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In this paper, we study how we should treat a steady-state interface between homogeneous crystal and melt

phases, where steady temperature gradients are present at both sides. In particular, keeping the geometry of

Czochralski method in mind, we study a correction for the heat balance equation at the interface between

the two phases. We show that a netagive term proportional to the third power of the pulling velocity, which

is caused by the density difference between the two phases, is added to the heat balance equation.

1. Introduction

For a long time, it has been considered that the type of defects in the Si crystal grown by

the Czockralski (CZ) method with the pulling rate V is determined by the temperature

gradient in crystal GS or V/GS. In Ref. 1, Voronkov suggested that the type of point

defects in the Si crystal is governed by V/GS. As already known for the floating zone

method of Si crystal growth, the defects become interstitial if V/GS is larger than a

certain value. In contrast, they become vacancies if V/GS is smaller than that value.

Thus, defect free crystals can be grown in a limited range of V/GS. Voronkov and Falster

later refined2 the Voronkov’s work.1 They made a detailed analysis giving a support to

Voronkov’s criterion.3 Other groups have also analyzed the dependence of defects type

on V/GS.
4–6

V and GS are intrinsically interrelated with each other. Taking account of their

interrelation, Vanhellemont have recently reconsidered the Voronkov’s criterion criti-

cally.7 Abe and Takahashi have shown that the type of point defects is governed only

by GS, which is inconsistent with the previous studies.1–6 The discrepancy between the

two results is probably caused because the different geometries of apparatuses were
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analyzed together.

In the CZ method, the relationship between the temperature gradients and the

growth rate is given by the energy conservation law: kSGS − kLGL = LρV , where

GL is the temperature gradient in melt, L is the latent heat, ρ is the density, and

kS and kL represent the thermal conductivities of crystal and melt, respectively. In

this simplified conservation law, the density difference between the crystal and melt is

neglected, and GS is sometimes treated as a control parameter. However, V becomes

large with increasing Gs, so that GS is not a parameter we can control directly. The

temperature gradients in the crystal and melt have been measured directly.9–14 Although

the correlation between Gs and V is positive in Refs. 4–6,16,17, the negative correlation

between Gs and V is reported,12,18 which is against with the simplified conservation of

energy at the interface. It is suggested that the negative correlation may be caused by

the mass transfer,18 but we think that the neglect of the difference of density between

the melt and crystal is one of the main reasons for the disagreement.

Previously, Mori et al19 developed a non-equilibrium molecular dynamics simulation

method of crystal/melt interface in the geometry of the CZ method using the Lennard-

Jones system. In the model, the pulling rate of the crystal is set to VS and the total

amount of materials is conserved. Since the density difference between the crystal and

melt is taken into account, VL is given by VL = ρsVS/ρL. The temperatures at the

crystal and melt side boundaries are kept constant by heat baths at the ends of the

system. The temperature gradients, GL and GS, are determined as functions of the

interface position when the system reach to the steady growth. In this simulation, the

temperature gradient GS was an increasing function of the interface position, but the

sign of correlation between GS and VS was not determined.

In this paper, we extend a previous hydrothermodynamic formulation24 to the crys-

tal/melt interface in the geometry of the CZ method. We add the correction caused by

the density difference between the crystal and melt to the simplified energy conservation

law starting from microscopic conservation equations. In Sec. 2, we introduce model. In

Sec. 3 we show our results. In Sec. 5, we summarize our results.

2. Model

We consider a crystal/melt coexistence state and a flat interface moving steadily as

shown in Fig. 1(a). Mass flows in the melt and crystal at the interface are given by VL

and VS, respectively. VI is the the steady interface velocity. The pressures in the melt
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Fig. 1. Schematic picture of (a) system under consideration and (b) temperature distribution. VI,

VS, and VL are steady velocities of interface, the pulling rate, and the mass flow in melt, respectively.

The pressures at the liquid and solid sides are given by pL and pS , respectively. The densities ρS and

ρL are also defined at both sides of the interface. For latter convenience, the temperatures TL and TS

at both side of the interface are introduced. we set x = 0 at the center of interface.

and crystal at the interface are given by pL and pS, respectively. Figure 1(b) shows the

temperature distribution in our model schematically. Corresponding to the CZ method,

temperature decreases monotonically from the melt to the crystal.

As already shown in Ref.,24 the system is modeled as a Navier-Stokes-Fourier liquid

including the interface. The general equations are given by

∂ρ

∂t
+

∂ρui

∂xi

= 0, (1)

∂ρui

∂t
+

∂ρuiuj

∂xj

=
∂σij

∂xj

+Xi, (2)

∂

∂t

(
ρe+

ρ

2
u2
)
+

∂

∂xi

[(
ρe+

ρ

2
u2
)
ui

]
=

∂σijuj

∂xi

+Xiui −
∂qi
∂xi

, (3)

where ui, xi, σij, Xi, e, and qi represent the flow velocity vector, the position vector,

the stress tensor, the external force vector, the specific internal energy, and the heat

flux vector, respectively. In Eq. (3), ukuk is abbreviated as u2. The stress tensor σij and
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the heat flux vector qi are given by

σij = −pδij + ηs

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
+ ζδij

∂uk

∂xk

, (4)

qi = −k
∂T

∂xj

, (5)

where p is the hydrostatic pressure, ηs is the shear viscosity, ζ is the bulk viscosity,

and k is the heat conductivity. In the case of one-dimensional system, Eqs (1)-(5) are

reduced to

∂ρ

∂t
+

∂ρu

∂x
= 0, (6)

∂ρu

∂t
+

∂(ρu2)

∂x
= −∂p

∂x
+

∂

∂x

(
ηL

∂u

∂x

)
, (7)

∂

∂t

(
ρe+

ρ

2
u2
)
+

∂

∂x

[(
ρe+

ρ

2
u2
)
u
]
= −∂(pu)

∂x
+

∂

∂x

(
ηL

∂u

∂x
u

)
+

∂

∂x

(
k
∂T

∂x

)
, (8)

where x is the coordinate perpendicular to the interface, the origin of the x coordinate

is set at the center of the interface, and ηL ≡ ηs/3 + ζ is the longitudinal viscosity. In

the case of the steady growth, when we rewrite Eqs. (6)-(8) in terms of z ≡ x − VIt,

these equations are given by

−VI
dρ

dz
+

dρu

dz
= 0, (9)

−VI
dρu

dz
+

d(ρu2)

dz
= −dp

dz
+

d

dz

(
ηL

du

dz

)
, (10)

−VI
d

dz

(
ρe+

ρ

2
u2
)
+

d

dz

[(
ρe+

ρ

2
u2
)
u
]
= −d(pu)

dz
+

d

dz

(
ηL

du

dz
u

)
+

d

dz

(
k
dT

dz

)
.

(11)

3. Results and discussion

When we integrate Eqs. (9)-(10) from the melt side to the crystal side at the interface,

we get the following equations:

ρSVS − ρLVL = (ρS − ρL)VI, (12)

ρSV
2
S − ρLV

2
L − (ρSVS − ρLVL)VI = −pS + pL. (13)

Equation (11) is reduced as

− VI

[(
ρSeS +

ρS
2
V 2
S

)
−
(
ρLeL +

ρL
2
V 2
L

)]
+
(
ρSeS +

ρS
2
V 2
S

)
VS −

(
ρLeL +

ρL
2
V 2
L

)
VL

= −pSVS + pLVL − kSGS + kLGL. (14)
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Comparing Eq. (14) with Ref. 24, a term −kSGS+kLGL is added in the right hand side

of Eq. (14). From Eqs. (12) and (13), the difference between pS and pL is given by

pS − pL =
(VL − VS)

2

vL − vS
, (15)

where vL and vS are the specific volumes defined as vL = 1/ρL and vS = 1/ρS. Eq. (15)

means that irrespective of the direction of the mass flow, the denser phase has higher

pressure than the other.

3.1 Correction for heat balance equation

When we eliminate VI from Eq. (14), the difference in the specific enthalpies is given by

hS − hL =
1

2
(vL + vS)(pS − pL)−

vL − vS
VL − VS

(kSGS − kLGL), (16)

where the specific enthalpies, hS and hL, are defined as hS = eS + pSvS and hL =

eL+ pLvL (see the detail derivation of Eq. (16) in Appendix A). The term proportional

to −kSGS+kLGL is added in Eq. (16), which is different from a previous study.24 When

we assume that (ρs − ρL)VI is enough small to be neglected.24 Eqs. (12) and (15) are

reduced to

VL =
ρSVS

ρL
=

vLVS

vS
, (17)

pS − pL = (vL − vS)

(
VS

vS

)2

. (18)

Using Eqs. (17) and (18), Eq. (16) is expressed as

kSGS − kLGL =
VS

vS

[
(hL − hS) +

1

2
(v2L − v2S)

(
VS

vS

)2
]

(19)

= ρSVS

{
(hL − hS) +

1

2

[(
ρS
ρL

)2

− 1

]
V 2
S

}
. (20)

If the difference between the specific enthalpies (hL − hS) is identified with the

latent heat L, Eq. (20) may be the heat balance equation with a correction caused

by the density difference. However, we need to consider the difference in the specific

enthalpies carefully. We expand hS and hL around a point (T0, p0) on the coexistence

curve. The difference in the specific enthalpy (hL − hS) is expressed as

hL − hS = L+ cL(TL − T0)− cS(TS − T0) + vL(pL − p0)− vS(pS − p0) (21)

where L is the latent heat defined as L = hL(T0, p0)− hS(T0, p0), and cL and cS are the

specific heats of the melt and crystal, respectively. When we use Eq. (16), we get the
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following expression:

kSGS − kLGL = ρSVS [L+ cL(TL − T0)− cS(TS − T0)]

+ VS

(
ρS
ρL

− 1

)(
pL + pS

2
− p0

)
. (22)

When p0 = (pS + pL)/2, the last term in Eq. (22) is eliminated. Here, we consider

Clausius-Clapeyron equation, dp/dT = L/T0(vL − vS). When pS is very close to pL,

the coexistence line is linear between pS and pL. The Clausius-Clapeyron equation is

approximated as

pL − p0
T e(pL)− T0

=
pS − p0

T e(pS)− T0

=
L

T0(vL − vS)
, (23)

where T e(pL) and T e(pS) represent the melting temperatures at pL and pS, respectively.

From Eqs. (17), (18), and (23), kSGS − kLGL is given by

kSGS − kLGL = ρSVS {L∗ + cL[TL − T e(pL)]− cS[TS − T e(pS)]}

−1

2

(cL + cS)T0

L∗

(
ρS
ρL

− 1

)2

ρSV
3
S , (24)

where L∗ is given by

L∗ = hL

(
T0,

pL + pS
2

)
− hS

(
T0,

pL + pS
2

)
(25)

Stability conditions of the crystal and melt phases, which are satisfied for the CZ

method, are given by TS−T e(pS) ≤ 0 and 0 ≤ TL−T e(pL). Thus, we find that both the

second and third terms in the first bracket in the right hand side of Eq. (24) are positive

and the contribution of the last term proportional to V 3
S is negative. In Eq. (20), the

sign of the term proportional to V 3
S seems to reverse with the change in the magnitude

relation between ρS and ρL. However, when we take account of the difference in the

enthalpies more precisely, the dependence of kSGS−kLGL is negative irrespective of the

magnitude relation between ρS and ρL as shown in Eq. (24).

3.2 Entropy production

We also consider the entropy production. According to a standard method of nonequi-

librium thermodynamics,25 we start with the Gibbs relation Td(ρs) = d(ρe) − µdρ,

where s is the specific entropy and µ is the chemical potential. Using e = Ts− pv + u

and Eqs. (6)-(8), we obtain

T

[
∂ρs

∂t
+

∂(ρsu)

∂x

]
=

(
ηL

∂u

∂x

)
∂u

∂x
+

∂

∂x

(
k
∂T

∂x

)
, (26)
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where we used d/dt = ∂/∂t + u(∂/∂x) (see the detail derivation of Eq. (26) in Ap-

pendix B). We first rewrite Eq. (26) by z = x−VIt. Then, after we divide the equation

by T and eliminate VI using Eq. (12), we integrate the equation between the melt and

crystal at the interface. We obtain

(sS − sL)
VS − VL

vS − vL
=

∫ I+

I−

ηL

(
∂u

∂z

)2

dz +

∫ I+

I−

k

T 2

(
dT

dz

)2

dz, (27)

where I− and I+ indicate the melt and crystal sides at the interface, respectively. Al-

though the integration region in Eq. (27) is entirely different from that in Ref.,24 the

meanings of both equations are same. In Eq. (27), the first term of the right hand side

is entropy production caused by viscosity in the interface region, and the second term

is that induced by thermal conduction. Since both of two terms are positive, the left

hand side of the equation should be positive in the steady state. Using Eq (17), we find

that

(sS − sL)
VS − VL

vS − vL
= (sS − sL)

VS

vS
> 0, (28)

irrespective of the sign of vS − vL. Thus, at given VS, the temperatures and pressures

at the both sides of the interface are determined consistently with the second law of

thermodynamics. We expand s as

s = s0 +
c

T0

∆T − 1

2

c

T 2
0

∆T 2, (29)

where s0 = s(T0, p0). Eq. (27) is expressed as

−cS
2

(
∆TS

T 2
0

)2

+
cL
2

(
∆TL

T 2
0

)2

=
vS − vL
VS − VL

[∫ I+

I−

ηL

(
∂u

∂z

)2

dz +

∫ I+

I−

k

T 2

(
dT

dz

)2

dz

]

=
vS
VS

[∫ I+

I−

ηL

(
∂u

∂z

)2

dz +

∫ I+

I−

k

T 2

(
dT

dz

)2

dz

]
. (30)

Since VS is in the right hand side in Eq. (30), the left hand side is positive for a pulling-

up process and negative for a pulling-down process. Namely, cS(TS−T0)
2 < cL(TL−T0)

2

for a crystallization process and cS(TS − T0)
2 > cL(TL − T0)

2 for a melting process.

4. Discussion

We estimate the correction term for the CZ-Si using Eq. (24). In the case of Si,27

ρS = 2.305kg/m3 and ρL = 2.520kg/m3. The second and third terms in the first brackets

in the right hand side of Eq. (24) are neglected under assumption of a non-singular

interface. When we use L∗ = 1.787Jkg−1, cL = 946 JKg−1K−1, cS = 1000 JKg−1K−1,

and T0 = 1685K,27 (cL + cS)T0(ρS/ρL − 1)2/2L∗ is estimated to 6.7× 103. Thus, if Vs is
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in the order of a few mm/s, the the effect of the correction is less than a few percent.

Unfortunately, the effect of the correction term is small in our estimation for CZ-Si, but

there may be other materials which the correction term is important for.

In the above estimation, there are problems we should consider carefully. The geome-

try we dealt in this paper is suitable for unidirectional solidification in a thin rectangular

parallelepiped cell such as a Hele-Shaw cell, but we should have considered the radius

ratio of the radius of crucible R and that of growing crystal r in the case of CZ-Si

growing in crucible. In addition, we neglected the effect of thermal radiation. In this

paper, we did not take account of these effects to estimate the effect of the correction

term on CZ-Si for simplicity. However, when we try to apply our result to experiments

more precisely, we need to consider those problems more carefully. Thus, we think that

the derivation of the correction term by using the condition for crucible condition and

considering the effect of thermal radiation are future problems

5. Summary

We have successfully extended a hydrothermodynamic formulation to the crystal/melt

interface in a geometry of Czochralski method. As a result, we calculated a V 3
s dependent

correction term to the latent heat in a heat balance equation. In other words, we have

incorporated the effect of density difference between the crystal and melt into the heat

balance equation. The correction term gives a negative contribution to the latent heat.

We also study the entropy production. In Eq. (30), the integration range is different

from our previous study, we obtained the same magnitude relation between cS(TS−T0)
2

and cL(TL − T0)
2.

There were a lot of studies whose constituent equations including microscopic con-

tinuum conservation equations such as Refs. 28–33. However, they did not concern the

heat balance equation. Furthermore, they relied on numerical calculations to treat the

complicated geometry. For example, a free surface on the melt was sometimes taken

into account, and the heat radiation was incorporated in them. Namely, the heat bal-

ance equation cannot hold in its native form. Such complications lost thermodynamic

transparency. In particular, the entropic considerations were not given, but I think that

our approach to give additional terms one by one to a simple model helps insights and

develops concept.
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Appendix A: Derivation of Eq. (16)

By using Eq. (12), Eq. (14) is expressed as

−ρSVS − ρLVL

(ρS − ρL)

[(
ρSeS +

ρS
2
V 2
S

)
−
(
ρLeL +

ρL
2
V 2
L

)]
+
(
ρSeS +

ρS
2
V 2
S

)
VS −

(
ρLeL +

ρL
2
V 2
L

)
VL

= −pSVS + pLVL − kSGS + kLGL. (A·1)

The terms proportional to es and eL in Eq. (A·1) are reduced as[
−ρSVS − ρLVL

(ρS − ρL)
+ VS

]
ρSeS −

[
−ρSVS − ρLVL

(ρS − ρL)
+ VL

]
ρLeL

=
ρSρL(VS − VL)

ρS − ρL
(eS − eL) =

(VS − VL)

vS − vL
(eS − eL). (A·2)

When we similarly reduce the terms proportional to ρSVS/2, Thus, Eq (A·1) is given by

(VS − VL)

vS − vL

[
(eS − eL) +

1

2
(V 2

S − V 2
L )

]
= −pSVS + pLVL − kSGS + kLGL. (A·3)

By using Eq. (A·3), ∆h = hS − hL is given by

∆h =eS − eL + pSvS − pLvL

=
(vS − vL)

VS − VL

[(pLVL − pSVS)− (kSGS − kLGL)]−
(V 2

S − V 2
L )

2
+ pSvS − pLvL

=
vSVL − vLVS

VL − VS

(pS − pL)−
(V 2

S − V 2
L )

2
− (vS − vL)

VS − VL

(kSGS − kLGL) . (A·4)

The first and second terms in the fourth line in Eq. (A·4) are reduced as

(vSVL − vLVS)

VL − VS

(pS − pL)−
(V 2

S − V 2
L )

2

=
(VL − VS)

2

2(vL − vS)
(vL + vS) =

(pS − pL)

2
(vL + vS), (A·5)

where we used Eq. (15). Thus, ∆h is given by

∆h =
1

2
(vL + vS)(pS − pL)−

(vS − vL)

VS − VL

(kSGS − kLGL) . (A·6)

Appendix B: Derivation of Eq. (26)

Gibbs free energy G(= µN) is related to energy E, pressure p, volume V , temperature

T , and entropy S as µN = E+pV −TS. The equation is expressed as ρµ = ρe+p−Tρs.,

where we define s and v as s = S/N and v = V/N = 1/ρ. Thus, we obtain the following

relation,

ρdµ+ µdρ = d(ρe) + dp− ρsdT − Td(ρs). (B·1)
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On the other hand, dG is given by dG = −SdT +V dp+µdN. Since dG = µdN +Ndµ,

we obtain the Gibbs-Duhem equation, Ndµ = −SdT +V dp. When we use ρ, the Gibbs-

Duhem equation is expressed as

ρdµ = −(ρs)dT + dp (B·2)

From eqs. (B·1) and (B·2), µdρ is given by µdρ = d(ρe)− Td(ρs). Thus, we obtain the

Gibbs relation,

Td(ρs) = d(ρe)− µdρ. (B·3)

Since d/dt is related to ∂/∂t and ∂/∂x as d/dt = ∂/∂t + u(∂/∂x), from Eq. (B·3) we
obtain

T

[
∂ρs

∂t
+ u

∂(ρs)

∂x

]
=

dρe

dt
− µ

dρ

dt
. (B·4)

In the left hand side of Eq. (B·4), the second term in parenthesis is expressed as

u
∂(ρs)

∂x
=

∂(ρsu)

∂x
− ρs

∂u

∂x
. (B·5)

Equation (B·4) is modified as

T

[
∂ρs

∂t
+

∂(ρsu)

∂x

]
=
dρe

dt
− µ

dρ

dt
+ Tρs

∂u

∂x

=

[
∂(ρe)

∂t
+ u

∂(ρe)

∂x

]
− µ

[
∂ρ

∂t
+ u

∂ρ

∂x

]
+ Tρs

∂u

∂x
. (B·6)

Since ρe = ρTs− p+ ρµ, we obtain the following relation,

Tρs
∂u

∂x
= ρe

∂u

∂x
+ p

∂u

∂x
− ρµ

∂u

∂x
. (B·7)

Equation (B·6) is given by

T

[
∂ρs

∂t
+

∂(ρsu)

∂x

]
=

∂(ρe)

∂t
+ u

∂(ρe)

∂x
− µ

(
∂ρ

∂t
+ u

∂ρ

∂x

)
+ Tρs

∂u

∂x

=
∂(ρe)

∂t
+ u

∂(ρe)

∂x
− µ

(
∂ρ

∂t
+ u

∂ρ

∂x

)
+ ρe

∂u

∂x
+ p

∂u

∂x
− ρµ

∂u

∂x
.

(B·8)

By using u∂(ρe)/∂x+ ρe∂u/∂x = ∂(ρeu)/∂x, Eq. (B·8) is expressed as

T

[
∂ρs

∂t
+

∂(ρsu)

∂x

]
=

∂(ρe)

∂t
+

∂(ρeu)

∂x
− µ

[
∂ρ

∂t
+ u

∂ρ

∂x

]
+ p

∂u

∂x
− ρµ

∂u

∂x
. (B·9)

From Eq. (6), ∂ρ/∂t is given by

∂ρ

∂t
= −∂ρu

∂x
= −u

∂ρ

∂x
− ρ

∂u

∂x
. (B·10)
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From Eqs. (8) and (B·10), Eq. (B·9) is expressed as

T

[
∂ρs

∂t
+

∂(ρsu)

∂x

]
=
∂(ρe)

∂t
+

∂(ρeu)

∂x
+ p

∂u

∂x

=− ∂

∂t

(
ρu2

2

)
− ∂

∂x

(
ρu3

2

)
− u

∂p

∂x

+
∂

∂x

(
ηL

∂u

∂x

)
u+

(
ηL

∂u

∂x

)
∂u

∂x
+

∂

∂x

(
k
∂T

∂x

)
. (B·11)

When we use Eq. (7), we obtain the following relation,

∂

∂x

(
ηL

∂u

∂x

)
=

∂ρu

∂t
+

∂(ρu2)

∂x
+

∂p

∂x
. (B·12)

Equation (B·11) is expressed as

T

[
∂ρs

∂t
+

∂(ρsu)

∂x

]
=− ∂

∂t

(
ρu2

2

)
− ∂

∂x

(
ρu3

2

)
+ u

∂ρu

∂t
+ u

∂(ρu2)

∂x

+

(
ηL

∂u

∂x

)
∂u

∂x
+

∂

∂x

(
k
∂T

∂x

)
. (B·13)

In Eq. (B·13), the first and third terms in the right hand side are transformed as follows:

− ∂

∂t

(
ρu2

2

)
= −ρ

∂

∂t

(
u2

2

)
− u2

2

∂ρ

∂t
= −ρu

∂u

∂t
− u2

2

∂ρ

∂t
, (B·14)

u
∂ρu

∂t
= ρu

∂u

∂t
+ u2∂ρ

∂t
. (B·15)

Thus, Eq. (B·13) is expressed as

T

[
∂ρs

∂t
+

∂(ρsu)

∂x

]
=
u2

2

∂ρ

∂t
− ∂

∂x

(
ρu3

2

)
+ u

∂(ρu2)

∂x

+

(
ηL

∂u

∂x

)
∂u

∂x
+

∂

∂x

(
k
∂T

∂x

)
, (B·16)

By using Eq. (6), the terms in the right hand side in the first line in Eq. (B·16) are

eliminated as follows:

u2

2

∂ρ

∂t
− ∂

∂x

(
ρu3

2

)
+ u

∂(ρu2)

∂x
= −u2

2

∂ρu

∂x
− ∂

∂x

(
ρu3

2

)
+ u

∂(ρu2)

∂x
= 0 (B·17)

Thus, we obtain Eq. (26).
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