrasound sources, then
102	we may obtain the information which link the two sources.
103	
104	This study, through consideration of the recently conducted studies described above,
105	specifically examines non-tectonic tremors with frequencies higher than 1 Hz recorded
106	at seismic stations around LHB during a longer period of three years: 2013–2015. The
107	identified tremors were classified into several types based on spectral and waveform
108	features. We discuss those seasonal variations and their origins together with the
109	characteristic features of infrasound waveforms and spectra, source locations of two
110	nontectonic-tremors estimated from seismograms, and MODIS imagery. Through the
111	discussion, we suggest the causes of not only harmonic tremors but also other non-
112	tectonic tremors and a possible link between the tremor source and the infrasound
113	source.
114	
115	2. Data and Method
116	
117	2.1. Seismic waveform data

119	Seismic observations have been conducted since 1959 at SYO using a short-period
120	seismometer with a natural period of 1.0 s (Eto, 1962). A three-component broadband
121	seismometer of STS-1 has been operating since 1989 at SYO (Fig. 1; Nagasaka et al.,
122	1992). Since 1997, a three-component broadband seismometer of Güralp CMG-40T has
123	also been installed at field outcrop stations, i.e. Langhovde, Skallen, and Rundvagshetta
124	(Fig. 1). We use velocity waveform data recorded by STS-1 at SYO and CMG-40T at
125	the other three stations. The sampling frequencies of STS-1 and CMG-40T are 20 Hz
126	and 100 Hz, respectively. The analysis period extends from January 2013 through
127	December 2015.
128	
129	2.2. Identification of tremors
130	
131	This study specifically examines tremors with frequency higher than 1 Hz, of which P-
132	waves and S-waves are not clear and the duration is longer than 5 min, to distinguish
133	tremors from short-duration ice quakes. To enhance the detectability of tremors, we
134	applied a band-pass filter of 2-8 Hz to velocity waveforms.
135	

136	We identified the nontectonic-tremors by visual inspection of velocity waveforms and
137	its spectrograms calculated from velocity waveforms using fast Fourier transform
138	(FFT). The start time of the tremor was set to the time when the amplitude
139	exceeds the noise level and the end time was set to the time when the amplitude
140	becomes below the noise level. In making spectrograms, we set the time window length
141	as 60 s for FFT and shifted it to every 30 s. The noise levels of N-S component is
142	usually ~5 percent smaller than that of E–W component and ~30 percent smaller than
143	that of U–D component, resulting \sim 30% higher signal-to-noise ratio of N–S component
144	than the other two components. Furthermore, continuous meteorological and infrasound
145	observations have been conducted at SYO, allowing us to compare seismic observation
146	to those observations. We, thus, mainly used velocity waveforms and spectrograms of
147	N-S component at SYO for visual inspection.
148	
149	2.3. Locating of sources of nontectonic-tremors

Tremors observed in this study show unclear onset, making it impossible to locate those
sources using a conventional hypocenter determination procedure. For tectonic tremors,
a cross-correlation function of envelope waveforms at close stations is available to

154	estimate the travel time differences of major phases, enabling us to locate those sources
155	(e.g., Obara, 2002). In this study, the distance between the stations is so large that the
156	coherency between the observed waveforms at different stations is usually low.
157	Plausible reasons of low coherency could be a relatively wide range of the azimuth and
158	a radiation pattern of tremors. A waveform could be different between stations with
159	different azimuths by reflecting the radiation pattern. Also, for small tremors which
160	might occur in the relatively close area to SYO, we could not observe the waveform at
161	all stations. However, for some large tremors, we found a coherent part in envelope
162	waveforms at all stations. Therefore, we were able to estimate travel time differences of
163	large nontectonic-tremors recorded at different stations as follows.
164	
165	First, we calculated envelope waveforms from root-mean-square amplitudes of velocity
166	waveforms of the N–S component of each station with a moving time window of 300 s.
167	Second, the cross-correlation function of envelope waveforms was calculated for each
168	pair of the stations by selecting a proper time window, which was selected by trial and
169	error. We used the lag time, which gives the maximum value of the cross-correlation
170	function, as a travel time difference of a pair of the stations. In this study, we obtained
171	lag times of six pairs from four stations for each event. Third, we estimated the

172	hypocenters of nontectonic-tremors with grid search using the lag times. For the grid
173	search, we set a tentative hypocenter at every $0.1^{\circ} \times 0.1^{\circ}$ on the surface in the area
174	shown in the upper-right panel of Fig. 4 and calculated the theoretical travel time
175	between a tentative hypocenter and a station. We assumed a velocity of 1500 m/s by
176	referring acoustic velocity of sound in water (Carmona et al., 2015) and Rayleigh wave
177	velocity in ice (Tsoflias et al., 2008). As the optimal hypocenter, we chose a grid at
178	which the sum of squares of the residuals (Res^2) between the observed and the
179	theoretical travel time differences at the stations (τ_i and t_i , respectively), defined by
180	$Res^2 = \sum_{i=1}^6 \tau_i - t_i ^2$, reaches the minimum. We also estimated the 95% confidence
181	area of the hypocenter based on the chi-square distribution.
182	
183	3. Results and Discussion
184	
185	3.1. Classification of tremors
186	
187	After identifying 84 tremors in 2013, 148 in 2014, and 198 in 2015, we classified the
188	tremors into three types (type A–C) based on waveform and spectrogram characteristics
189	(Fig. 2). Type A tremors, nontectonic-tremors with an extremely long duration (several

198	3.2. Seasonal variation in nontectonic-tremors
197	
196	and 151 type C events in 2013–2015.
195	addition, they show clear overtones. We identified 79 type A events, 200 type B events,
194	an increase or decrease (gliding-up or down), of dominant frequencies with time. In
193	type B events are discrete. Type C, typical harmonic tremors, show a continuous shift,
192	variation in a dominant frequency with time. The dominant frequency components of
191	Type B are nontectonic-tremors characterized by an irregular (nonlinear featured)
190	hours to days), are shown by the spectrogram to be excited at frequencies of 1-8 Hz.

199

We show the monthly number and the monthly cumulative duration of the tremors for 200 each type in Fig. 3. Variations both in number and in cumulative duration are somewhat 201 different between these types. For type A, the number is the smallest among the three 202 203 types, although the duration is the longest. Seasonal variations in those are similar each year, large in February-April, austral summer, and small around August, austral winter 204 (Fig. 3 upper panels). For type B, the total number in three years is the largest. The 205 206 seasonal variations show an almost identical pattern each other, large around April, austral summer, and small in May-November, austral winter (Fig. 3 middle panels). 207

208	Both the variations are the largest in 2015, although the variation in monthly mean
209	temperature at SYO is almost identical in each year. Therefore, we consider that the
210	variation in the number is related not to a local climate change but to a condition change
211	of fast-sea-ice, such as crevassing and discharging, in LHB (e.g., Kanao et al., 2017).
212	Type C events were fewer in 2013, but more numerous in 2014 and 2015 (Fig. 3 lower
213	panels). This increase is similar to that observed for type B. The seasonal variations of
214	type C events are not clear for 2013 because of the small number of the events, whereas
215	those are apparently similar to those of type B in 2014 and 2015. The similarities and
216	differences in the variations suggest that the cause of type A events differs from those of
217	type B and C events, although type B and C events might have a common cause.
218	
219	3.3. Source location of type C tremors
220	
221	Applying the procedure described in sub-section 3.2, we tried to estimate the source
222	locations of type C events in 2015, because Murayama et al. (2017) reported ice-related
223	infrasound around LHB and we can compare our results to their results. As a result, we
224	estimated the source locations of two type C events on 1 and 5 April 2015 (Fig. 4). Both
225	sources are located within or the edge of fast-sea-ice in LHB, although the 95%

226	confidence area is large because of the limited and orientated distribution of seismic
227	stations along the eastern coast of LHB. Fig. 5 depicts MODIS imagery around LHB
228	obtained on 24 March, and 11 and 17 April in 2015. These images show clearly that the
229	two type C events are closely related to a change in the condition of the fast-sea-ice in
230	LHB. We can recognize obviously that the development of a break off as well as a
231	movement (enlargement of sea area near by the fast-sea-ice shown as a black area) of
232	the fast-sea-ice in LHB from on late March to middle April in 2015 (Fig. 5). It is
233	noteworthy that the estimated source locations correspond to areas where the break off
234	and/or the movement of the fast-sea-ice was observed. Kanao et al. (2017) reported that
235	a large volume of the fast-sea-ice was discharged in the northwestern part of LHB on
236	early April in 2015, which might be related to the occurrence of nontectonic-tremors.
237	Murayama et al. (2017) estimated the source locations of ice quakes from array analyses
238	of infrasound data recorded at sites along the eastern coast of LHB in April 2015. The
239	source locations of ice quakes (infrasound sources) are concentrated in the northwestern
240	part of LHB. The results of these two studies are coincident with our estimations of the
241	source locations of the two type C events.
242	

3.4. Causes of nontectonic-tremors

245	For non-tectonic tremors of all types, the number presents seasonal variation in each
246	year: active in austral summers and calm in austral winters. A possible cause of this
247	seasonality is a seasonal variation in weather conditions and resulting cryosphere
248	conditions around LHB. Infrasound observations have been conducted since 2008 at
249	SYO (Ishihara et al., 2015). Infrasound signals include the background oceanic signals,
250	termed as microbaroms in a frequency range of 0.1–0.3 Hz. Stormy weather, such as a
251	blizzard, enhances ocean waves and oceanic-originated microbaroms. Therefore, we
252	compare seismic data to infrasound data as a proxy of ocean wave conditions. Fig. 6
253	portrays examples of spectrograms of seismic waves which include two type A events,
254	the sum of the velocity amplitude spectrum (VAS) of seismic waves over a range of 1-8
255	Hz and that of power spectrum density (PSD) of microbaroms over a range of 0.1–0.3
256	Hz (Ishihara et al., 2015), both of which were observed at SYO, in austral summer (left
257	panels) and winter (right panels) seasons. We do not use PSD of seismic waves for
258	comparison of the sums because the similarity is most distinct between VAS of seismic
259	waves and PSD of microbaroms. During the occurrence of type A events in the austral
260	summer, we recognize clearly that the temporal variations of the sum of VAS and that
261	of PSD are very similar (Fig. 6 left upper-middle and left lower-middle panels). A large

262	PSD, together with a long duration up to several days, of microbaroms indicates the
263	occurrence of a blizzard around LHB. This fact suggests that type A events have a
264	common origin with microbaroms. In other words, the type A events are possibly
265	originated from strong ocean waves in stormy weather: storm-induced swells. However,
266	during the austral winter, we can recognize no coherent power of seismic waves with
267	that of microbaroms, although the PSD of microbaroms is large (Fig. 6 right upper-
268	middle and right lower-middle panels). In other words, no type A event is observed in
269	spite of strong ocean waves in stormy weather. A large difference can be found in the
270	ice condition around LHB between the two seasons from MODIS imagery. In the
271	austral summer, fast-sea-ice in LHB is fragile; no sea-ice is distributed off the edge of
272	fast-sea-ice (Fig. 6 lower left panel). However, in the austral winter, fast-sea-ice is well
273	developed in LHB. Large fields of packed sea-ice are distributed off the edge of fast-
274	sea-ice (Fig. 6 lower right panel). The former strengthens the occurrence of tremors in
275	close areas to the stations than the latter because the source location of microbaroms
276	could be farther (offshore into the southern Indian Ocean) for the latter than for the
277	former. The same phenomena were reported for microseism in the 1-20 s period band
278	recorded at seismic stations in Antarctica by Grob et al. (2011). They reported that the
279	growth of sea-ice in austral winter can impede microseism generation near coastal areas.

280	In fact, the amplitude of VAS of a microseism band, 0.05–1 Hz, is large when type A
281	events occur in the austral summer, but it is low when no type A event occurs in the
282	austral winter (Fig. 6). This finding suggests that the type A events might originate from
283	storm-induced swells.
284	
285	Harmonic nontectonic-tremors such as type C events are observed widely in polar
286	regions: around the Ross Sea (MacAyeal et al., 2009), the marginal sea of the Antarctic
287	Peninsula (Bohnenstiehl et al., 2005; Dziak et al., 2009), and the continental margin of
288	Dronning Maud Land (Eckstaller et al., 2006; Muller and Eckstaller, 2003). The
289	spectral features of type C events, which are high-frequency harmonic tremors with
290	frequencies higher than 1 Hz, are the same as those reported in previous works,
291	suggesting that type C events are caused by the collision and rubbing of ice blocks. As
292	discussed in Kanao (2017), the activity of harmonic tremors recorded at seismic stations
293	in LHB is apparently related closely to a breaking-off of fast-sea-ice or discharge events
294	in LHB. In this study, the sources of type C events are located within or the edge of the
295	fast-sea-ice in LHB. This evidence is the first directly showing that harmonic tremors
296	occur around the fast-sea-ice area. Furthermore, the MODIS imagery shows that the

source locations are close to a break-off area of fast-sea-ice in LHB, as described in sub-

298	section 3.3 (Fig. 4). Therefore, we conclude from this evidence that breaking-off and
299	calving of fast-sea-ice and the collision of ice blocks are causes of type C events. Kanao
300	et al. (2017) reported that harmonic tremors occurred independently from weather
301	conditions. The difference in seasonal variation in the monthly number and the monthly
302	cumulative duration between the type A and the type C events can be interpreted by the
303	type A events from storm-induced swells and type C events from breaking and collision
304	of ice blocks.
305	
306	For the type B event, we have no direct information related to the source location. The
307	seasonal variations in the number and the cumulative duration of the type B events are
308	similar to those of the type C events rather than the type A events (Fig. 3). Furthermore,
309	the spectral feature of the type B events, i.e. discrete (nonlinear) dominant frequencies,
310	is similar to that of type C events rather than the type A events (Fig. 2). These
311	similarities suggest that the cause of the type B events might resemble the cause of type
312	C. Therefore, we consider that the type B events also might be related to the breaking-
313	off and calving of fast-sea-ice and the collision of ice blocks in LHB. Their nonlinear
314	features in type B suggest less rigid origins such as crashing phenomena between the
315	packed-sea-ice and fragmentation of fast-sea-ice in and around the bay.

2	1	6
3	I	U

317 **4. Conclusions**

318 We investigated non-tectonic tremors during 2013–2015 recorded at broadband 319 seismic stations around LHB, East Antarctica. Features of waveforms and velocity amplitude spectra enable us to classify the tremors into three types: A-C types. Type A 320 events are characterized by a long duration and a wide spectrum strength over 1-8 Hz. 321 322 Type B and C events are characterized by discrete dominant frequencies in the spectrum. They show, respectively, irregular and a regular variation in the dominant 323 frequencies with time. In other words, type C events are harmonic tremors. We also 324 325 examine seasonal variations in the monthly number and cumulative duration of each 326 type. All types show clear seasonal variation, but with patterns that differ between the 327 types. The occurrence of type A events concentrates during February–April in austral summer. Type B and C events tend to occur around April and less in May–November. 328 Comparison of the strength of spectra between seismic waves and infrasound shows 329 clearly that type A events are closely related to the strength of microbaroms in austral 330 summer, but show no relation in austral winter. The MODIS imagery reveals a 331 332 difference of the development of fast-sea-ice and packed sea-ice in/around LHB, suggesting that well-developed fast-sea-ice/packed sea-ice prevent observation of 333

334	tremors generated near coastal areas. Therefore, we infer that type A events originated
335	from storm-induced swells. The sources of two type C events are estimated to be
336	located in and around fast-sea-ice in LHB. They show consistency with the breaking-off
337	of fast-ice observed from the MODIS imagery. These facts, together with information
338	from previous studies, suggest that type C events are likely to result from the breaking
339	and collision of ice blocks. Similarities between type B and C events imply that the
340	cause of the type B events is common to that of type C events rather than to that of type
341	A events.
342	
343	References
343 344	References Bohnenstiehl, D., Dziak, R.P., Parlk, M., Matsumoto, H., 2005. Seismicity of the Polar
343344345	References Bohnenstiehl, D., Dziak, R.P., Parlk, M., Matsumoto, H., 2005. Seismicity of the Polar Seas: The potential for hydroacoustic monitoring of tectonic and volcanic
343344345346	References Bohnenstiehl, D., Dziak, R.P., Parlk, M., Matsumoto, H., 2005. Seismicity of the Polar Seas: The potential for hydroacoustic monitoring of tectonic and volcanic processes. The 12th Seoul International Symposium on Polar Science, Ansan, 17–
 343 344 345 346 347 	References Bohnenstiehl, D., Dziak, R.P., Parlk, M., Matsumoto, H., 2005. Seismicity of the Polar Seas: The potential for hydroacoustic monitoring of tectonic and volcanic processes. The 12th Seoul International Symposium on Polar Science, Ansan, 17– 19 May 2005, 11–14.
 343 344 345 346 347 348 	References Bohnenstiehl, D., Dziak, R.P., Parlk, M., Matsumoto, H., 2005. Seismicity of the Polar Seas: The potential for hydroacoustic monitoring of tectonic and volcanic processes. The 12th Seoul International Symposium on Polar Science, Ansan, 17– 19 May 2005, 11–14.
 343 344 345 346 347 348 349 	References Bohnenstiehl, D., Dziak, R.P., Parlk, M., Matsumoto, H., 2005. Seismicity of the Polar Seas: The potential for hydroacoustic monitoring of tectonic and volcanic processes. The 12th Seoul International Symposium on Polar Science, Ansan, 17– 19 May 2005, 11–14.
 343 344 345 346 347 348 349 350 	References Bohnenstiehl, D., Dziak, R.P., Parlk, M., Matsumoto, H., 2005. Seismicity of the Polar Seas: The potential for hydroacoustic monitoring of tectonic and volcanic processes. The 12th Seoul International Symposium on Polar Science, Ansan, 17– 19 May 2005, 11–14. Carmona, E., Almendros, J., Alguacil, G., Soto, I.J., Luzon, F., Ibanez, J.M., 2015. Identification of T-waves in the Alboran Sea. Geophys. 172, 3179–3188. doi

353	Dziak, R.P., Parlk, M., Lee, W.S., Matsumoto, H., Bohnenstiehl, D.R., Haxel, J.H.,
354	2009. Tectonomagmatic activity and ice dynamics in the Bransfield Strait back-arc
355	basin, Antarctica. In: the 16th Inter. Sympos. on Polar Sci.; 10-12 June 2009;
356	Incheon: Incheon: KOPRI; pp. 59–68.
357	
358	Eckstaller, A., Müller, C., Ceranna, L., Hartmann, G., 2006. The geophysics
359	observatory at Neumayer Stations (GvN and NM-II) Antarctica, Polarforschung,
360	76, 3–24.
361	
362	Ekstrom, G., Nettles, M., Tsai, V.C., 2006. Seasonality and increasing frequency of
363	Greenland glacial earthquakes. Science 311. doi:10.1126/science.1122112.
364	
365	Eto, T., 1962. On the electromagnetic seismographs at Syowa Base, Antarctica. Nankyoku
366	Shiryô (Antarct. Rec.), 14, 1168–1170. (in Japanese with English abstract)
367	
368	Grob, M., Maggi, A., Stutzmann, E., 2011. Observations of the seasonality of the
369	Antarctic microseismic signal, and its association to sea ice variability. Geophysical

370	Research Letters 38, L11302. http://dx.doi.org/10.1029/2011GL047525.
371	
372	Ishihara, Y., Kanao, M., Yamamoto, MY., Toda, S., Matsushima, T., Murayama, T.,
373	2015. Infrasound observations at Syowa Station, East Antarctica: implications for
374	detecting the surface environmental variations in the polar regions. Geoscience
375	Frontiers 6, 285–296.
376	
377	Ishihara, Y., Yamamoto, MY., Kanao, M., 2009. Current status of infrasound pilot
378	observation at Japanese Islands and SYOWA Antarctica, and development of new
379	infrasound sensor using optical sensing method. AGU Fall Meeting, San Francisco,
380	California, USA, A13D-0244.
381	
382	Kanao, M., Maggi, A., Ishihara, Y., Yamamoto, MY., Nawa, K., Yamada, A., Wilson,
383	T., Himeno, T., Toyokuni, G., Tsuboi, S., Tono, Y., Anderson, K., 2012. Seismic
384	wave interactions between the atmosphere-ocean-cryosphere and geosphere in
385	polar regions. In: Kanao, M., Takenaka, H., Murai, Y., Matsushima, J., Toyokuni,
386	G. (Eds.), Seismic Waves-Research and Analysis, ISBN 978-953-307-944-8,
387	InTech, Rijeka, Croatia, 1–20.

389	Kanao, M., Murayama, T., Yamamoto, MY, Ishihara, Y., 2017. Seismic tremors and
390	their relation to cryosphere dynamics in April 2015 around the Lützow-Holm Bay.
391	East Antarctica. International Journal of Geosciences 8, 1025–1047.
392	https://doi.org/10.4236/ijg.2017.88058.
393	
394	MacAyeal, R.D., Okal, E.A., Aster, R.C., Bassis, N.J., 2008. Seismic and hydroacoustic
395	tremor generated by colliding icebergs. Journal of Geophysical Research 113,
396	F03011. doi:10.1029/2008 JF001005.
397	
398	MacAyeal, D.R., Okal, E.A., Aster, R.C., Bassis, J.N., 2009. Seismic observations of
399	glaciogenic ocean waves on icebergs and ice shelves. Journal of Glaciology 55,
400	193-206. https://doi.org/10.3189/002214309788608679.
401	
402	Muller, C., Eckstaller, A., 2003. Local seismicity detected by the Neumayer
403	seismological network, Dronning Maud Land, Antarctica: Tectonic earthquakes and
404	ice-related seismic phenomena. IX International Symposium on Antarctic Earth
405	Science Program and Abstracts, Potsdam, p. 236.

407	Murayama, T., Kanao, M., Yamamoto, MY, Ishihara, Y., Matsushima, T., Kakinami,
408	Y., Okada, K., Miyamachi, H., Nakamoto, M., Takeuchi, Y., Toda, S., 2017. Time-
409	space variations in infrasound sources related to environmental dynamics around
410	Lützow-Holm Bay, east Antarctica. Polar Science 14, 39-48.
411	
412	Nagasaka, K., Kaminuma, K., Shibuya, K., 1992. Seismological observations by a three-
413	component broadband digital seismograph at Syowa Station, Antarctica. Recent
414	Progress in Antarctic Earth Science, ed. by Y. Yoshida et al. Tokyo, Terra Sci.
415	Publ., 595-601. (TERRAPUB e-Library) http://www.terrapub.co.jp/e-
416	library/aes/pdf/RP0595.PDF.
417	
418	Nettles, M., Ekström, G., 2010. Glacial earthquakes in Greenland and Antarctica. The
419	Annual Review of Earth and Planetary Sciences 38, 467–491.
420	https://doi.org/10.1146/annurev-earth-040809-152414.
421	
422	Obara, K., 2002. Nonvolcanic deep tremor associated with subduction in southwest
423	Japan. Science 296, 1679–1681.

425	Peng, Z., Walter, J.I., Aster, R.C., Nyblade, A., Wiens, D.A., Anandakrishnan, S., 2014.
426	Antarctic icequakes triggered by the 2010 Maule Earthquake in Chile. Nature
427	Geoscience 7, 677-681. https://doi.org/10.1038/ngeo2212.
428	
429	Tsoflias, G.P., Ivanov, J., Anandakrishnan, S., Miller, R., 2008. Use of active source
430	seismic waves in glaciology. Symposium on the Application of Geophysics to
431	Engineering and Environmental Problems 1240–1243.
432	https://doi.org/10.4133/1.2963234.
433	
434	Acknowledgements
435	We are grateful to the many people who have collaborated with seismic/infrasound
436	observation around LHB, especially for members of the Japanese Antarctic Research
437	Expeditions (JARE). We also thank for two anonymous reviewers for constructive
438	comments. This work was supported by JSPS KAKENHI Grant Number 26241010 (PI
439	Masaki Kanao). We used the MODIS imagery from National Aeronautics and Space
440	Administration (NASA). We also used temperature data from Japan Meteorological
441	Agency. The authors declare that they have no competing interests related to the

442	contents	of	this	work.

446	Fig. 1. Locations of seismic stations around the Lützow-Holm Bay (LHB) used for this
447	study.
448	
449	Fig. 2. Examples of velocity seismograms and velocity amplitude spectra of the N–S
450	component recorded at SYO: (upper) type A, (middle) type B, and (lower) type C
451	tremors.
452	
453	Fig. 3. Temporal variations in (left row) monthly number and (right row) monthly
454	cumulative duration of (upper) type A, (middle) type B, and (lower) type C events. The
455	dashed line in each panel shows the monthly mean temperature at SYO.
456	
457	Fig. 4. Results of the source locating of two type C events, (a) on 1 April 2015 and (b)
458	on 5 April 2015. (upper-left) Examples of a waveform and a spectrogram at SYO.
459	(upper-right) A red star shows the source location of an event. The area enclosed by a

461	seismic stations used for the source locating. The background image is the MODIS
462	imagery on 11 April 2015. (lower left) Envelope waveforms of N-S component velocity
463	waveforms at each station. Red lines show a time window for calculation of cross
464	correlation function (lower-right) cross correlation functions of envelope waveforms at
465	two stations.
466	
467	Fig. 5. MODIS imagery on (upper) 24 March, (middle) 11 April, and (lower) 17 April
468	in 2015. Blue lines represent the break off within the fast-sea-ice. Red stars and the
469	dashed lines are the same as those in Fig. 4.
470	
471	Fig. 6. Comparison between (upper) velocity amplitude spectrum (VAS) of N–S
472	component velocity waveform at SYO, (upper middle) the sum of VAS over a
473	frequency range of 1–8 Hz, (lower middle) the sum of power spectrum density (PSD) of
474	microbaroms over a frequency range of 0.1–0.3 Hz recorded at SYO. Lower panels are
475	MODIS imagery (left) on 16 February 2014 (in austral summer) and (right) 23
476	September 2014 (in austral winter). The left panels include two type A events and the
477	right panels no events. The amplitude for seismic wave in austral winter is

dashed line is the 95% confidence area of the source location and blue triangles are the

460

478 approximately one order smaller than that in austral summer.

484 Figure 2.

495 Figure 5.

498 Figure 6.