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The holographic principle can lead to cosmological scenarios, i.e., holographic equipartition models.
In this model, an extra driving term (corresponding to a time-varying cosmological term) in cosmological
equations depends on an associated entropy on the horizon of the Universe. The driving term is expected to
be constrained by the second law of thermodynamics, as if the cosmological constant problem could be
discussed from a thermodynamics viewpoint. In the present study, an arbitrary entropy on the horizon, SH ,
is assumed, extending a previous analysis based on particular entropies [Phys. Rev. D 96, 103507 (2017)].
The arbitrary entropy is applied to the holographic equipartition model, in order to universally examine
thermodynamic constraints on the driving term in a flat Friedmann-Robertson-Walker universe at late
times. The second law of thermodynamics for the holographic equipartition model is found to constrain the
upper limit of the driving term, even if the arbitrary entropy is assumed. The upper limit implies that the
order of the driving term is likely consistent with the order of the cosmological constant measured by
observations. An approximately equivalent upper limit can be obtained from the positivity of SH in the
holographic equipartition model.

DOI: 10.1103/PhysRevD.99.043523

I. INTRODUCTION

Numerous observations imply an accelerated expansion
of the late Universe [1–3]. The accelerated expansion can
be explained by lambda cold dark matter (ΛCDM) models,
which assume an extra driving term related to a cosmo-
logical constant Λ and dark energy. However, Λ measured
by observations is 120 orders of magnitude smaller than the
theoretical value from quantum field theory, as pointed out
repeatedly [4]. In order to resolve this discrepancy, various
models have been proposed [5], including ΛðtÞCDM
models [i.e., a time-varying ΛðtÞ cosmology] [6–14],
creation of CDM (CCDM) models [15–17], and thermo-
dynamic cosmological scenarios [18–43]. Most thermody-
namic scenarios are based on the holographic principle
[44], which assumes that the information of the bulk is
stored on the horizon. Among these scenarios, a scenario
based on the holographic principle has recently attracted
attention.
The attracted scenario is Padmanabhan’s holographic

equipartition model [20]. In this model, cosmological
equations can be derived from the expansion of cosmic
space due to the difference between the degrees of freedom
(d.o.f.) on the surface and in the bulk [21–28]. However, an
extra driving term for the accelerated expansion is not
derived from the Bekenstein-Hawking entropy [45], which

is usually used for the entropy on the horizon of the
Universe [29,30]. As an alternative to the Bekenstein-
Hawking entropy, nonextensive entropies (such as the
Tsallis-Cirto entropy [46] and a modified Rényi entropy
[47,48]) and quantum corrections (such as logarithmic
corrections [49–51] and power-law corrections [52,53])
have recently been proposed. In fact, the modified Rényi
entropy and the power-law corrected entropy can lead to an
extra driving term, as examined by the present author
[29,30]. The driving term corresponding to a time-varying
ΛðtÞ is constrained by the second law of thermodynamics
[30]. This implies that the cosmological constant problem
can be discussed from a thermodynamics viewpoint.
However, these results depend on the choice of entropy
on the horizon. Accordingly, not a particular entropy but
rather an arbitrary entropy is required for examining
thermodynamic constraints on the driving term universally.
The thermodynamic constraint could provide new insights
into a discussion of the cosmological constant problem.
In this context, we assume an arbitrary entropy on the

horizon, extending the previous works [29,30] (in which
particular entropies were used). In the present study, we
apply the arbitrary entropy to the holographic equipartition
model, in order to universally examine thermodynamic
constraints on an extra driving term in cosmological
equations for a flat Friedmann-Robertson-Walker (FRW)
universe at late times. In addition, the driving term is
systematically formulated using the Bekenstein-Hawking*komatsu@se.kanazawa-u.ac.jp
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entropy, which is considered to be the standard scale of
the entropy on the horizon. The formulation should reveal
the influence of deviations from the Bekenstein-Hawking
entropy on the driving term. In the present study, we clarify
the thermodynamic constraints on the holographic equi-
partition model and discuss the order of the driving term
from a thermodynamics viewpoint. To this end, both the
positivity of entropy and the second law of thermodynam-
ics are examined. The systematic study of the thermody-
namic constraints on this model should help to develop a
deeper understanding of cosmological scenarios based on
the holographic principle. Note that we do not discuss the
inflation of the early Universe because we focus on the late
Universe.
The remainder of the article is organized as follows. In

Sec. II, ΛðtÞCDM models are briefly reviewed for a typical
formulation of cosmological equations. In Sec. III, the
Bekenstein-Hawking entropy is reviewed for the standard
scale of the entropy on the horizon of the universe.
In Sec. IV, a holographic equipartition model is introduced.
In this section, an acceleration equation that includes an
extra driving term is derived, assuming an arbitrary entropy
on the horizon. The driving term is systematically formu-
lated using the Bekenstein-Hawking entropy. In Sec. V,
thermodynamic constraints on the driving term are exam-
ined. The order of the driving term is discussed from both
the positivity of entropy and the second law of thermody-
namics. Finally, in Sec. VI, the conclusions of the study are
presented.
It should be noted that an entropic-force model proposed

by Easson et al. [33] is one of the cosmological scenarios
based on the holographic principle and has been examined
from various viewpoints [34–43]. The entropic-force model
is not discussed in the present study. (The concept of the
entropic-force model is different from the idea that gravity
itself is an entropic force [54]. However, the idea of
Verlinde’s entropic gravity is applied to the entropic-force
model. For details of entropic gravity, see, e.g., the work of
Visser [55].)

II. Λ(t)CDM MODEL

Cosmological equations in a holographic equipartition
model are expected to be similar to those for ΛðtÞCDM
models [6–14]. In this section, we briefly review a typical
formulation of the cosmological equations for the
ΛðtÞCDM model, according to Refs. [29,30,43].
We consider a flat FRW universe and use the scale factor

aðtÞ at time t. In the ΛðtÞCDM model, the Friedmann
equation is given as

�
_aðtÞ
aðtÞ

�
2

¼ HðtÞ2 ¼ 8πG
3

ρðtÞ þ fðtÞ; ð1Þ

and the acceleration equation is

äðtÞ
aðtÞ ¼

_HðtÞ þHðtÞ2

¼ −
4πG
3

�
ρðtÞ þ 3pðtÞ

c2

�
þ fðtÞ; ð2Þ

where the Hubble parameter HðtÞ is defined by

HðtÞ≡ da=dt
aðtÞ ¼ _aðtÞ

aðtÞ : ð3Þ

Here, G, c, ρðtÞ, and pðtÞ are the gravitational constant, the
speed of light, the mass density of cosmological fluids, and
the pressure of cosmological fluids, respectively [43].
Moreover, fðtÞ is an extra driving term, corresponding
to a time-varying cosmological term.
Usually, fðtÞ is replaced by ΛðtÞ=3 for the ΛðtÞCDM

model. When fðtÞ ¼ Λ=3, we refer to this model as the
ΛCDM model. From observations, the order of the density
parameter ΩΛ for Λ is 1 [29,30]. For example, ΩΛ ¼ 0.692
is from the Planck 2015 results [2]. Accordingly, the order
of the cosmological constant term, OðΛ

3
Þ, can be written as

O

�
Λ
3

�
¼ OðΩΛH2

0Þ ≈OðH2
0Þ; ð4Þ

where ΩΛ is defined by Λ=ð3H2
0Þ, and H0 is the Hubble

parameter at the present time [29,30]. We later use this to
discuss the order of an extra driving term.
Various driving terms for the ΛðtÞCDM model [6–14]

have been examined, such as a power series of H [9]. In
particular, the simple combination of the constant and H2

terms, i.e., C0H2
0 þ C1H2, has been extensively examined

and has been found to be favored, where C0 and C1 are
dimensionless constants. See, e.g., the works of Solà et al.
[9], Lima et al. [10], and Gómez-Valent et al. [12]. In
addition, observations have revealed that C1 is small,
whereas C0 for the constant term is dominant [9].
Therefore, it is expected that we should focus on the
constant term in discussing the order of the driving terms.
The constant term is written as

fcstðtÞ ¼ C0H2
0: ð5Þ

In the ΛðtÞCDM model, the constant term can be obtained
from an integral constant of the renormalization group
equation for the vacuum energy density [13].
In the present study, a holographic equipartition model is

assumed to be a particular case of ΛðtÞCDM models,
although the theoretical backgrounds are different
[29,30,43]. For example, from Eqs. (1) and (2), the
continuity equation for the ΛðtÞCDM model [29,43] is
given by
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_ρðtÞ þ 3
_aðtÞ
aðtÞ

�
ρðtÞ þ pðtÞ

c2

�
¼ −

3_fðtÞ
8πG

: ð6Þ

The right-hand side of this equation is nonzero, except for
the case of a constant driving term. This nonzero right-hand
side implies a kind of energy exchange cosmology in which
the transfer of energy between two fluids is assumed [56].
Based on the holographic principle, the nonzero right-hand
side can be interpreted as a kind of transfer of energy
between the bulk (the Universe) and the boundary (the
horizon of the Universe) [29].

III. BEKENSTEIN-HAWKING ENTROPY SBH
ON THE HORIZON OF THE UNIVERSE

The Bekenstein-Hawking entropy [45] is considered to
be the standard scale of an associated entropy on the
horizon of the Universe. In this section, the Bekenstein-
Hawking entropy is reviewed, according to Ref. [30]. We
consider an entropy on the Hubble horizon of a flat FRW
Universe, in which an apparent horizon is equivalent to the
Hubble horizon [33].
The Bekenstein-Hawking entropy SBH is written as

SBH ¼ kBc3

ℏG
AH

4
; ð7Þ

where kB and ℏ are the Boltzmann constant and the reduced
Planck constant, respectively [45]. The reduced Planck
constant is defined as ℏ≡ h=ð2πÞ, where h is the Planck
constant [29,30]. Here, AH is the surface area of the sphere
with the Hubble horizon (radius) rH given by

rH ¼ c
H
: ð8Þ

Substituting AH ¼ 4πr2H into Eq. (7) and using Eq. (8), we
obtain [29,30,43]

SBH ¼ kBc3

ℏG
AH

4
¼

�
πkBc5

ℏG

�
1

H2
¼ K

H2
; ð9Þ

where K is a positive constant given by

K ¼ πkBc5

ℏG
¼ πkBc2

L2
p

; ð10Þ

and Lp is the Planck length, which is written as

Lp ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
: ð11Þ

Using Eq. (9) andH ≠ 0 [1–3], we have a positive entropy:

SBH ¼ K
H2

> 0: ð12Þ

Differentiating Eq. (9) with respect to t, we obtain the rate
of change of entropy, written as [30]

_SBH ¼ d
dt

�
K
H2

�
¼ −2K _H

H3
: ð13Þ

Various observations indicate that H > 0 and _H < 0 [26];
see, e.g., Ref. [57]. Accordingly, the second law of
thermodynamics for the Bekenstein-Hawking entropy
should satisfy [30]

_SBH ¼ −2K _H
H3

> 0: ð14Þ

In our Universe, we assume that _SBH > 0.

IV. HOLOGRAPHIC EQUIPARTITION MODEL
WITH AN ARBITRARY ENTROPY SH

In this section, a holographic equipartition model is
introduced, in accordance with previous studies [29,30],
based on the original work of Padmanabhan [20] and other
related research [21–28]. Although the assumption of
equipartition of energy used for this model has not yet
been established in a cosmological spacetime [30], we
herein assume the scenario to be viable. In addition, we
assume an arbitrary entropy SH on the horizon, as an
alternative to the Bekenstein-Hawking entropy. The arbi-
trary entropy is discussed later.
In an infinitesimal interval dt of cosmic time, the

increase dV of the cosmic volume can be expressed as

dV
dt

¼ L2
pðNsur − ϵNbulkÞ × c; ð15Þ

where Nsur is the number of d.o.f. on a spherical surface of
Hubble radius rH, whereas Nbulk is the number of d.o.f. in
the bulk [20]. The term Lp is the Planck length given by
Eq. (11), and ϵ is a parameter discussed below. The right-
hand side of Eq. (15) includes c, because c is not set to be 1
herein [29,30].
Equation (15) comes from the work of Padmanabhan

[20]. The left-hand side of Eq. (15) represents the expan-
sion of cosmic space, whereas the right-hand side repre-
sents the difference between the d.o.f. on the surface and in
the bulk. Accordingly, Eq. (15) indicates that the difference
between the d.o.f. is assumed to lead to the expansion of
cosmic space [20]. This is the so-called holographic
equipartition law proposed by Padmanabhan and has been
examined from various viewpoints [21–30]. In the present
paper, we assume Eq. (15) to be viable although it has not
yet been established.
The acceleration equation can be derived from Eq. (15),

as examined in Ref. [20]. In order to derive the acceleration
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equation, we first calculate the left-hand side of Eq. (15).
Using V ¼ 4π

3
r3H and rH ¼ c=H, the rate of change of the

Hubble volume V is given by [20,29,30]

dV
dt

¼ d
dt

�
4π

3

�
c
H

�
3
�
¼ −4πc3

�
_H
H4

�
: ð16Þ

Next, we calculate the right-hand side of Eq. (15). To this
end, parameters included in the right-hand side are intro-
duced. The number of d.o.f. in the bulk is assumed to obey
the equipartition law of energy [20]:

Nbulk ¼
jEj

1
2
kBT

; ð17Þ

where the Komar energy jEj contained inside the Hubble
volume V is given by

jEj ¼ jðρc2 þ 3pÞjV ¼ −ϵðρc2 þ 3pÞV; ð18Þ

and ϵ is a parameter defined as [20,21]

ϵ≡
�þ1 ðρc2 þ 3p < 0∶ an accelerating universeÞ;
−1 ðρc2 þ 3p > 0∶ a decelerating universeÞ:

ð19Þ

In the present paper, ρc2 þ 3p < 0 is selected, and, there-
fore, ϵ ¼ þ1 from Eq. (19). The acceleration equation
discussed below is not affected by this selection [21,29,30].
The temperature T on the horizon is written as

T ¼ ℏH
2πkB

: ð20Þ

The number of d.o.f. on the spherical surface is given by

Nsur ¼
4SH
kB

; ð21Þ

where SH is the entropy on the Hubble horizon [29,30].
When SH ¼ SBH, Eq. (21) is equivalent to that in Ref. [20].
In the present study, an arbitrary entropy SH on the horizon
is assumed in order to discuss various types of entropy.
Keep in mind that SH > 0 is considered herein. Further
constraints on SH are discussed in Sec. V.
We now calculate the right-hand side of Eq. (15). Using

ϵ ¼ þ1 and Eqs. (11), (17), (18), (20), and (21) and
calculating several operations [29], the right-hand side of
Eq. (15) can be written as

L2
pðNsur − ϵNbulkÞ × c

¼ ℏG
c3

�
4SH
kB

þ ð4πÞ2c5
3ℏ

�
ρþ 3p

c2

�
1

H4

�
× c: ð22Þ

Equations (16) and (22) are the left-hand and right-hand
sides of Eq. (15), respectively. Accordingly, from Eqs. (16)
and (22), Eq. (15) is written as [29]

−4πc3 _H
H4

¼ℏG
c3

�
4SH
kB

þð4πÞ2c5
3ℏ

�
ρþ3p

c2

�
1

H4

�
×c: ð23Þ

Solving this equation with regard to _H, we have

_H ¼ −
H4

4πc3
ℏG
c3

�
4SH
kB

þ ð4πÞ2c5
3ℏ

�
ρþ 3p

c2

�
1

H4

�
× c

¼ −
4πG
3

�
ρþ 3p

c2

�
−
�

ℏG
πkBc5

�
SHH4

¼ −
4πG
3

�
ρþ 3p

c2

�
−
SHH4

K
; ð24Þ

where K is given by Eq. (10). As shown in Eq. (2), ä=a is
written as ä=a ¼ _H þH2. Using this and Eq. (24), we have
the following acceleration equation [29]:

ä
a
¼ _H þH2 ¼ −

4πG
3

�
ρþ 3p

c2

�
−
SHH4

K
þH2: ð25Þ

This equation can be arranged using the Bekenstein-
Hawking entropy, which is considered to be the standard
scale of the entropy on the horizon. From Eq. (25) and
SBH ¼ K=H2 given by Eq. (9), the acceleration equation
for the holographic equipartition model is [30]

ä
a
¼ −

4πG
3

�
ρþ 3p

c2

�
þH2

�
SBH − SH

SBH

�

¼ −
4πG
3

�
ρþ 3p

c2

�
þ fhðtÞ; ð26Þ

where an extra driving term fhðtÞ is given by

fhðtÞ ¼ H2

�
SBH − SH

SBH

�
¼ H2

�
1 −

SH
SBH

�
: ð27Þ

This equation indicates that a deviation of SH from SBH
plays an important role in the driving term. (Note that the
entropy on the horizon is assumed to be SH larger than
zero.) For example, when SH ¼ SBH, the driving term fhðtÞ
is zero [20]. However, fhðtÞ is nonzero when SH ≠ SBH
[29,30]. In particular, when SH < SBH, a positive driving
term for an accelerating Universe is obtained from Eq. (27).
That is, the deviation from SBH plays an important role in
the holographic equipartition model. This result may imply
that such an effective entropy is considered to be favored,
as an alternative to SBH. In fact, a modified Rényi entropy
[47] and a power-law corrected entropy [52] have been
used for SH [29,30]. We briefly review typical examples in
the next paragraph.
By regarding the Bekenstein-Hawking entropy as a

nonextensive Tsallis entropy [58] and using a logarithmic
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formula [29], a modified Rényi entropy suggested by Biró
and Czinner [47] is a novel type of Rényi entropy [59] on
horizons. The modified Rényi entropy SR is given by

SR ¼ 1

λ
ln½1þ λSBH�; ð28Þ

where λ ¼ 1 − q, and q is a nonextensive parameter. By
substituting SH ¼ SR into Eq. (27) and calculating several
operations [29], the extra driving term fh;RðtÞ can be
written as

fh;RðtÞ ¼ H2

�
1 −

ln½1þ ðλK=H2Þ�
λK=H2

�
: ð29Þ

In contrast, a power-law corrected entropy suggested by
Das et al. [52] is based on the entanglement of quantum
fields between the inside and the outside of the horizon
[30]. The power-law corrected entropy Spl [53] can be
written as

Spl ¼ SBH

�
1 −Ψα

�
H0

H

�
2−α

�
; ð30Þ

where α and Ψα are dimensionless positive parameters
related to the entanglement [30]. Substituting SH ¼ Spl into
Eq. (27) and calculating several operations [30], the driving
term fh;plðtÞ can be written as

fh;plðtÞ ¼ ΨαH2
0

�
H
H0

�
α

: ð31Þ

The two driving terms, i.e., fh;RðtÞ and fh;plðtÞ, tend to be
constantlike when λK=H2 < 1 and α < 1. For details, see
Refs. [29,30].
As shown in Eq. (27), the deviation of SH from SBH can

lead to an extra driving term fhðtÞ. In the holographic
equipartition model, fhðtÞ is expected to be constrained by
the second law of thermodynamics because fhðtÞ depends
on SH. In Sec. V, we will discuss the order of fhðtÞ from a
thermodynamics viewpoint.
Apart from the holographic equipartition model,

Padmanabhan reported that the observed cosmological
constant can arise from vacuum fluctuations (or modifica-
tions) of energy density rather than the vacuum energy
itself [60]. The vacuum fluctuations may be related to the
deviation of entropy considered herein.
Recently, ΛðtÞCDMmodels have been closely examined

[14], in order to resolve current problems, such as a
significant tension between the Planck 2015 results [2]
and the local (distance ladder) measurement from the
Hubble Space Telescope [3]. Consequently, a certain type
of ΛðtÞCDM models has been found to be favored as
compared to ΛCDM models [14]. As described in Sec. II,
cosmological equations in the holographic equipartition

model are expected to be similar to those for ΛðtÞCDM
models. Therefore, if a particular entropy on the horizon
can be assumed, the obtained holographic equipartition
model should be favored, as for the ΛðtÞCDM model.
Detailed studies are needed and this task is left for future
research.

V. SECOND LAW OF THERMODYNAMICS
FOR THE PRESENT MODEL

In the previous section, we derived an extra driving term
in a holographic equipartition model. In this section, we
examine thermodynamic constraints on the driving term
using both the positivity of entropy and the second law of
thermodynamics. In the present study, an arbitrary entropy
SH on the horizon is assumed, extending previous works
[29,30]. Accordingly, we can universally examine the
thermodynamic constraints.
To discuss the generalized second law of thermodynam-

ics, we consider the total entropy St given by

St ¼ SH þ Sm and; therefore; _St ¼ _SH þ _Sm; ð32Þ

where Sm is the entropy of matter inside the horizon [30].
In the present study, the holographic equipartition model is
assumed to be a particular case of ΛðtÞCDM models.
Therefore, _Sm for the model is the same as _Sm examined in
a previous study [30].
According to Ref. [30], _Sm can be calculated from the

first law of thermodynamics. From Eq. (A5) in the
Appendix of Ref. [30], we have _Sm, which is written as

_Sm ¼ − _fhðtÞK
H4

; ð33Þ

where fhðtÞ is an extra driving term for the holographic
equipartition model. For details, see Ref. [30]. This
equation can be arranged using the Bekenstein-Hawking
entropy. Using _SBH given by Eq. (13), _Sm is written as

_Sm ¼ − _fhðtÞK
H4

¼ −2K _H
H3

_fhðtÞ
2H _H

¼
_SBH _fhðtÞ
2H _H

: ð34Þ

We now examine thermodynamic constraints on an extra
driving term fhðtÞ in the holographic equipartition model.
From Eq. (27), the driving term is written as

fhðtÞ ¼ H2

�
SBH − SH

SBH

�
¼ H2

�
1 −

SH
SBH

�
: ð35Þ

Solving this equation with regard to SH gives
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SH ¼ SBH

�
1 −

fhðtÞ
H2

�
: ð36Þ

Before discussing the second law of thermodynamics,
we examine the positivity of SH. From Eq. (12), we have
SBH > 0. Accordingly, in order to satisfy SH > 0, we
require

1 −
fhðtÞ
H2

> 0; ð37Þ

or equivalently,

fhðtÞ < H2: ð38Þ
The inequalities given by Eqs. (37) and (38) imply an upper
limit of fhðtÞ. Numerous observations indicate _H < 0 [26]
and, therefore, H2 is a minimum when H ¼ H0. Thus, the
strictest constraint can be written as

fhðtÞ < H2
0 ð≤H2Þ: ð39Þ

From Eq. (39), the order of the extra driving term, fhðtÞ,
can be approximately written as

OðfhðtÞÞ ⪅ OðH2
0Þ: ð40Þ

The positivity of SH is found to constrain fhðtÞ. In addition,
the order of fhðtÞ is consistent with the order of the
observed Λ given by Eq. (4).
Now, we discuss the generalized second law of thermo-

dynamics. To this end, we first calculate the rate of change
of SH. Differentiating Eq. (36) with respect to t and using
Eqs. (9) and (13), _SH can be written as

_SH ¼ _SBH

�
1 −

fhðtÞ
H2

�
þ SBH

d
dt

�
1 −

fhðtÞ
H2

�

¼ −2K _H
H3

�
1 −

fhðtÞ
H2

�
þ K
H2

�
−
_fhðtÞ
H2

þ 2fhðtÞ _H
H3

�

¼ −2K _H
H3

�
1 −

2fhðtÞ
H2

þ
_fhðtÞ
2H _H

�

¼ _SBH

�
1 −

2fhðtÞ
H2

þ
_fhðtÞ
2H _H

�
: ð41Þ

Using Eqs. (41) and (34), the rate of change of the total
entropy in the holographic equipartition model is given by

_St;h ¼ _SH þ _Sm ¼ _SBH

�
1 −

2fhðtÞ
H2

þ
_fhðtÞ
H _H

�
; ð42Þ

where _SBH > 0 from Eq. (14). In order to satisfy _St;h > 0,
we require

1 −
2fhðtÞ
H2

þ
_fhðtÞ
H _H

> 0; ð43Þ

or equivalently,

fhðtÞ <
H2

2
þ

_fhðtÞH
2 _H

: ð44Þ

The inequalities given by Eqs. (43) and (44) indicate that
the extra driving term fhðtÞ is restricted by the generalized
second law of thermodynamics. These inequalities imply
an upper limit of fhðtÞ. Note that a similar constraint can be
obtained from _SH > 0, using Eq. (41).
Let us examine a typical constant driving term correspond-

ing toΛCDMmodels, because the constant term is dominant
in ΛðtÞCDMmodels [9], as described in Sec. II. To this end,
we consider fhðtÞ ≈ fh;cstðtÞ ¼ C0H2

0 given by Eq. (5),
where C0 is a dimensionless constant. In the holographic
equipartition model, the constant term can be obtained from
an entropy given by SH ¼ SBH½1 − C0H2

0H
−2�. This entropy

is equivalent to a power-law corrected entropy for a small
entanglement, corresponding to α ≪ 1 [30]. Using Eq. (44)
and _fh;cstðtÞ ¼ 0, we have the strictest constraint, which is
given by

fh;cstðtÞ <
H2

0

2

�
≤
H2

2

�
; ð45Þ

where H0 ≤ H is also used. Accordingly, the order of the
constant driving term can be approximately written as

Oðfh;cstðtÞÞ ⪅ OðH2
0Þ: ð46Þ

The constraint on fh;cstðtÞ agrees with Eq. (40), which is
based on the positivity of SH. The order of fh;cstðtÞ is
consistent with the order of the observed Λ from Eq. (4).

1016010120108010401

( )O f

101201

Observed Λ Quantum field theory 

0 2
0H×

0

2
, 0( ) ( )h cstO f O H≤

Upper limit 

2
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0H×

FIG. 1. Thermodynamic constraints on the constant driving
term for a holographic equipartition model. The constraint on the
constant term, i.e., fh;cst, is given by Eq. (46). The bold line with
an arrow represents an allowed region corresponding to the
thermodynamic constraint. The orders of the observed Λ and the
theoretical value from quantum field theory are also shown.
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Therefore, the order of fhðtÞ is also consistent with the order
of the observed Λ because, as mentioned above, fhðtÞ ≈
fh;cstðtÞ is expected.
The obtained constraint on fh;cstðtÞ is indicated in Fig. 1.

We can confirm an upper limit of fh;cstðtÞ. The upper limit is
consistent with the order of the observed Λ. In this way, we
can discuss thermodynamic constraints on extra driving
terms, which are derived from various types of entropy on
the horizon. [In addition, we can examine constraints on SH.
For example, substituting Eq. (35) into Eq. (45) and using
SBH > 0 given by Eq. (12), we have SH > SBH=2 > 0.]
In the present study, several quantities have been system-

atically arranged using the Bekenstein-Hawking entropy. In
these quantities, the extra driving termand timederivatives of
entropies are summarized in Table I. As shown in Table I, the
driving term fhðtÞ includes a relative difference of entropy,
i.e., ðSBH − SHÞ=SBH, due to the difference between the d.o.f.
on the surface and in the bulk. The difference in entropy, i.e.,
ΔS ¼ SBH − SH, can lead to an extra driving term and its
upper limit. In cosmological scenarios based on the holo-
graphic principle, the difference in entropy may be inter-
preted as a kind of vacuum fluctuation (or modification) of
energy density [60]. Further studies are needed, and this task
is left for future research.

VI. CONCLUSIONS

Holographic equipartition models are based on the
holographic principle. In the present study, we have

assumed an arbitrary entropy SH on the horizon of the
Universe and applied this entropy to the holographic
equipartition model in order to universally examine
thermodynamic constraints on an extra driving term in a
flat FRW universe at late times. The driving term is
systematically formulated using the Bekenstein-Hawking
entropy, SBH, which is considered to be the standard
scale of the entropy on the horizon of the Universe.
Consequently, H2½ðSBH − SHÞ=SBH� terms are obtained
in the holographic equipartition model. The formulation
used here reveals that deviations of SH from SBH play an
essential role in the driving term. In addition, the driving
term is found to be constrained by the second law of
thermodynamics, even if the arbitrary entropy is assumed.
(Note that SH > 0 is considered herein.) The second law of
thermodynamics for the holographic equipartition model
constrains the upper limit of the driving term. The upper
limit implies that the order of the driving term is likely
consistent with the order of the cosmological constant
measured by observations. An approximately equivalent
upper limit of the driving term can be derived from the
positivity of SH in the holographic equipartition model.
The present results may indicate that we can discuss the

cosmological constant problem from a thermodynamics
viewpoint, in the holographic equipartition model. Of
course, all the other contributions such as quantum field
theory cannot be excluded, because only the upper limit of
the driving term is discussed in the present study. In
addition, the assumption of equipartition of energy used
in this model has not yet been established in a cosmological
spacetime. However, the thermodynamic constraints and
systematic formulations examined herein should provide
new insights into other cosmological models based on the
holographic principle.
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