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In the present paper, a generalized hybrid Monte Carlo method to generate the multicanonical ensem-
ble has been developed, which is a generalization of the multicanonical hybrid Monte Carlo (HMC)
method by Hansmann and co-workers [Chem. Phys. Lett. 259, 321 (1996)]. The generalized hybrid
Monte Carlo (GHMC) method is an equations-of-motion guided Monte Carlo combined with partial
momentum refreshment. We successfully applied our multicanonical GHMC to dense Lennard-Jones
fluids and a coarse grained protein model. It is found that good computational efficiency can be
gained in the case of the acceptance ratio around 60% for the models examined. While a large
number of molecular dynamics (MD) steps in a single GHMC cycle is needed to yield good com-
putational efficiency at a large mixing ratio of momenta with thermal noise vectors, corresponding
to the original multicanonical HMC method, a small number of MD steps are enough to achieve
good efficiency at a small mixing ratio. This property is useful to develop a composite algorithm
combining the present GHMC method with other Monte Carlo moves. Published by AIP Publishing.
https://doi.org/10.1063/1.5028466

I. INTRODUCTION

Molecular processes in the vicinity of phase transitions
or in disordered systems with rugged energy landscape are
widely known to be hard to sufficiently sample configura-
tions using conventional molecular simulation techniques.
In order to overcome this type of sampling problem, vari-
ous enhanced sampling algorithms such as extended ensem-
ble methods have been developed.1–6 The multicanonical
method7,8 is a promising extended ensemble method which
realizes the random walk in the potential energy space by
introducing artificial statistical ensembles.5,6 The multicanon-
ical Monte Carlo (MC) method had originally been devel-
oped by Berg and Neuhaus;7,8 then the molecular dynamics
(MD)9,10 and hybrid Monte Carlo (HMC)9 algorithms to
generate the multicanonical ensemble have been proposed.
Compared to the conventional MD and MC methods, the
multicanonical MC and MD can sample a broader range of
potential energy landscape without having the system trapped
in local minima; even global minimum energy configurations
could be visited in a single calculation. Various methodolog-
ical extensions have been carried out such as multibaric-
multithermal ensembles,11 multidimensional multicanonical
ensembles,12 and the multicanonical MD combined with the
Wang-Landau sampling13 that is called statistical temperature
molecular dynamics.14,15 Another MD method to generate
an extended ensemble, the replica exchange MD method,16

a)Electronic mail: smiura@mail.kanazawa-u.ac.jp

should be mentioned here. The multicanonical method and
its generalization have been applied to basic Lennard-Jones
systems: solid–liquid phase transition by the multicanoni-
cal method17 and by the multibaric-multithermal method18

and the gas–liquid interfacial tension.19 Then, the extended
ensemble methods have been applied to address various
challenging problems including protein folding,20 residual
entropy of ice,21 liquid–solid phase transition of water in
finite systems,22–24 aggregation of polymers,25 hydration free
energy change,26 and phase diagram of a fluid in porous
materials.27

In the present study, a generalized hybrid Monte Carlo
(GHMC) algorithm to generate the multicanonical ensemble
has been proposed. The hybrid Monte Carlo (HMC)28–30 is a
method that combines molecular dynamics (MD) and Monte
Carlo (MC) techniques. Unlike the standard MC, whole sys-
tem coordinates are simultaneously updated by equations of
motion. The trial configuration generated by several molecular
dynamics steps is then accepted or rejected by an appropri-
ate Metropolis criterion as in MC. The HMC algorithm has
been proved to yield the canonical distribution as long as a
time-reversible and volume-preserving numerical integration
algorithm is employed to solve the equations of motion.29

The HMC method has originally been developed to solve
sampling problems related with a non-ergodicity found in
numerical simulations of quantum field theory.28 Then, the
method has been extended to treat condensed matters such
as liquids,29,30 including quantum many-body systems.30–36

The canonical HMC method has been extended to generate
the multicanonical ensemble by Hansmann and co-workers.9
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In our preliminary study,37 computational efficiency of the
multicanonical HMC method has been examined for dense
Lennard-Jones fluids and shows encouraging results. In the
standard HMC method, particle momenta are randomly sam-
pled from the Maxwell distribution at each HMC step. This
condition can be relaxed so that the particle momenta are par-
tially refreshed. This method is called the generalized hybrid
Monte Carlo method.38–41 The complete refreshment of the
momenta in the standard HMC sometimes needs many molec-
ular dynamics steps in a single HMC step to achieve good
computational efficiency. The partial mixing or partial reuse
of the momenta provides a possibility to achieve good com-
putational efficiency by much a smaller number of molecular
dynamics steps in a single HMC step. In the present study, the
generalized hybrid Monte Carlo method for the multicanonical
ensemble has been developed, trying to improve the computa-
tional efficiency of the original multicanonical HMC method.
Our method is applied to dense rare gas fluids such as fluid
argon and a coarse grained model of the protein molecule to
examine the computational efficiency of the multicanonical
GHMC method.

This paper is organized as follows. We present our
method in Sec. II. Results on the dense Lennard-Jones
fluid and the model protein molecule are given in Sec. III.
We compare our GHMC algorithm with MD and MC
algorithms in Sec. IV. Concluding remarks are given in
Sec. V.

II. METHODOLOGY
A. Multicanonical ensemble

In this section, we briefly review the multicanonical
ensemble method.7,8 We consider the system consisting of N
particles whose coordinates are represented by {r1, . . . , rN };
the potential energy of the system is denoted by U. In
the canonical ensemble for systems at temperature T, the
distribution function ρc(U, T ) is written by

ρc(U, T ) ∝ Ω(U)e−U/kBT , (1)

where kB is the Boltzmann constant and Ω(U) is the den-
sity of potential energy states. The distribution function has
a bell-type shape whose peak is located at the ensemble
average 〈U〉. The conventional Monte Carlo and molecular
dynamics methods primarily sample configurations around
the peak. Low energy configurations apart from the peak,
for example, are hardly visited by the conventional meth-
ods. To overcome this type of sampling problems, the mul-
ticanonical method has been developed. The distribution
function for the multicanonical ensemble ρmc(U) is given
by

ρmc(U) ∝ Ω(U)e−W (U) = constant, (2)

where W (U) is a weight function to realize the constant distri-
bution regarding the potential energy. The following function
obviously generates the above constant distribution:

W (U) = lnΩ(U). (3)

However, the function Ω(U) is not known a priori; thus, we
must first numerically evaluate the weight function W (U).

Wang-Landau sampling,13 for example, provides a way to
evaluate the weight function. In Sec. III, another iterative
numerical method will be described.

The normalization constant of the distribution function
ρmc(U) is given by

Zmc =

∫
dUΩ(U)e−W (U)

=

∫
dr1 · · · drN e−W (U({ri })), (4)

where Ω(U) = ∫ dr1 · · · drN δ(U − U({ri})). As is evident
from Eq. (4), the multicanonical density in the configura-
tion space is given by e−W (U({ri })). The Metropolis Monte
Carlo method, for example, can be applied to the multi-
canonical ensemble; the Metropolis criterion is given by
min(1, e−∆W ) where ∆W is the change in the function W
after the trial move. In Sec. II B, we present a generalized
hybrid Monte Carlo method to generate the multicanonical
ensemble.

B. Generalized hybrid Monte Carlo

In the hybrid Monte Carlo method, trial configurations are
generated by equations of motion. Here, we consider appro-
priate equations of motion to generate the multicanonical dis-
tribution. We first regard the multicanonical distribution to be
a fictitious canonical distribution at a temperature T0 using the
following effective potential Umc(U):

Umc(U({ri})) = kBT0W (U({ri})). (5)

Then, the multicanonical density can be written by e−Umc/kBT0 ;
the choice of the temperature T0 is arbitrary. The temper-
ature T0 is usually chosen to be the temperature corre-
sponding to the highest energy range in flattened potential
energy distribution.10 We can readily use the canonical
hybrid Monte Carlo method28–30 and its generalization38,39

to generate the fictitious canonical distribution described by
Eq. (5). To this end, we define the following Hamiltonian
Hmc:

Hmc =

N∑
i=1

p2
i

2mi
+ Umc, (6)

where pi is the fictitious momentum and mi is the associated
fictitious mass of an ith particle. On the basis of Hamil-
ton’s canonical equation, we obtain the following equations
of motion:

dri

dt
=
∂Hmc

∂pi
=

pi

mi
,

dpi

dt
= −

∂Hmc

∂ri
= −

∂Umc

∂U
∂U
∂ri

.
(7)

The fictitious canonical distribution in phase space

πmc({ri}, {pi}) ∝ e−Hmc/kBT0 (8)

is generated using the equations of motion, Eq. (7), by the gen-
eralized hybrid Monte Carlo algorithm, which consists of the
following two steps: equation-of-motion guided Monte Carlo
and partial momentum refreshment.
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1. Equation-of-motion guided Monte Carlo

This step in turn consists of the following three parts:

(a) Molecular dynamics: numerically integrating Eq. (7)
with a time reversible and volume preserving integra-
tor, which is called a symplectic integrator,42 over nMD

steps and time increment ∆t. The map from the initial to
the final state is denoted by U∆τ : ({ri}, {pi})→ ({ri

′},
{p′i}) where ∆τ = nMD × ∆t.

(b) A momentum flip F: ({ri}, {pi})→ ({ri}, {−pi}).
(c) Metropolis decision: a Metropolis acceptance/rejection

criterion is applied to the trial

({r′i }, {p
′
i }) =

{
F · U∆τ({ri}, {pi}) with probability min{1, e−∆Hmc/kBT0 }

({ri}, {pi}) otherwise,
(9)

where

∆Hmc = Hmc(F ·U∆τ({ri}, {pi}))−Hmc({ri}, {pi}). (10)

It is noted that the Hamiltonian is invariant under the
momentum flip

Hmc(U∆τ({ri}, {pi})) = Hmc(F · U∆τ({ri}, {pi})). (11)

The momentum flip is needed to satisfy the detailed balance
condition in the phase space since (F · U∆τ)2 = id.

2. Partial momentum refreshment

In this step, we mix the momentum p with a Gaussian
noise vector u drawn from the Maxwell distribution at
the temperature T0, which is carried out by the following
equation:(

p′i
u′i

)
=

(
cos φ sin φ
−sinφ cos φ

)
· F

(
pi

ui

)
, for i = 1, . . . , N . (12)

Here, ui is generated by

ui = (mikBT0)1/2ξ i,

where each component of ξ i is given by the Gaussian ran-
dom number with zero mean and unit variance. The extra
momentum flip F in Eq. (12) is included so that the trajec-
tory is reversed on a Monte Carlo rejection instead of on
an acceptance. The angle φ is introduced in the range of
0 < φ ≤ π/2. At φ = π/2, the particle momenta pi are fully
replaced by the random momenta ui; on the other hand, at
the limit of φ = 0, the particle momenta are unchanged at
all. At the intermediate value of φ, the particle momenta are
partially mixed with the random momenta; the ratio of the mix-
ing is controlled by the angle φ. This step does not introduce
any bias to the Maxwell distribution this is easily verified as
follows. For simplicity, we consider a one-dimensional case
p′ = −p cos φ + u sin φ, where both p and u obey the same
Gaussian distribution with zero mean and the varianceσ2, and
3N dimensional extension is straightforward. The joint prob-
ability density of the independent variables p and u is written
by

g( p, u) =
1

√
2πσ2

e−p2/σ2 1
√

2πσ2
e−u2/σ2

. (13)

Then, the probability density for the mixed momentum p′,
f ( p′), is given by

f ( p′) =
∫

dp
∫

du δ(p′ + p cos φ − u sin φ)g(p, u)

=
1

√
2πσ2

e−p′2/σ2
. (14)

This clearly shows that the variable p′ also obeys the same
Gaussian distribution, indicating that the partial momentum
refreshment step can be accepted with the probability of unity.
It is noted that the case of φ = π/2 corresponds to the standard
hybrid Monte Carlo method, and the momentum flip F can be
neglected since the momenta are fully replaced by the Gaussian
random vectors.

C. Summary of the algorithm

Here, we summarize the generalized hybrid Monte Carlo
(GHMC) method from the viewpoint of implementation. The
algorithm is outlined as follows. We start with an initial state
of the system ({ri}, {pi}). Each momentum pi is mixed with a
Gaussian noise vector ui drawn from the Maxwell distribution
at the temperature T0: pi ← pi cos φ + ui sin φ for i = 1, . . .,
N. Molecular dynamics based on Eq. (7) are used to move the
whole system for a time increment of nMD × ∆t where ∆t is
the time step of the MD calculation and nMD is the number of
MD steps in one GHMC cycle. The trial configuration is then
accepted by the probability min

(
1, e−∆Hmc/kBT0

)
where ∆Hmc

is the change in the total Hamiltonian Hmc after the move of
nMD steps. If the trial configuration is rejected, the momentum
must be negated,

({r′i }, {p
′
i }) = ({ri}, {−pi}). (15)

Here, the above momentum reversal is the result of the
operation of F in Eq. (12).

III. RESULTS
A. Lennard-Jones fluid

We first present results on the applications of our method
to dense rare gas fluids. The fluid system is composed of
N = 108 particles interacting with the Lennard-Jones poten-
tial. The following potential parameters appropriate for argon
are adopted: σ = 3.41 Å and ε /kB = 120 K. Density of the
system is set to be ρ = 0.022 37 Å−3, corresponding to high
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density states near the triple point of the liquid argon; temper-
ature T0 = 180 K for the fictitious canonical ensemble with
the multicanonical effective potential Umc, Eq. (5). To calcu-
late the force appeared in Eq. (7), the coefficient ∂Umc/∂U
is numerically evaluated using the Lagrangian cubic interpo-
lation technique. Using the multicanonical effective potential
described below, we performed 1.0 × 105 GHMC steps for
various tunable parameters to discuss the computational effi-
ciency; we used a velocity Verlet algorithm43,44 to numerically
integrate the equations of motion.

To perform the multicanonical GHMC calculations, we
must first numerically evaluate the multicanonical weight
function W (U). An initial guess on the weight function
W (U) can be evaluated using the canonical distribution at a
temperature T0,

W (U) = lnΩ(U) =
U

kBT0
+ ln ρc(U, T0), (16)

where energy independent terms are omitted. To obtain the
function W (U), we performed 10 000 GHMC steps with
parameters φ = π/2, nMD = 10, and∆t = 35 fs. Since the numeri-
cal canonical simulation for the temperature T0 does not cover
a sufficiently broad U range, we must refine the function W (U)
iteratively using the following relation:

W (n+1)(U) = W (n)(U) + ln ρ(n)
mc(U), (17)

where the nth multicanonical distribution ρ(n)
mc(U) is obtained

by the weight function W (n)(U). About 1000 iterations are
needed to obtain a sufficiently flat energy distribution: a crite-
rion to terminate the iteration is that the difference between the
height of adjacent bins in the energy histogram is less than 0.3
in the logarithmic scale. Detailed description on the method of
the refinement can be found in Ref. 6. The distribution using
the refined W (U) is presented in Fig. 1. In the energy range
[−637.2ε , −540ε], a flat distribution is found to be obtained.
Outside the range, the system is designed to obey the canonical
distribution. The energy range flattened corresponds to ther-
modynamic states covering from near the triple point to the

FIG. 1. Unnormalized histogram of potential energy U, H(U), for the mul-
ticanonical ensemble is plotted in the logarithmic scale, together with the
canonical results at temperatures T = 180 K and 100 K for comparison. While
the distribution is tuned to be flat inside dashed vertical lines, the distribution
is designed to obey the canonical distribution outside the range.

supercritical condition. The averaged potential energy evalu-
ated by the reweighting technique can be found for the fluid
system in Ref. 37. This weight function W (U) is used to per-
form GHMC calculations for examining the computational
efficiency.

We next discuss the computational efficiency of the mul-
ticanonical GHMC method. We examine the sampling effi-
ciency using a quantity called a statistical inefficiency,45,46

which is also called an integrated autocorrelation time.47,48

This quantity expresses the number of correlated steps needed
to obtain independent sampling for a physical quantity. The sta-
tistical inefficiency is different for different physical quantities.
Therefore, in the present study, we deal with the efficiency for
estimating a specific quantity, which is chosen to be the poten-
tial energy. We calculate the statistical inefficiency in units of
the number of GHMC steps. We define the correlation time
τ as the CPU time taken to compute the correlated GHMC
steps. We first show the results on the GHMC calculations with
φ = π/2 corresponding to the standard HMC algorithm. In
Fig. 2, we present the time step ∆t dependence of the correla-
tion time for nMD = 10. The associated acceptance ratio is also
presented. If the equations of motion are accurately integrated,
corresponding to the high acceptance ratio, the movement in
the phase space is small; this results in the long correlation.
On the other hand, if we adopt large ∆t corresponding to the
low acceptance ratio, the system moves widely in the phase
space; however, many of the trial configurations are rejected
due to the large Hamiltonian error resulting in the long cor-
relation again. Thus, the correlation time τ has a minimum
value between the high and low acceptance ratios. As seen in
Fig. 2, the minimum correlation is given by ∆t = 35 fs; the cor-
responding acceptance ratio is found to be 55%. In Fig. 3, the
correlation time and the associated acceptance ratio are pre-
sented for various nMD with ∆t = 35 fs. We find that the case of
nMD = 10 yields the minimum τ. The trend is similar with that
found for canonical HMC calculations of dense LJ fluids;29

however, the acceptance ratio around 70% is demonstrated to
be efficient for the canonical HMC calculations. On the other
hand, the smaller acceptance ratio gives a better efficiency for
the multicanonical ensemble. This could be partly due to the
fact that ∆t giving the good efficiency depends on the energy

FIG. 2. The correlation time τ for the potential energy is presented as a func-
tion of ∆t for the following GHMC parameters: φ = π/2 and nMD = 10. The
associated acceptance ratio is also presented as a function of ∆t.
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FIG. 3. The correlation time τ for the potential energy is presented as a func-
tion of nMD for the following GHMC parameters: φ = π/2 and ∆t = 35 fs. The
associated acceptance ratio is also presented as a function of nMD.

range, which covers from low to high temperature systems, as
seen in Fig. 1.

We next show the mixing angle φ dependence of the com-
putational efficiency. The parameter ∆t and nMD are first fixed
to be 35 fs and 10, respectively. We show the φ dependence of
the correlation time τ in Fig. 4. The acceptance ratio is found
to be independent of φ because the initial momenta obeying
the Maxwell distribution do not affect the accuracy of the inte-
gration of the equations of motion. The correlation time τ
becomes shorter as the mixing angle φ increases. The mini-
mum τ is given in the case of φ = π/2 where the momenta are
fully refreshed at each GHMC step, which corresponds to the
standard HMC algorithm. In order to see the nMD dependence
for other φ, we show the correlation time τ for various nMD

with φ = π/4 and ∆t = 35 fs in Fig. 5. We find that the case of
nMD = 5 yields the minimum τ, which is comparable with τ
in the case of φ = π/2 and nMD = 10. For the dense LJ fluid,
efficiency can be gained using a smaller number of nMD in the
case of partial momentum refreshment.

B. Coarse grained protein model

In this section, we consider a coarse grained model of a
protein molecule that is a Honeycutt-Thirumalai β-barrel BLN

FIG. 4. The correlation time τ for the potential energy is presented as a func-
tion of the mixing angle φ for the following GHMC parameters: ∆t = 35 fs
and nMD = 10. The associated acceptance ratio is also presented as a function
of φ.

FIG. 5. The correlation time τ for the potential energy is presented as a func-
tion of nMD for the following GHMC parameters: φ = π/4 and ∆t = 35 fs. The
associated acceptance ratio is also presented as a function of nMD.

model,49 denoted by the βBLN model. This model is chosen
to be a testing system for our multicanonical GHMC method
since the model has been extensively studied and provides a
good example of a rugged energy landscape.50–54 The model
molecule is composed of three types of beads: hydrophobic
(B), hydrophilic (L), and neutral (N). In the present study,
a βBLN 46-mer is chosen as a model system whose pri-
mary sequence is B9N3(LB)4N3B9N3(LB)5L. The potential
energy includes the following terms: bond-length, bond-angle,
torsion-dihedral, and nonbonded potential terms. The explicit
expression of the potential functions and their parameters can
be found in Ref. 53. The global minimum energy structure is
known to be given by a β-barrel structure with an energy of
−49.2673. Here and hereafter, we describe properties of the
model using the reduced units based on the potential parame-
ters. We first evaluated the weight function W (U) iteratively, as
described in Sec. III A. At each iteration, we performed 1 000
000 GHMC steps with nMD = 10,∆t = 0.025, and φ= π/8. A cri-
terion to terminate the iteration is that the difference between
the height of adjacent bins in the energy histogram is less than
0.2 in the logarithmic scale. 66 iterations are needed to satisfy

FIG. 6. Unnormalized histogram of the potential energy U, H(U), for the
multicanonical ensemble is plotted in the logarithmic scale, together with the
canonical results at temperatures T = 0.4 and 1.0 for comparison. While the
distribution is tuned to be flat inside dashed vertical lines, the distribution
is designed to obey the canonical distribution outside the range. Physical
quantities are represented in the reduced units of the model.
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FIG. 7. Panel (a): The average potential energy 〈U〉 as a function of the temperature T is presented. The blue curve is obtained by the multicanonical GHMC
calculation with the reweighting technique. Red crosses are the results of the separate canonical GHMC calculations. Error bars for the canonical GHMC results
are smaller than the size of the cross symbols. Panel (b): The specific heat C as a function of the temperature T is presented. The blue curve is obtained by the
multicanonical calculation with the reweighting technique. Red crosses are the results of the separate canonical GHMC calculations. Error bars for the canonical
GHMC results are smaller than the size of the cross symbols. Physical quantities are represented in the reduced units of the model in both the panels.

the criterion. In Fig. 6, a flat distribution is demonstrated to be
obtained in the energy range [−40, 95]. For each multicanon-
ical GHMC run, 1.0 × 107 GHMC steps have been carried
out; we used a velocity Verlet algorithm43,44 to numerically
integrate the equations of motion.

We first present the canonical average of physical quan-
tities for this model protein molecule. The canonical aver-
age is obtained from the multicanonical GHMC results
using the reweighting technique. The canonical distribution
ρc(U, T ) is represented by the multicanonical distribution
ρmc(U),

ρc(U, T ) ∝ ρmc(U)eW (U)−U/kBT . (18)

Then, the canonical average of a physical quantity A(U) is
estimated by

〈A(U)〉 = ∫
dUA(U)ρmc(U)eW (U)−U/kBT

∫ dU ρmc(U)eW (U)−U/kBT
. (19)

In Fig. 7, we present the averaged potential energy as a
function of the temperature T using the above reweighting
technique with A(U) = U; results of independent canonical
GHMC calculations are also presented for comparison. For all
the temperature ranges presented, the reweighted results are
in excellent agreement with the canonical GHMC results. In
Fig. 7, the specific heat associated with the potential energy
fluctuation is also presented. The specific heat C is calculated
by

C =
1

kBT2

〈
(U − 〈U〉)2

〉
=

1

kBT2

(
〈U2〉 − 〈U〉2

)
. (20)

The average 〈U2〉 is also evaluated by the reweighting tech-
nique. The specific heat as a function of the temperature is
found to have a peak around T = 0.65, which is generated by the
steep decrease of the averaged potential energy with lowering
of the temperature. This peak signals the collapse transition
from a random coil to collapse states.52,54 The reweighted
results are found to be again in perfect agreement with the
canonical GHMC results. It is worthwhile to note that the
temperature range targeted by the reweighting method must

be well inside the temperature range covered by the flattened
potential energy distribution.

We discuss the computational efficiency of the multi-
canonical GHMC method. We first show the results in the
case of the mixing angle φ = π/2 corresponding to the stan-
dard HMC algorithm. In Fig. 8, we show the time step ∆t
dependence of the correlation time τ together with the asso-
ciated acceptance ratio. The parameter nMD is first fixed to
be 10. For this coarse grained protein model, the minimum
τ is found to be given by ∆t = 0.025. The corresponding
acceptance ratio is 63%. In Fig. 9, the correlation time and
the associated acceptance ratio are presented for various nMD

with ∆t = 0.025. We find a plateau region in the nMD depen-
dence for nMD = 40–150. In any case, the optimum nMD is
larger than that in the case of the dense LJ fluids. This type
of a trend has been observed for the canonical HMC cal-
culations applied to isolated molecules36 and medium and
low density fluids for canonical calculations.35,55 Although
intermediate configurations are usable to evaluate statistical

FIG. 8. The correlation time τ for the potential energy is presented as a func-
tion of∆t for the following GHMC parameters:φ = π/2 and nMD = 10. Physical
quantities are represented in the reduced units of the model. The associated
acceptance ratio is also presented as a function of ∆t.
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FIG. 9. The correlation time τ for the potential energy is presented as a func-
tion of nMD for the following GHMC parameters: φ = π/2 and ∆t = 0.025.
Physical quantities are represented in the reduced units of the model. The
associated acceptance ratio is also presented as a function of nMD.

averages of physical quantities,35,55 it is better to use smaller
nMD to efficiently be combined with other Monte Carlo
trial moves from the viewpoint of balancing computational
costs.

We next show the computational efficiency for various
mixing angles φ. The parameter ∆t and nMD are first fixed
to be 0.025 and 10, respectively. In Fig. 10, we indicate the φ
dependence of the correlation time τ and the associated accep-
tance ratio. The minimum correlation is found to be given
by φ = π/8. The corresponding acceptance ratio is 62%. It is
efficient to mix a random momentum from the Maxwell dis-
tribution by approximately 40% for this protein model, and it
is about half the correlation time as compared with the case
of φ = π/2. In Fig. 11, the correlation time is presented for
various nMD. The parameter φ and ∆t are fixed to be π/8
and 0.025, respectively. We find that the case of nMD = 20
yields minimum correlation time. As found in dense LJ fluids,
we can obtain good efficiency using smaller nMD by the par-
tial momentum refreshment. As mentioned in Sec. III A, the
statistical inefficiency or the integrated autocorrelation time
depends on a physical quantity selected to measure. We have

FIG. 10. The correlation time τ for the potential energy is presented as
a function of the mixing angle φ for the following GHMC parameters:
∆t = 0.025 and nMD = 10. Physical quantities are represented in the reduced
units of the model. The associated acceptance ratio is also presented as a
function of φ.

FIG. 11. The correlation time τ for the potential energy is presented as
a function of nMD for the following GHMC parameters: φ = π/8 and
∆t = 0.025. Physical quantities are represented in the reduced units of the
model. The associated acceptance ratio is also presented as a function of nMD.

also estimated the statistical inefficiency of another physical
quantity, the square of the potential energy U2 which appears
in the expression of the specific heat Eq. (20). We found that
the statistical inefficiency of U2 shows almost the same ∆t,
nMD, and φ dependences with that of U presented above; the
optimal mixing angle on U2 is confirmed to be the same as that
on U.

IV. DISCUSSION

In this section, we compare our generalized hybrid Monte
Carlo (GHMC) method with other related molecular simula-
tion methods for the multicanonical ensemble. We first discuss
the molecular dynamics (MD) method. In the MD method,
equations of motion are modified by attaching a thermostat
to generate the fictitious canonical distribution in the phase
space.10 In the GHMC method, given the partially refreshed
momenta, system coordinates evolve according to the equa-
tions of motion; trial configurations are accepted so as to be
compatible with Eq. (8). According to our experience on the
canonical HMC, it is possible to get better computational effi-
ciency than MD using suitably chosen HMC parameters nMD

and ∆t. Usually, larger ∆t than that of MD can be used in
HMC calculations; biases introduced by the resulting Hamil-
tonian error are removed by the appropriate Metropolis cri-
terion. Optimized HMC parameters and comparison on the
computational efficiency can be found, for example, for stan-
dard Lennard-Jones fluids29 and quantum many-body systems
described by the path integral method.31,36 As far as the mul-
ticanonical MD is concerned, it is known to be needed to use a
rather small time step ∆t for stable numerical calculations.9,56

As mentioned above, the equations of motion are not nec-
essary to be accurately solved in the GHMC method. In the
present study, it is found that we can safely use a large ∆t for
efficient GHMC calculations. Additionally, in order to solve
the thermostatted equations of motion, we need to provide
an inertial quantity or “mass” of the heat bath. The optimal
choice of the mass is given on the basis of the characteris-
tic frequency of the system considered.57–59 Since the force
in the multicanonical MD is modified by the factor associ-
ated with the multicanonical weight, it is difficult to properly
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evaluate the inertial quantity prior to MD calculations. To
our best knowledge, the method of the choice on the iner-
tial quantity is not well established for the multicanonical
MD.

We move on to the comparison with the standard Monte
Carlo method using local moves. To our experience, in general,
the computational efficiency by the standard Monte Carlo is
comparable with and even better than that by the hybrid Monte
Carlo. Here, we summarize the advantages of the hybrid Monte
Carlo method, which are not present in the local move MC.
In HMC, unlike the standard MC method, all the coordinates
are simultaneously updated; this feature enables us to use effi-
cient parallel computation algorithms developed for MD,60

which are useful to perform large scale HMC simulations.
This global update of the coordinates is also advantageous
to perform calculations of systems described by many-body
interactions including, for example, induced dipole moments
of molecules and even by combining with electronic structure
calculations.

V. CONCLUDING REMARKS

In the present paper, we have developed the generalized
hybrid Monte Carlo (GHMC) algorithm to generate the mul-
ticanonical ensemble. Our method is a generalization of the
hybrid Monte Carlo method developed by Hansmann and co-
workers.9 Dense Lennard-Jones fluids and a coarse grained
protein model are chosen to be model systems to examine com-
putational efficiency. There are three tunable parameters for the
GHMC calculations: determining the ratio of the momentum
mixing with a random noise vector φ, number of molecu-
lar dynamics steps per unit GHMC cycle nMD, and the time
increment to numerically integrate equations of motion ∆t.
The mixing angle φ = π/2 corresponds to the multicanonical
HMC algorithm given by Hansmann and co-workers,9 where
the momenta are fully refreshed at each GHMC step. In the
case of φ = π/2, computational efficiency of the multicanonical
GHMC shows the similar trend found in the canonical counter-
part; however, the acceptance ratio yielding good efficiency is
somewhat smaller than that of the canonical HMC. This could
arise from a factor that appeared in the force evaluation, which
is associated with the multicanonical weight. By changing the
mixing angle φ, we can gain better efficiency for smaller nMD

compared with that at φ= π/2; this trend is more remarkable for
the model protein molecule. This property is, for example, use-
ful to combine the GHMC method with the replica exchange
technique61,62 from the viewpoint of balancing computational
costs.
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