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ABSTRACT  

In Metal Organic Framework (MOF) chemistry, bidentate ligands are key factor to 

construct highly porous materials. To get best properties of MOF, we develop inorganic linker 

building unit for to substitute the organic ligand linker unit. The need of the new inorganic 

linker units is solved by making use of polyoxometalate functionalized with a metal.  

To overcome the weak coordination ability of POM, halide anion is incorporated on a 

spherical polyoxovanadate (POV) because halide incorporation can reduce the surface charge 

and increases electronegativity. This in turn increases the coordination capability of POV.  

In order to develop the intended inorganic linker, Pd is attached to the Fluoride 

incorporated dodecavanadate. The linker would not only be beneficial for framework 

(POMOF) material construction unit, but also would be beneficial 

for the purpose of oxidation catalysis.  

 Herein we report the synthesis of these types of POVs: [n-

Bu4N]4[V12O30F2].CH3CN (1), 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2].2CH3CN (2), and {n-

Bu4N}4[{Pd(NO3)(DMSO)}2V12O32(F)2]·2DMSO (3). Complex 

[1] is prepared by reduction with hydrazine of (n-

Bu4N)4[HV11O29F2]. Addition of Pd2+ to DMSO solution of [1] 

gave complex [2]. Addition of nitrate salt of Pd2+ to DMSO 

solution of [V10O26]4- and F− ion gave complex (3).   

The successfully synthesized three complexes have spherical 

shapes anions containing two anions F−. Anion (1) is mixed valence [VV
10VIV

2O30F2]4- which 

shows electrochemical behavior potential for electron sponge application. The reaction of 

precursor complex (1) with Pd2+ and DMSO afforded complex (2) which is a first mixed 

valence Pd supported fluorododecavanadate linker. Spherical compound (2) anion consists of 

ten VO5 units and two VO4 units. Two palladiums with two DMSO ligands at both sides 

attached on the main cage. Cation [VO(DMSO)5]+ comes from the partial decomposition of 

complex (1)  during the reaction. By the oxidation of decavanadate {n-Bu4N}4[V10O26] in the 

presence of F− and Pd(NO3)2 in DMSO, a palladium-supported fluoride-incorporated 

dodecavanadate (3) was synthesized. Even if sharing similar main cage shapes with (2), 

complex (3) is a fully oxidized form with nitrate and DMSO ligands attached to Pd.                                  

These complexes have potential linker capabilities that can bind the connection of 

building units to cultivate new field of molecular inorganic frameworks. 
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CHAPTER 1 INTRODUCTION    

1.1 Polyoxometalates 

Polyoxometalate (POM) is an outstanding class of oxo-cluster materials. The first 

report of POM dates back to Berzelius (1826) when he noticed a yellow solid from a 

reaction between molybdate and phosphoric acid. The formed solid was 

(NH4)3(PMo12O40) compound. After that, POM had been a large and quickly growing 

class of compound. Researchers from synthetic/structural chemistry, physics, biology and 

theoretical chemistry from all over the world have been devoting themselves on the study 

of POM.  

With the availability of new analytical methods, most POM molecular science 

(chemistry, biology, physics, and materials science) has been developed recently. Single 

Crystal X-ray Diffraction and Mass Spectroscopy are examples of methods not available 

before that allow the POM study to be easier nowadays.  

The interdisciplinary research of synthetic/structural chemistry, theoretical 

chemistry, physic, and biology focuses on study of the manifold structures and properties 

of POMs. The outstanding compositional and structural diversity of POMs enables fine-

tuning of their electronic properties, redox properties, and chemical stability together with 

robustness in the objective of designing future applied devices1. Today, POM chemistry 

is still an important emerging area where over 500 papers (not including patents) were 

published each year and this number is rapidly increasing2. POM is currently very 

attractive even in the most challenging leading research areas, e.g., water splitting, 

magnetism, catalysis, electronic materials and bio-medical applications.  
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1.1.1 Structure 

Polyoxometalates (POM) are inorganic metal oxide anions containing individual 

{MOx}n where M is limited to groups of 5 and 6 metals (M = vanadium, niobium, 

tantalum, molybdenum and tungsten, x = 4-7) (figure 1) in their highest oxidation state. 

The units can be combined to form a series of groups from low to high nuclearity, ranging 

from 2 to 368 (for example HxMo368O1032(H2O)240(SO4)48
48- anion) metal atoms in a single 

molecule3. The versatile nature of polyoxometalate derives from their ability to 

polymerize these MOx units to form highly symmetric groups. POM clusters are generally 

anionic and hardly coordinate with additional cations as linkers. Removal of some of the 

cage atoms to form vacancies that can be filled results in lacunary structure of POM .   

 

Figure 1 Periodic Table of the Element. The elements that form p1olyoxometalates 

are in green.  

POMs embrace certain structural motifs.  The POM family is divided into iso-

polyoxometalates (isopolyanion) and hetero-polyoxometalate (heteropolyanion) based 

on the types of transition metal atoms involved in their composition.  
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Isopolyanions only involve one type of transition metal atoms in their metal oxide 

framework.  They have interesting properties, e.g. high charges and strongly basic oxygen 

surfaces, which is a good unit as a building block4. The example is illustrated by 

dodecavanadate [V10O28H3]3- (figure 2).  

 

Figure 2 Decavanadate [V10O28H3]3- 

The hetero-polyoxometalate type (heteropolyanions) involve more than one type of 

metal atoms. In the other word, heteropolyanions are metal oxide clusters that contain 

heteroanions.   Heteropolyanions are the most studied POMs especially for catalysis, with 

much focus on the well-known Keggin [XM12O40]n- anions and Wells–Dawson 

[X2M18O62]n  anions (where M= Mo or W, X is the heteroatom usually P5+, Si4+, or B3+).  

 

Figure 3 Polyhedral Representation of Keggin Structure (LHS) and Dawson 

Structure (RHS) 
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The most stable POMs Keggin structure general formula is [XM12O40]n− (where X 

= heteroatom,  most common are P5+, Si4+, or B3+), M is the addenda atom (generally Mo 

and W), and O represents oxygen. The structure shows self-assembly in acidic aqueous 

solution. Since their properties are finely tunable by controlling the constituent elements, 

structures, and counter cations, POMs can be used as the unique functionalized materials, 

such as optical materials, single molecule magnets, electronic interfaces, adsorbents, 

medicine, and catalysts.  

Tungsten and molybdenum dominate many polyoxometalate chemistry primarily 

because of its stability and rich redox chemistry. These properties enable them to be part 

of a class of inorganic compounds that exhibit semi-conduction, magnetic, thermal and 

photochemical properties. Vanadium is also interesting because it forms various 

structures and with various structural units and oxidation states. 

1.1.2 Representation 

Like most of inorganic compounds, POMs’ building blocks tend to be formed from 

groups of atoms. The structure of POMs seems to be governed by the principle of 

electrostatic and radius ratios observed for extended ionic lattices. Therefore, it is easier 

to describe the structure and bonding of POMs by replacing this metal-oxide building 

block with a polyhedron where the metal ion resides at the center with oxygen ligands at 

the vertices (figure 4).  
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Figure 4  Ball stick  (left) and polyhedral representation (middle and right) of MO5 square 

pyramid unit where M = V, Mo or W. M: blue, O: red.  

At each case, the metal ion does not lie in the center of the polyhedra of oxide, 

instead it is strongly displaced outward of the POM structure, i.e. toward the vertex of the 

polyhedron (figure 5).  

 

Figure 5 Ball stick and polyhedral representation of the VO6 octahedron,  

 where V: orange, O: red.  V atom is no longer sit in the center of the polyhedron. 

These polyhedra are connected together through the edge sharing, corner sharing, 

and (rarely) faces sharing or a combination of them to build up the structure5 (figure 6). 
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Figure 6 Units for construction of POVs (LHS box), edge sharing and corner sharing 

types of assembled POVs from the units (RHS).  

If molybdenum and tungsten with d0 anionic clusters use octahedral shaped building 

blocks in their construction, then vanadium in the other hand can use tetrahedral {VO4}, 

square-pyramidal {VO5}, and octahedral {VO6} building units. The availability of these 

various building units (coordination environment) make polyoxovanadates have a unique 

structural chemistry6 (figure 6).  

1.1.3 Properties 

POMs molecule in term of charge can be regarded as a conjugating system. It is 

because for most POMs the charge is always uniform across molecules and all units. So 

which atom holding up electrons cannot be indicated. POM have moieties for receiving 

electrons in the charge transfer system which is good for energy storage application. The 

donor/acceptor interactions in such charge-transfer materials are controlled by the shape 

and size the POMs as well as by their redox potentials, which are readily tuned by 

changing the metal centers and with smart synthetic methods. Cations accompanying 

POMs for charge balancing consideration, make salt which can be both water soluble and 

organic soluble, allowing POMs applications in both media.   
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POMs are robust and have large number of metallic centers, so that POMs can 

undergo reversible and multi- electron photoredox processes and keeping their structure 

intact. These properties make POMs as electron mediators in solar cell and photocatalytic 

process. The reversible multielectron-transfer reactions of POMs are the basis for 

catalytic application of POMs.  Polyoxometalate-based catalysts are interesting because 

their acidic and redox properties can be controlled at molecular levels. In addition, POM 

has unique electrochemical, magnetic, photonic and chemical reactivity. While the 

catalysis and materials science are two main fields of applications of POMs, their 

biochemical and biological properties are the subject of increasing interest.7,8 

1.1.4 Characterization of Polyoxometalates  

There are various methods for characterization of POM both in solid state and in 

solution.  Spectroscopy is the most common and easy to use technique.  To identify the 

M-O bond presence one can use vibration spectroscopy.  FTIR spectroscopy is a powerful 

and fast method to characterize POM products from established syntheses.  

The characteristic absorption of infrared spectra of POM are in the region of 1100-

400 cm-1 associated with oxygen-stretching vibrational frequency. There are distinct areas 

where the oxygen terminal and oxygen bridging peaks can be found in that region. The 

infrared spectrum also gives information about the symmetry of polyoxoanion. It can be 

used to distinguish POMs and provide information on structures. Infrared and ultraviolet-

visible spectroscopy, and also thermogravimetric  and  differential  thermal  analyses has 

been used for POM characterization methods since 1960s 9,10,11.  

To determine the environment of specific atom in POM, one can use Nuclear 

Magnetic Resonance (NMR) spectroscopy. 31P NMR is used to identify POMs such as 

phosphotungstates and phosphomolybdates. 29Si NMR is to identify the POM structure 
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that includes non Si as P heteroatoms. Polyoxovanadate and polyoxotungstate can be 

characterized by 51V NMR and 183W NMR respectively.  

Associated with NMR is electron paramagnetic resonance spectroscopy (EPR). 

EPR can detect and identify free radical, paramagnetic centers, and geometry of atomic 

coordination.12 The energy dispersive x-ray spectroscopy (EDS) paired with a microscope 

can help to determine element composition. Transmission electron microscope (TEM) 

can be used to observe individual polyoxometalate clusters. Scanning Electrons 

Microscopy (SEM) can be used to observe crystals or bulk powder.  

Mass spectrometry is a useful technique for identifying species present in solution 

by separating them based on mass to charge ratio.  The relative percentage of each species 

can also be determined. Mass spectrometry can be augmented by various techniques such 

as chromatography, thermogravimetric analysis, ionization electrospray, etc. 

The method of Electrospray   Ionization   Mass   Spectrometry   (ESI-MS) is   

suitable   for   the   analysis   of  ionic species in aqueous and polar solvent, and as such 

complements the other methods for the characterization of POMs structurally and 

chemically13. ESI-MS has enabled the real time monitoring of the formation of a complex 

of organic–inorganic POM hybrid system14. X-ray photoelectron spectroscopy (XPS) can 

be used to identify substitution of elements into clusters and also study the surface of 

films stored from POMs. 

Beside some of the traditional tools, non-traditional analytical tools are also used 

currently to characterize the aqueous inorganic clusters and POMs ions. Some examples 

of the techniques are nuclear magnetic resonance spectroscopy (NMR), Raman 

spectroscopy, dynamic and phase analysis light scattering (DLS and PALS), small angle 
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X-ray scattering (SAXS), and quantum mechanical computations (QMC). The cluster 

species in the solid state or in the solution can be determined with this techniques.12  

Computational chemistry provides valuable information to complement 

characterization of polyoxometalate. Simulation data can be produced for some data 

different methods such as vibration spectroscopy, NMR, scattering data, etc. Computation 

can also determine the energetics of the group under various conditions, and can helps us 

to understand the speciation and formation of this attractive metal oxide cluster.  

1.1.5 Application of Polyoxometalates 

By extensive structural range of POMs, attractive POM applications continue to 

grow.  The extensive application of POMs are due to (i) the ability of POM to act as a 

conjugated electron sponge and (ii) great variability of its molecular properties, including 

size, shape, redox potential, charge density, solubility, acidity, etc.  Some noted area of 

POMs application are on the catalysis, medicine, bioanalysis and materials science15.   

The group VI and vanadium POMs possess extensive redox properties relevant to 

catalysis and electron transfer processes. Therefore, the silico- and phospho- tungstates 

and molybdates are the most referenced examples for applications.   

Inorganic-organic hybrid POMs can be used to synthesize new multi-functional 

POM materials. Hybrid POMs can be applied in enantioselective catalysis and separation 

by incorporating chiral organic molecules into the structure. Photo induced electron 

transfer in POM-porphyrin hybrids provides photosensitive systems for catalysis, 

photovoltaics, and for environmental applications such as depollution and recovery of 

valuable or toxic metals. 
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1.1.6 Synthesis  

Most POM synthesis depends on the use of a conventional solution-based synthetic 

method such as solvent evaporation, precipitation method and crystallization technique 

where ambient pressure and temperature conditions have been used. The solution-based 

approach so far has resulted in the synthesis of a large number of POM compounds. There 

are also some precaution regarding the use of this method. One must take care of the low 

solubility of metal oxide starting materials, inclusion and co-crystallization water and 

solvent molecules, poor controllability of reaction parameters etc.   

The experimental variables which should be controlled in the synthesis of a POM 

are: (1) pH, (2) type and concentration metal oxide anion, (3) ionic strength, (4) type of 

heteroatom and its concentration, (5) additional ligands presence, (6) temperature and 

pressure (7) reducing environment, (8) counter-ion and metal-ion effect and (9) 

processing methodology (one-pot, continuous flow conditions.16 Some of these problems 

are seen for obtaining high yield synthesis. Changes of acid type, solvent (aqueous or 

non-aqueous systems), use of a ligand, heteroatom or reducing agent, all play a role in the 

assembly of new clusters of POMs.5  

POMs have been synthesized and isolated from both aqueous and non-aqueous 

solutions. In aqueous solution, the common method involves the acidification of aqueous 

solutions of simple oxoanions and the necessary heteroatoms as follows,  

12 WO4
2− + HPO4

2− + 23 H+ → [PW12O40]3− + 12 H2O 

4 VO4
3− + 8 H+ → V4O12

4− + 4 H2O 

7 MoO2
4- + 8 H+ →  [Mo7O24]6−  +  4 H2O 
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In some cases, the product is crystallized at room temperature since the equilibrium 

constants and the rate of formation are large. Furthermore, careful temperature and pH 

control is required for the desired reaction to occur. 

1.2 Polyoxovanadate  

1.2.1 Introduction  

Vanadium is group 5 transition metal which is known for production of alloys.  

Vanadium also has function in biological system and plays role in bioinorganic 

chemistry.17 Vanadium has many oxidation states with the common oxidation state 

between +2 and +5 associated with certain characteristic colors. Vanadium exhibits 

various coordination geometries that provide more structural flexibility and have general 

tendency to form cluster with shell and cages like topologies. Specific reaction parameters 

such as temperature, pressure, reaction time, stoichiometry, solvent, concentration, and 

pH determine the oxovanadium ions’ nuclearity, structural motifs and net charge.  

Vanadium oxide compounds have application in the field of catalysis,   biochemistry, 

sensor, geochemistry, sorption and intercalated layered material surface and nanoscience 

and perform their role in smart material for energy18. A compound containing an oxoanion 

of vanadium is known as a vanadate, generally with the highest +5 oxidation state of 

Vanadium. The simplest vanadate ion is the tetrahedral, orthovanadate, VO4
3− anion, and 

in solutions of V2O5 in strong base (pH > 13). Conventionally this ion is represented with 

a single double bond, however this is a resonance form as the ion is a regular tetrahedron 

with four equivalent oxygen atoms. 

Polyoxovanadate (POV) represents an important subclass of POMs. POV’s fast 

growing research are motivated by the their versatile redox properties and prospective in 

various branch of chemical, physical and biological sciences.18  
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POVs show structural versatility due to the variety of the coordination number of 

vanadium.  POVs have different basic types of polyhedra, ({VO4}, {VO5}, and {VO6}) 

building blocks (units), to form cluster shells or cages. Further, they can be divided into 

four families: “highly-reduced” (VIII), “fully-reduced” (VIV), mixed-valent (VV/VIV or 

VIV/VIII), and fully-oxidised (VV), species (figure 7).18 The cage-, basket-, and sphere-like 

shape of POVs enables them to entrap small guest molecules in their central cavities, to behave 

like a “molecular container” like e.g. fullerenes. 

 

Figure 7 The four families of POVs (RHS) constituted by different building units (LHS) 

POV clusters that contain mixed valence species (VIV/V) arise from the full or partial 

delocalization of the single 3d electrons of the vanadium ions over either valence types 

or the complete localization over the paramagnetic ions. 19,20 This type of POV are highly 

attractive for magnetic studies.   

1.2.2 Synthetic procedure  

Polyoxovanadates are almost always synthesized under aqueous or hydrothermal 

conditions which may limit the isolation of different cluster types. A variety of POV 

synthetic methods have been used to construct complex molecules by considering 

synthetic parameters (concentration, pH, molar ratio, temperature, solvent choice and 

counter cation).  Exploration of new synthetic routes may need long time and patience. 

POV Materials doesn’t include those which do not form crystals with distinct chemical 
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compositions and the atoms must be organized in an orderly array of repeating units. The 

choice of counter cation and condensation method is very important for the synthesis of 

POVs. 21 

Adjusting the pH to a specific level can give rise to POMs with different nuclearities. 

For example, in the synthesis of POVs in very alkaline conditions, the formation of 

polyoxo species is not easy, because only orthovanadate [VO4]3− is formed. On the 

acidification of solution, the protonation reaction begin against the oxido group with the 

formation of the intermediate [HVO4]2−, [H2VO4]−, and H3VO4. As the solution becomes 

more acidic, condensation reactions of orthovanadates occurs  to form of various POVs 

species.21 

At pH 8 to 13, monovanadates [HVO4]2−, divanadates [V2O7]4−, and metavanadates, 

[VO3]n
n− (n = 3 or 4) are stable.21 Simple illustration of the effect of pH on the 

transformation of POVs can be seen in figure 8.  

 

Figure 8 The effect of pH on the anions and oxides in vanadium (V) chemistry  

1.3 Mixed valence POMs 
The names ‘mixed valency’ or ‘intermediate valence’ or ‘mixed oxidation state’ or 

‘non-integral oxidation state’ are used to describe inorganic or metal-organic compounds 

in which an element is present in more than one oxidation state. The transfer of an electron 

from one metal ion to another cause the colouration. The distribution of oxidation states 
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within the molecule can exchange under the influence of light resulting in the light 

absorption and hence the colour. This happens very frequently in inorganic chemistry 

when the same element is present in different valence states in the same molecule. 22 

There is a type of reduced POM, the so-called heteropoly blue, which are is stable 

in alkaline solutions. They are able to receive or release electrons without any change or 

decomposition of their structures. Moreover, since redox systems based on POMs are 

electrochemically fast; thus the reduced POMs can participate in numerous 

electrocatalytic cycles. Based on the above considerations, it is possible to use reduced 

POMs as a catalyst or an assistant catalyst substrate in oxidation–reduction reactions. 23   

Reduced polyoxovanadates is a relatively recent development in polyoxometalates 

chemistry. While readily available VV isopolyvanadates are mainly limited to have 

decavanadate structures, mixed valent species exhibit unique structures, such as cage-like 

spherical clusters. The spherical vanadate clusters have been observed with encapsulating 

negatively charged ions.24  

1.4 Noble Metals in Polyoxometalates  

Noble metals are interesting to discuss in POM field especially for the catalysis 

purpose. The noble metals related are ruthenium, rhodium, palladium, silver, osmium, 

iridium, platinum and gold. The combination of noble metal with POMs can be in the 

form of introduction a noble metal atom in a POM structure or the complete formation of 

different structures.  

Polyoxoanions substituted by noble metal cations are interesting due to the rich and 

extensive multi-electron redox chemistry displayed by noble metal elements.25 In the field 

of catalysis, noble-metal-substituted polyoxometalate catalysts showed high activity and 

selectivity in alkane and alkene epoxidations.26  
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1.5 Palladium POM complexes 

Palladium is a noble metal that is difficult to oxidize because of a combination of 

high sublimation energy and high ionization potential. The coordination chemistry of 

palladium is mostly related with their oxidation states. The most common oxidation state 

of Pd is 0 and +2. Oxidation states of +1 and +4 are also found and the rarest one is +3. 

The Pd(0) complexes cover compounds with many possible ligands (L)  e.g. in [PdL2], 

[PdL3], and [PdL4] stoichiometries. All Pd(I) compounds have feature Pd-Pd or Pd-M 

bonds.  Some tridentate macrocyclic ligands containing S and N as donors can stabilize 

mononuclear complexes of Pd(III).  Pd(IV) is common oxidation state. Complexes with 

many different ligands, which have octahedral coordination are also identified.27  

Pd(II) compounds are frequently four-coordinated square planar. Square-planar 

Pd(II) fragments are building blocks in the construction of extended structures.  There is 

no report of three-coordinated Pd(II) compounds. Coordination to cis-PdL2 fragments can 

be used to express corners, while trans-PdL2 moieties can help build linear edges27. Some 

interesting features of palladium (II) chemistry are (1) formation of square-planar 

complexes and (2) bonding properties intermediate between the first transition series and 

the heavy metals28.  

Palladium (II) is a class b or a soft metallic center. Therefore, it forms various stable 

complexes with soft ligands. A vast palladium (II) coordination chemistry is found for S-, 

N-, P-, and As-donor ligands. Complexes containing O–donor ligands are less abundant 

and monodentate ligands of this type readily undergo substitution reactions by other 

ligands29. 

The strong motivation on research on Palladium-POM is because Pd has attractive 

catalytic properties beside its relatively high abundance in the Earth’s crust. Some 
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palladium- substituted polyoxometalates have been synthesized. Most palladium (II) ions 

in these structures are generally coordinated in a square planar geometry to oxygen atoms 

of lacunary Keggin, or Dawson POMs. Among few examples are reports on sandwich-

type polyoxotungstates substituted by Pd.  

1.6 POMOFs  

Metal organic frameworks (MOFs) are complexes containing of metal ions or 

clusters coordinating to organic ligands (linker) to form framework structures (figure 9). 

MOFs are a subclass of coordination polymers that is particularly porous. However, the 

organic linkers can decompose by oxidation or high temperature. Obtaining inorganic 

linker can overcome the problem, and POMs is potential linker for MOF chemistry.  

 

Figure 9 Schematic view of MOF formation 

Recently, new class of POM-based Metal Organic Frameworks, so-called POMOFs 

has developed. The schematic connection among metal ion, ligand and POMs in POMOF 

is presented in figure 10. 30  
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Figure 10 Schematic POM based MOF materials 30 

The POM clusters can be bridged into chain and networks by inclusion of secondary 

transition metals, rare-earth metals, and main group metals31 32. POMs can be regarded 

as inorganic multi-dentate ligands that can bind to secondary transition metals. Small 

metal-oxide clusters have well-defined binding sites, known oxidation states and definite 

solubility preferences. So in POMOF chemistry, the way one can assemble the connection 

of POMs to one another are by using bridging  organic linkers 33 or by ligand-supported 

transition-metal bridges.34  

The design of coordination polymers based on polyoxometalates (POMOFs), how 

to introduce a linker unit on the polyoxometalate frameworks, is essential. Even if the 

coordination ability of polyoxometalates are commonly small due to the relatively small 

surface electron density, the introduction of the metal binding sites with available 

coordination sites are suitable for inorganic functional nanoscale structures.35  
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1.7 Aims and Overview of the Research  

Most of POMs materials are molecular under standard conditions of pressure and 

temperature. There are only a few examples of 1-D POMs reported at standard condition.  

The problem of the formation of POM based frameworks structure is related with the 

POMs’ weak ligand properties that have weak coordination ability of the POMs. Even if 

POMs have high negative charges, they actually have only weak coordination ability. 

This problem is due to the delocalization of surface charge along the POMs clusters.  

This means that the construction of POMOFs basically is not easy. This can be seen 

from very few publications reported for this topics. For example, SciFinder produced by 

Chemical Abstracts Service (CAS) that has the most comprehensive database for the 

chemical literature, journal articles and patent records, chemical substances and reactions 

only listed 38 references containing "POMOF" entry or 36 references containing "POM 

and MOF" entry until the writing of this thesis.  

So, the aim of this project is to overcome the weak ligand POMs in the objective of 

constructing POM based frameworks (POMOFs) materials. This aim is approached by 

functionalization of POMs with introduction of transition metal on the surface of POMs. 

The transition metals should be a well-known linker metal in MOF chemistry and should 

have definite coordination geometry. Pd2+ fulfill this criterion as it is the known superior 

linker metal in MOF chemistry and supramolecular chemistry. The synthesized materials 

would be the first Pd-POM linker which can become a building block of POM based 

MOFs materials via coordinative-Pd bridge.  

 Overview of the research  

For the ease of discussion of this dissertation, we describe the overview of the 

synthetic scheme of this research with the three important complexes synthesized (figure 
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11). In the next chapters 3, 4 and 5, we will discuss the three complexes, compound (1), 

compound (2), and compound (3) subsequently in detail.  

 

Figure 11 Research overview where a reduced inorganic linker (comp 2) is synthesised 

from the precursor (comp 1) and fully oxidized inorganic linker (comp 3) is prepared with 

addition of oxidant 

The synthesis of the three complexes is to create new inorganic ligands for 

supramolecular or Metal Organic Frameworks. Since POM itself is generally weak 

coordinator, we started from special kind of POV where Fluoride is incorporated at the 

center of the POV so that it can enhance the coordination ability of POV (compound 1).    

Then Pd is put at both end of compound (1) to provide actual linker site (compound 2). 

Compound (2) is still in reduced state so that it is air sensitive against oxidation. Therefore, 

we need a really stable complex which is the oxidized one. This the final product is air 

stable with two linkers (compound 3).   
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CHAPTER 2 EXPERIMENTAL METHOD  

2.1 Synthetic Procedure  

The synthesis of inorganic solids can be performed by a variety of methods. Some 

noted methods are the ceramic method, combustion method, precursor method, 

topochemical routes, intercalation compounds, ion-exchange method, sol-gel process, 

alkali-flux method, electrochemical methods, high pressure methods, etc.36 Chemical 

methods of material synthesis play an important role in designing new materials and in 

providing better practical methods for preparing the already known materials.  

The synthesis is expected to give solids products. When the solids are formed, the 

next step is the characterization of the material to determine the structure, and to reveal 

the chemical and physical properties of these materials. For this purpose, the solid should 

be single crystalline form. Special attention must be taken to make sure the formation of 

single crystal growth which is vital for structural characterization. The most widely used 

characterization method of structures for crystalline solids is Single Crystal X-ray 

Diffraction (SXRD).  After revealing the arrangement of atoms and overall structure of 

the solids, predictions about the characterization of potential properties can be made based 

on structural analysis.  

2.2 Characterization techniques  

The need for the synthesis of new materials is driven mainly by the potential 

properties that can be exploited. Knowing the arrangement atoms and or molecules in 

three-dimensional space (3D) is one of the most important steps in allowing ones to 

understand the chemical principles and processes responsible for material properties (e.g. 

conductivity, energy storage, etc.).  Understanding of material structures in terms of 

bonding and oxidation states, for example, allows researchers to discover material 

properties.  
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In this dissertation, we routinely focus on the characterization of newly discovered 

crystalline solid using Single Crystal XRD. In addition to the structural characterization, 

the compounds are also characterized by other appropriate characterization techniques. 

These characterization methods include UV-vis spectroscopy, IR spectroscopy, CHN, S 

and F elemental analysis, and thermal analysis (TGA).  

2.3.1 Single Crystal X-ray Diffraction (SXRD) 

The atoms and molecules can be arranged in a non-periodic array to form 

amorphous or periodic array to form crystalline materials. Crystalline solids are most 

generally characterized using both single crystal and powder X-ray diffraction techniques. 

SXRD method can determine the atomic positions, crystal structures, and the overall 

composition of a crystalline solid. Since the atomic arrangement determines the material 

properties, it is essential to know the structure before further doing the property 

characterization.  

Before performing SXRD measurement, one must have a bit large (0.1 - 0.3 mm in 

each dimension) single crystal (not only the crystalline) material in question. The crystal 

lattice in a single crystal is continuous and unbroken to the edges of the crystal without 

any grain boundaries. It is different from polycrystalline (crystallite) that has random 

orientation or an amorphous structure that has atomic positions limited to short range 

order only. The crystal should also not be twinning which can be problematic in X-ray 

crystallography, because a twinned crystal produce complicated a simple diffraction 

pattern.  The twinning itself is caused by the symmetrical intergrowths of crystals.    

Once the single crystals were obtained from reaction solution, the crystals were 

quickly placed in mineral oil. This is to prevent the decomposition in air if the crystal is 
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moisture sensitive. The glue also functions as a protective film to prevent the possibility 

of single crystal decomposition in air.  The crystal was then mounted on diffractometer.  

X-ray crystallographic analysis measurement.  

Single crystal structure analysis was performed at 90 K by using a Bruker D8 

VENTURE diffractometer with graphite monochromated Cu Kα radiation (λ = 1.54178 

Å). The data reduction and absorption correction were done using APEX3 program.37 The 

structural analyses were performed using APEX3, and WinGX38 for Windows software. 

The structures were solved by SHELXS-201439 (direct methods) and refined by 

SHELXL-2014.39 Non-hydrogen atoms were refined anisotropically. Hydrogen atoms are 

positioned geometrically and refined using a riding model. 

2.3.2 IR Spectroscopy 

Spectroscopy is a very important tools used to investigate the structure of materials 

through the interaction of electromagnetic radiation with matter. Infrared spectroscopy 

(IR) was used for the study the vibration between atoms when infrared radiation is 

absorbed. By measuring the vibrational characteristics occurring in the material, 

information about the composition of the materials can be obtained. The infrared region 

of the electromagnetic spectrum is found from 400 cm-1 to 4000 cm-1.  

From the study of the vibration frequencies of some synthesized POMs for years, it 

was found that the IR spectra of POMs result from stretching vibration frequency of the 

metal-oxygen. The characteristic absorption peak is 1100-400 cm-1. The infrared 

spectrum also has information about the symmetry of polyoxoanion. The infrared 

spectrum, as an analytical means, can be used to differentiate heteropolyanion. In addition, 

different functional groups in POMs also absorb characteristic frequencies of IR radiation. 
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IR spectrum can be obtained from samples in the forms of liquid, solid, and gas. 

Pellets are used for the solid samples. The solid sample (0.5 to 1.0 mg) is finely ground 

and intimately mixed with approximately 100 mg of dry potassium bromide (KBr). The 

mixture is then pressed to be transparent disk at sufficiently high pressure. The 

introduction of the KBr pellet method has made possible the determination of infrared 

spectra of most insoluble materials.  

IR spectra measurement: 

FTIR were measured on Jasco FT/IR-4100 using KBr disks.  The sample was mixed 

in with dry KBr salt. KBr was kept in a desiccator. The crystals along with KBr were 

ground in a mortar until the mixture is homogenous. Then, the ground mixtures were 

pressed into disk-like pellets using pellet press. The transparent pellets were attached to 

the sample holder for performing measurements. The samples, including the KBr blank, 

were measured in the wavenumber of 400 cm-1
 to 4000 cm-1

.  

 

2.3.3 Nuclear magnetic resonance (NMR) spectroscopy  

NMR spectroscopy is used to determine the environments of specific atoms in a 

POMs either in solution or solid state. For identifying POMs such as the 

phosphotungstates and phosphomolybdates, 31P NMR is utilized. 29Si NMR is also used 

to study POMs that contain Si heteroatom. Polyoxovanadates and Polyoxotungstates can 

be characterized with the corresponding nuclei 51V NMR and 183W NMR respectively. 

Unluckily, there are some nuclei with quadrupole moments that cause line broadening 

and therefore makes characterization extremely difficult (tantalum and molybdenum for 

example).  
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Vanadium complexes  of  VV (d0), low-spin VIII (d2), low spin VI (d4), low 

spin V-I (d6) and V-III (d8) are diamagnetic and vanadium NMR come to be observable. 

Among the transition metal nuclei, 51V NMR have a relatively higher sensitivity because 

of its excellent NMR properties.  Its receptivity is close to that of the proton, a 

consequence of the high natural abundance and the favorable magnetogyric ratio, the 

latter also accounting for its accessibility at a frequency close to that used for the 

detection of 13 C. The nuclear spin of the 51V nucleus is 7/2 . Distinctive 5 1 V NMR signals 

can often be detected down to micromolar concentrations.  Even minor variations in the 

electronic status at the vanadium nucleus are thus detectable through variations of the 

chemical shift.17 

Nuclear magnetic resonance (NMR) spectroscopy measurement: 

NMR spectra were performed with JEOL JNM-LA400. 1H, 51V and 19F NMR 

spectra were measured at 399.78, 105.15, and 376.17 MHz, respectively. All spectra were 

obtained in the solvent indicated, at 25ºC unless otherwise noted. 19F NMR spectra were 

referenced to neat CF3COOH (δ = 0.00). 51V NMR spectra were referenced using a 

sample of 10 mM NaVO3 in 2.0 M NaOH (−541.2 ppm).  

 

2.3.4 UV-Vis Spectroscopy 

 UV-Vis spectroscopy can be used to study the electronic changes in solids or 

liquid samples occurring upon the absorption of UV-Vis radiation. In transition metal 

compounds, electronic transitions occur upon the absorption of UV-Vis radiation. For 

example, ligand to metal charge transfer (LMCT) and d-d transitions occur in the UV-Vis 

region.  
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For vanadium complexes, electronic absorption spectra from the near-infrared 

(NIR) to the visible (Vis) and ultraviolet (UV) region may be caused by intra-metal d–d 

transitions (parity forbidden), metal-to-ligand charge transfer (MLCT), ligand-to-metal 

charge transfer (LMCT), intra ligand transitions and, in complexes containing more than 

one vanadium center with the vanadium centers in different oxidation states, inter-valence 

charge transfer (IVCT).17 

The more intriguing information on the electronic situation of the metal comes from 

the d–d transitions. Extinction coefficients ε for the ‘allowed’ MLCT, LMCT and IVCT 

transitions generally are several thousand lmol-1cm-1, whereas the ‘forbidden’ d–d 

transitions are between 20–200 lmol-1cm-1.17 

Vanadium(V) which does not contain d electrons, obviously is restricted to intra-

ligand LMCT absorptions. Simple VV compounds such as vanadate are colorless, because 

LMCT bands lie in the UV region. Decavanadate [VV
10O28] are yellow, because the 

LMCT tails from the UV region into the violet range.  

More complex vanadium(V) complexes can be very colorful when the LMCT shifts 

into the visible region. Examples are hydroxamate complexes, which can be used to for 

the colorimetric quantitative determination of vanadium(V), and other complexes with 

noninnocent ligands, such as catecholato–vanadium complexes with low-energy ligand-

to-metal transitions.17 

UV-Vis Absorption Spectra Measurement:  

UV/Vis spectra were recorded using a JASCO V-570 spectrophotometer. The data 

of solid samples was collected in the absorbance mode between 300 nm and 800 nm or 

1600 nm.   
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2.3.5 Thermal Analysis TG:  

Thermal analysis of is used to study the new discovered compounds’ thermal 

stability. When the compound is heated some temperature-dependent changes can occur. 

For instance, the decomposition of the compound to a more stable one is reached after 

certain temperature. Usually, the decomposition of the compound results in the loss of a 

gas species or solvent of crystallization.  

In addition, we can study the phase changes and transformation by calculating the 

amount of heat absorbed or the heat released by the sample. For example, crystallization 

of solids results in the release of energy while melting requires energy input.  

Thermogravimetric analysis is an essential laboratory tool used for material 

characterization. In thermogravimetric analysis the mass of a sample is monitored 

continuously as a function of temperature or time when the sample specimen is exposed 

to a controlled temperature in a controlled atmosphere. 

TGA is used to determine the loss in mass at particular temperatures, so the 

information provided is quantitative. It is limited to decomposition and oxidation 

reactions and to such physical processes as vaporization, sublimation, and desorption.  A 

sample purge gas controls the sample environment by flowing over the sample and exits 

through an exhaust. Nitrogen or argon is usually used to prevent oxidation of the sample.  

TGA measurements 

TGA measurements were done on ground powders (∼10 mg).  The heating profile 

for the measurement included a heating rate of 10 °C/min starting from room temperature 

to 300 °C, followed by a return cooling rate of 10 °C/min in the presence of nitrogen gas 

flow. 
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2.3.6 Cyclic voltammetry 

Applications of cyclic voltammetry have been extended to almost every aspect of 

chemistry, including the examination of the ligand effect on the metal complex. Cyclic 

voltammetry is a method in which information about the analyte is obtained from 

measurement of the Faradaic current as a function of the applied potential. 

Cyclic voltammetry is a very useful electrochemical technique in modern 

analytical chemistry for the characterization of the electroactive species. This method 

provides valuable information regarding the stability of the oxidation states and the 

electron transfer rate between the analyte and the electrode.  

The current response over a range of potentials is measured. The measurement 

starts from an initial value, varies of the potential in a linear way until a limiting value, 

and to reverse the direction of the potential scan at this limiting potential, and finally the 

same potential range is scanned in the opposite direction. Consequently, the species 

formed by oxidation on the forward scan can be reduced on the reverse scan. This 

technique is accomplished with a three-electrode arrangement: the potential is applied to 

the working electrode with respect to a reference electrode while an auxiliary (or counter) 

electrode is used to complete the electrical circuit. 

Reduction-oxidation (electronic) properties of POMs can be tested in solution by 

cyclic voltammetry. The cyclic voltammograms contain reversible or reversible waves 

that correspond to the oxidation and reduction of POM anions. So it is necessary to have 

POMs soluble in specific solvent of choice for cyclic voltammetry measurement.  

Ferrocene/ bis-cyclopentadienyl iron(II) Fe(C5H5)2 as standard 

The ferrocene Fe(C5H5)2 oxidation to the ferrocenium cation Fe(C2H5)2
+

  is a 

standard one-electron transfer reversible process for CV measurement because the rate of 
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electron transfer is incredibly fast.40 The redox system Fe(C2H5)2
+

 /Fe(C5H5)2 has received 

considerable attention in electrochemistry because it can be used for instrumental and 

reference potential calibrations in organic media 4142  

Cyclic Voltammetry (CV) Measurement  

An ALS/CH Instruments electrochemical analyzer (Model 600A) was used for 

voltammetric experiments. The working electrode was glassy carbon, the counter 

electrode was Pt wire, and the reference electrode was Ag/Ag+. The voltage scan rate was 

set at 100 mV s− 1. The potentials in all voltammetric experiments were converted using 

data derived from the oxidation of Fc (Fc/Fc+ Fc = ferrocene) as an external reference.  

 

2.3.7 Elemental analyses  

Elemental analyses of C, H, and N were done by the Research Institute for 

Instrumental Analysis, Kanazawa University. Elemental analysis of F was conducted at 

the Center for Organic Elemental Microanalysis Laboratory in Kyoto University. 

2.4 Materials 

The starting materials used in the synthesis of our new polyoxometalate in this 

dissertation are not sensitive to air and/or oxygen. For this reason, there is no need to use 

of a nitrogen-purged drybox (solvent-free glovebox). The reactants were weighed on an 

analytical microbalance with a precision of 0.1 mg.  The chemicals and reagents were 

purchased from various commercial sources and were used without further purification 

unless otherwise stated. Table 1 reports all of the chemicals used in synthesis of 

compounds presented in this dissertation.  
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Table 1 Materials used  

Compounds Chemical Formula Source 

Hydrazine, Monohydrate NH2NH2.H2O NACALAI 

Hydrogen peroxide H2O2  WAKO 

Silver Nitrate AgNO3 WAKO 

Tetrabutylammonium nitrate (CH3CH2CH2CH2)4N(NO3) WAKO 

Tetrabutylammonium fluoride 
trihydrate 

(C4H9)4NF(H2O)3 
Sigma 
Aldrich 

Vanadium(V) Oxide V2O5 NACALAI 

Triethylamine C6H15N WAKO 

Tetrabutylammonium Bromide C16H36BrN TCI 

Palladium chloride PdCl2 HPC 

1,5-Cyclooctadiene C8H12 KCC 

Silver tetrafluoroborate AgBF4  TCI 

Et-OH C2H5OH WAKO 

diethyl ether (C2H5)2O WAKO 

Nitromethane CH3NO2 TCI 

Acetone (CH3)2CO WAKO 

Acetonitrile CH3CN WAKO 
Hydrochloric acid HCl WAKO 

Some precursors were prepared according the literature procedures, (n-

Bu4N)4[HV11O29F2], {n-Bu4N}4[V10O26], VOSO4.3H2O, and Pd(cod)Cl2.  

2.4.2 Synthesis of starting materials 

{n-Bu4N}4[HV11O29F2] from reported procedure.43 

To a solution of 1 (379 mg, 0.20 mmol) and tetra-n-butylammonium fluoride (315 

mg, 1.0 mmol) in dichloromethane (20 mL) was added tert-butyl hydroperoxide (60 mg, 

0.5 mmol); the purple solution gradually turned intense red. The solution was dried with 

anhydrous magnesium sulfate and then concentrated to 10 mL by heating; chloroform (20 

mL) was then added. Red crystals were obtained after 2 d. Yield: 200 mg (54% based on 

V).  
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Pd(cod)Cl2 from reported procedure. 44 

First 200 mg (1.13 mmol) of palladium (II) chloride was dissolved in 0.50 mL conc. 

HCl by warming the mixture. The solution was cooled to ambient temperature, diluted 

with 17 mL ethanol, and then filtered. Under stirring, 0.30 mL (2.244 mmol) of 1,5 

cyclooctadiene was added to the filtrate. The yellow product precipitated immediately. 

After 10 min storage, the precipitate was separated and washed three times with 3 mL of 

diethyl ether to yield 308 mg (1.08 mmol, 96%) of yellow solid; 

{n-Bu4N}4[V10O26] from reported procedure45.  

Firstly, V2O5 (3.62 g, 20 mmol) was suspended in water 20 mL and this solution 

was heated at 60 °C. Triethylamine 4.04 g, 5.56 mL (40 mmol) was added dropwise into 

the solution. This solution was stirred for 20 min at 60 °C, then the suspended solution 

turned yellow clear solution. Acetone 100 mL was added to the solution, then the milky-

white suspended solution was obtained.  VOSO4-xH2O (2.17 g, 10 mmol) was dissolved 

in water 5 mL (solution B). After dissolution, the solution A was filtered out, solution B 

was added slowly to the filtrate, the yellow solution turned dark purple, and the dark 

purple was formed immediately. The solution was to be kept stirred for 10 min at room 

temperature.  The dark purple solid was filtered, washed with H2O, ethanol, and diethyl 

ether, and dried under vacuum and in a desiccator. Yield 7.77 g (82% based on V) 
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CHAPTER 3 SYNTHESIS OF FLUORIDE INCORPORATED 

DODECAVANADATE  

{n-Bu4N}4[V12O30(F)2]·CH3CN 

Abstract  

In the objective of synthesizing metal inorganic polyoxovanadate (POV) linkers, a 

core structure for the linker is firstly synthesized. Because POM itself is generally weak 

coordinator, we started from special kind of POV where Fluoride is incorporated at the 

center of the POV cluster so that it can enhance the coordination ability of POV.   It is a 

fluoride-incorporated polyoxovanadates {n-Bu4N}4[V12O30(F)2]·CH3CN (1) that play 

important role as core structure for the linker target.  

Anion of (1) [V12O30(F)2]4-  a structural modification of its precursor [HV11O29F2]4−.  

[V12O30(F)2]4-  is a mixed valence VIV/VV state polyoxovanadate which has square 

pyramidal vanadium units. Crystallographic study of this complex shows that the 

polyoxoanion has two fluoride anions incorporated and four {n-Bu4N}+ counter cations. 

No hydrogen bond interactions were observed.  

Graphical abstract 

The environmental condition may vary that effect the fate of POMs. The acidic, 

basic, oxidizing, reducing, etc. environments are pertinent at which POMs may exist and 

may transform themselves to other products.  
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Figure 12 Synthetic scheme to product [V12O30F2]4− 

Reduction of [HVV
11O29F2]4− has significant effect which not only reduces the 

vanadium atoms, but also modifies the structure giving rise to [VIV
2VV

10O30(F)2]4-. 
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3.1 Introduction 

Host–guest chemistry is common in supramolecular chemistry. It is about 

complexes composed of two or more molecules or ions held together by forces other than 

full covalent bonds. Polyoxovanadates are potential to be an inorganic host molecule 

which can exhibit potential application for molecular recognition, ion separation, or 

molecular switching.46 POV anions which have shell-like clusters are molecular 

containers in which the guest molecule or ion is situated inside as the entrapped guest.  

Some cluster anions of dodecavanadates are of this types and reveal the host –guest 

systems against halides incorporated.   

Relatively recent development in polyoxometalates chemistry is the synthesis of 

reduced POVs. If the VV POVs are mainly limited to have decavanadate structures, then 

the mixed valent species have unique structures, such as cage-like spherical clusters.  The 

spherical vanadate clusters have been observed with encapsulating negative charged 

ions24. 

3.1.1 Fluoride incorporated POV  

Generally, coordination ability of polyoxovanadate is weak. So supporting 

transition elements to POV is difficult that the examples are very small. However, by 

changing electrostatic valence by putting two fluorides inside the cluster, then Fluoride 

incorporated POV would be able to coordinate with transition elements. 

Halide incorporated POVs can be prepared by halide anions reaction with 

polyoxovanadates, for example the formation of [HV11O29F2]4 −and [HV12O32(Cl)]4-. The 

advantage of incorporation of F− into POMs are to decrease the surface charge, to make 

them small and in purpose of obtaining high electronegativity POMs47,48. These aspects 

in turn have promising properties. This advantages ignites the synthesis of fluoride 
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complexes of vanadium numerously, e.g. [VOF4]-, [VOF5]2−,  [VO2F2]− , [VO2F3]2−, 

[V2O4F5]3−, [V2O6F2]4– ,  [V2O2F8(H2O)]2−, [V3O3F12]3− and etc.48 Furthermore, the mixed 

valence fluorinated isopolyvanadates are still rare, where [H6VV
2VIV

10O30F2]6− and 

[VIV
2VV

12O36F4]8− are among the few examples.  

3.1.2 Related fluoro dodecavanadate compounds 

Compound Na6(H6V12O30F2]·22H2O   

Fluoro incorporated dodecavanadate was first synthesized by Müller et al 49 for the 

first time in 1993 and then the magnetic properties of the complex 

Na6(H6V12O30F2]·22H2O  was studied later.50  Na6(H6V12O30F2]·22H2O consists of two 

groups of three octahedra sharing edges as in a Keggin ion but with μ3-F centers, linked 

through six square pyramids. The repulsion or direct contact of the F− ions in the center 

(F⋯F = 311 pm) apparently controls the structure.  Complex Na6(H6V12O30F2]·22H2O 

have six octahedral units and six square pyramids units, with mixed valent VIV/VV centers 

of cluster anions. The Na6[H6VIV
10VV

2O30F2].22H2O compounds was prepared from 

aqueous vanadate solutions in the presence of pentaerythritol49.  

Compound Na6[VIV
10VV

2O30F2{(CH2)3CCH2OH}2].22H2O 

At the year 1998 he also claimed the synthesis of 

Na6[VIV
10VV

2O30F2{(CH2)3CCH2OH}2].22H2O, but a single-crystal X-ray structure 

analysis could not be executed at that time because of the inadequate quality of the 

crystals. However, from the comparison of the spectroscopic, analytical, and 

magnetochemical data, this complex is structurally closely related to compound 

Na6[H6VIV
10VV

2O30F2].22H2O previously prepared. 
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Compound (NMe4)4[V12O30F4(H2O)2]·9H2O 

Lukáš Krivosudský on 2014 prepared (NMe4)4[V12O30F4(H2O)2]·9H2O. The anion 

[V12O30F4(H2O)2]4− comprises two groups of three VO5F units capped by one VO4F(H2O) 

unit at the outer layers and four VO5 units in the central layer. Strong O–H⋯F hydrogen 

bonds running in the a axis direction of the anion. 

Our lab also has successfully synthesized [HVV
11O29F2]4-   prepared from [V10O26]4−. 

The structure of [HVV
11O29F2]4− that contains of five VO5 and six VO5F units with two 

μ3-F bridges.51  The molecular structure of [HVV11O29F2]4− consists of five VO5 and six 

VO5F units with two μ3-F bridges and can be derived from [H6VV
2VIV

10O30F2]6− by 

removal of one VO unit.48   

In this chapter we will discuss the modification of the precursor [HV11O29F2]4− for 

the synthesis of other F incorporated POVs. In this study also, we investigated reduction 

of [HV11O29F2]4− in nitromethane solvent which leads to a discovery of simple syntheses 

of [V12O30(F)2]4-. The successful isolation of the product allows the full characterization 

by X-ray crystallography, IR, UV/visible (UV/Vis), and cyclic voltammetry. 

3.2 Experimental 

In fact, many mixed valent and reduced vanadium-oxygen compounds were 

synthesized by reduction of vanadate(V) or oxidation of vanadate(IV)/vanadate(V).49 The 

use of a conventional solution-based synthetic method accompanied by standing for 

crystallization at ambient pressure and temperature conditions have been used for the 

synthesis of compound (1). The solution-based approach so far has resulted in the 

synthesis of a large number of POM compounds.  
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Synthesis of  {n-Bu4N}4[V12O30(F)2]·CH3CN (1)   

(n-Bu4N)4[HV11O29F2] (500 mg, 0.25 mmol) was dissolved in 5 cm3 of 

nitromethane, and the addition of hydrazine-monohydrate (7.5 mg, 0.15 mmol) gave deep 

green solution after stirring for 1 h. The resulting mixture was precipitated by adding 

enough amount of ether and washed with acetone then diethyl ether.  The deep green 

powder was dried under reduced pressure. Yield 400 mg. It was recrystallized in 

acetonitrile through ether diffusion method. Yield 68 % based on V. IR (KBr) 985, 877, 

781, 734, 669, 624 cm-1. Elemental Analysis calcd for C64H144F2N4O30V12 : C 

36.62%, H 6.91%, N 2.67%,  found : C 36.5%, H 6.83%, N 2.88%.  

3.3 Characterization 

3.3.1 Materials and Measurements.  

The precursor for the synthesis of complex (1) is {n-Bu4N}4[HV11O29F2] prepared 

according literature method.43  Hydrazine-monohydrate and solvents were purchased 

from commercial sources and used as received unless otherwise is stated. 

3.3.2 X-ray crystallographic analysis.  

The crystallographic data can be seen in Table 1. The atomic coordinates, 

anisotropic thermal parameters, bond distances and angles and bond valence sums 

calculations can be seen in Tables the following tables. 

Table 2 Crystallographic data for (1) 

Crystal System orthorhombic 

Lattice Type Primitive 

Lattice Parameters a =  22.2064(7) Å 

 b =  23.6891(7) Å 
 c =  17.3462(5) Å 
 V = 9125.0(5) Å3 

Space Group Pccn (#56) 
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Z value 4 

Dcalc 1.553 g/cm3 

No. Observations (All reflections) 8582 

Residuals: R (I>2.00σ(I)) 0.0431 

Residuals: R (All reflections) 0.0000 

Residuals: wR (All reflections) 0.1132 

Goodness of Fit Indicator 1.024 

Table 3 Atomic coordinates and Biso/Beq of (1) 

atom x    y    z  Beq 

V1 0.43783(3)  0.56635(2)  0.38478(3)  1.199(10) 

C3 0.0665(2)  0.5105(3)  0.6327(3)  4.74(13) 

C5 0.0323(6)  0.5037(7)  0.5679(8)  4.3(4) 

C4 0.0433(3)  0.4566(3)  0.6230(3)  2.24(13) 

V2 0.45971(3)  0.54186(2)  0.66801(3)  1.258(10) 

V3 0.46129(3)  0.62846(2)  0.53639(3)  1.209(10) 

C1 0.1871(8)  0.6868(8)  0.9237(10)  8.8(4) 

C2 0.2086(9)  0.7136(9)  0.8694(11)  9.0(4) 

N3 0.25  0.75000  0.82930  9.027 

V4 0.37054(3)  0.50724(2)  0.50345(3)  1.186(10) 

V5 0.56731(3)  0.57483(2)  0.39930(3)  1.185(10) 

V6 0.58057(2)  0.58403(2)  0.60345(3)  1.154(10) 

F7 0.49996(8)  0.54346(7)  0.55226(10)  1.09(3) 

O8 0.39643(10)  0.50093(9)  0.60553(12)  1.29(4) 

O9 0.39985(10)  0.57983(9)  0.48461(13)  1.32(4) 

O0A 0.50669(10)  0.53549(9)  0.33877(12)  1.27(4) 

O0B 0.63945(11)  0.61214(9)  0.64073(13)  1.63(4) 

O0C 0.53620(10)  0.64467(9)  0.57445(12)  1.25(4) 

O0D 0.60743(10)  0.57168(9)  0.49577(12)  1.30(4) 

O0E 0.39551(10)  0.49784(9)  0.39731(13)  1.29(4) 

O0F 0.40294(11)  0.60251(9)  0.32109(13)  1.67(4) 

O0G 0.49818(10)  0.61404(9)  0.43299(13)  1.28(4) 

O0H 0.29894(11)  0.51106(10)  0.50410(13)  1.61(4) 

O0I 0.43126(10)  0.60897(9)  0.62965(13)  1.37(4) 

O0J 0.53412(10)  0.56965(9)  0.68864(12)  1.33(4) 

O0K 0.43359(11)  0.69002(9)  0.52189(13)  1.60(4) 

O0L 0.60439(10)  0.61596(10)  0.34380(13)  1.59(4) 

O0M 0.42878(11)  0.53952(10)  0.75125(13)  1.74(4) 
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N0N 0.49306(15)  0.77757(12)  0.31079(17)  2.04(6) 

N0O 0.22837(13)  0.48786(12)  0.71260(16)  1.65(5) 

C0P 0.24730(16)  0.44042(14)  0.65864(19)  1.63(6) 

C0Q 0.26152(16)  0.54026(14)  0.6856(2)  1.84(6) 

C0R 0.45264(19)  0.73270(15)  0.2754(2)  2.26(6) 

C0S 0.57624(18)  0.76818(15)  0.5080(2)  2.13(6) 

C0T 0.51638(19)  0.75456(15)  0.3870(2)  2.01(6) 

C0U 0.54597(19)  0.79120(15)  0.2576(2)  2.38(7) 

C0V 0.16043(16)  0.49642(17)  0.7109(2)  2.32(7) 

C0W 0.23778(18)  0.35132(16)  0.5340(2)  2.23(6) 

C0X 0.58174(19)  0.73972(16)  0.2306(2)  2.51(7) 

C0Y 0.21627(17)  0.38370(15)  0.6709(2)  2.01(6) 

C0Z 0.31148(18)  0.46653(18)  0.8099(2)  2.53(7) 

C10 0.24985(19)  0.59350(16)  0.7320(2)  2.41(6) 

C11 0.24461(18)  0.33891(15)  0.6197(2)  2.01(6) 

C12 0.4582(2)  0.83202(15)  0.3231(2)  2.53(7) 

C13 0.24490(18)  0.47344(17)  0.7954(2)  2.18(6) 

C14 0.5497(2)  0.79710(15)  0.4372(2)  2.33(7) 

C15 0.62874(19)  0.72920(16)  0.4902(2)  2.52(7) 

C16 0.3953(2)  0.6999(2)  0.1585(3)  3.32(9) 

C17 0.4043(2)  0.82726(18)  0.3771(2)  3.03(8) 

C19 0.6809(2)  0.70186(19)  0.1862(3)  3.48(9) 

C1A 0.4236(2)  0.75019(19)  0.1996(3)  3.43(9) 

C1B 0.1352(2)  0.5130(3)  0.6321(3)  3.96(10) 

C1C 0.6467(2)  0.75239(19)  0.2159(3)  3.61(9) 

C1D 0.2915(2)  0.64031(18)  0.7047(3)  3.55(9) 

C1E 0.3822(3)  0.8851(2)  0.4016(3)  4.33(11) 

C1G 0.3895(3)  0.4329(2)  0.9036(4)  5.76(16) 

C18 0.3232(2)  0.44337(19)  0.8904(2)  3.45(9) 

C1H 0.2848(2)  0.6570(2)  0.6221(3)  4.00(9) 

C1I 0.4401(3)  0.6633(2)  0.1214(3)  5.13(13) 

C1K 0.3248(3)  0.8830(3)  0.4489(3)  4.91(12) 

Table 4 Anisotropic displacement parameters 

atom   U11   U22   U33   U12   U13   U23 

V2      0.0177(4) 0.0151(5) 0.0230(5)  0.0004(3)  0.0000(3) -0.0018(3) 

V3     0.0157(4) 0.0161(4) 0.0194(4) -0.0005(3)  0.0000(3)  0.0027(3) 

V4     0.0179(4) 0.0163(5) 0.0194(4) -0.0008(3) -0.0012(3)  0.0036(3) 

V5     0.0171(4) 0.0162(4) 0.0191(5) -0.0014(3) -0.0009(3)  0.0004(3) 

V6     0.0166(4) 0.0170(5) 0.0213(5)  0.0007(3)  0.0008(3)  0.0015(3) 

V7     0.0198(5) 0.0193(5) 0.0194(5) -0.0007(3)  0.0010(3) -0.0021(4) 

Table 5  Bond lengths (Å) 

atom atom distance  atom atom distance 
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V1 V3 3.0582(7)  V1 V4 2.9036(8) 

V1 V5 2.8933(9)  V1 O9 1.952(2) 

V1 O0A 1.873(2)  V1 O0E 1.888(2) 

V1 O0F 1.598(2)  V1 O0G 1.942(2) 

C3 C5 1.366(15)  C3 C4 1.387(10) 

C3 C1B 1.527(6)  C5 C4 1.489(17) 

V2 V3 3.0696(7)  V2 V51 3.0601(7) 

V2 V6 3.0749(8)  V2 F7 2.1981(18) 

V2 O8 2.022(2)  V2 O0A1 1.982(2) 

V2 O0I 1.836(2)  V2 O0J 1.814(2) 

V2 O0M 1.600(2)  V3 V6 3.0785(8) 

V3 F7 2.2063(18)  V3 O9 1.999(2) 

V3 O0C 1.830(2)  V3 O0G 2.001(2) 

V3 O0I 1.810(2)  V3 O0K 1.603(2) 

C1 C2 1.23(3)  C2 N3 1.44(2) 

V4 V51 2.9207(8)  V4 V61 3.0483(7) 

V4 O8 1.868(2)  V4 O9 1.867(2) 

V4 O0D1 1.933(2)  V4 O0E 1.936(2) 

V4 O0H 1.593(3)  V5 O81 1.969(2) 

V5 O0A 1.945(2)  V5 O0D 1.897(2) 

V5 O0G 1.887(2)  V5 O0L 1.598(2) 

V6 F7 2.2173(18)  V6 O0B 1.603(2) 

V6 O0C 1.813(2)  V6 O0D 1.982(2) 

V6 O0E1 2.011(2)  V6 O0J 1.834(2) 

N0N C0R 1.521(5)  N0N C0T 1.521(5) 

N0N C0U 1.528(5)  N0N C12 1.519(5) 

N0O C0P 1.522(4)  N0O C0Q 1.517(4) 

N0O C0V 1.523(5)  N0O C13 1.521(4) 

C0P C0Y 1.525(5)  C0Q C10 1.518(5) 

C0R C1A 1.522(6)  C0S C14 1.525(5) 

C0S C15 1.519(6)  C0T C14 1.524(5) 

C0U C0X 1.529(5)  C0V C1B 1.529(6) 

C0W C11 1.523(5)  C0X C1C 1.495(6) 

C0Y C11 1.520(5)  C0Z C13 1.509(6) 

C0Z C18 1.523(5)  C10 C1D 1.520(6) 

C12 C17 1.524(6)  C16 C1A 1.524(7) 

C16 C1I 1.468(7)  C17 C1E 1.516(7) 

C19 C1C 1.508(6)  C1D C1H 1.494(7) 

C1E C1K 1.517(9)  C1G C18 1.510(8) 
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3.4 Result and Discussion  

Compound (1) was synthesized using simple solution method. The use of the cluster 

compound {n-Bu4N}4[HV11O29F2] as starting material for modification to give compound 

(1) is straightforward.  

3.4.1 Hydrazine monohydrate as reducing agent  

Preparation of compound (1) made use of hydrazine as the reducing agent. Reaction 

of hydrazine with KVO3 or V2O5 was already known to prepare most halide-

encapsulating polyoxovanadates, e.g., [V15O36X]6- (X = Cl, Br), and [HXV18O42(X)](13-x)- 

(X =Cl, Br, and I) by thermal reactions in aqueous solutions52.  

Hydrazine compounds are also known to reduce fully oxidized POV, e.g. 

[V6O13(tris)2]2- can be reduced with organohydrazines to give the reduced protonated 

derivatives [VIV
3VV

3O10(OH)3- (tris)2]2-, [VIV
4VV

2O9(OH)4(tris)2]2-  and [VIV
6O7(OH)6-

(tris)2]2- 5352.  So, complex (1) was the other type of the use of hydrazine to prepare the F 

encapsulated POV reducing fully oxidized POV. The crystallization of  compound (1)   

was succesfully done with good crystal quality (68% yield based on V). 

3.4.2 Single Crystal X‒ray Diffraction (SXRD) Analysis   

Addition of hydrazine into the nitromethane solution of {n-Bu4N}4[HV11O29F2] 

gave complex {n-Bu4N}4[V12O30(F)2]·CH3CN crystallized in by acetonitrile-ether. The 

molecular structure was determined by X-ray crystallographic analysis (figure 11).                                                  
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Figure 13 Structural comparison between precursor [HV11O29F2]4- and product 

[V12O30(F)2]4- .  The anion [V12O30(F)2]4-  is constructed of six belt VO5 square pyramids 

(blue) and six capping VO5 square pyramids (green). Four counter cations {n-Bu4N}+ and 

the solvated CH3CN molecule are omitted for clarity. 

The anionic [V12O30(F)2]4- cluster anion consists of twelve VO5 square pyramids 

with V−O bond lengths range from 1.8010(2) - 2.022(2), while the V-F range from 

1.593(3) - 2.217(2).  The V−O bond lengths decrease with the decreasing coordination 

number of the oxygen atom, with values for coordination:  

μ1-O = 1.593(3) - 1.603(2), μ2-O = 1.810(2)  - 1.836(2)   and μ3-O = 1. 867 – 2.011.  

The crystallographic data were summarized previously in table 2-5.  The comparison of 

compound (1) anion with related POVs [HVV
11O29F2]4 −54 and  [H6VV

2VIV
10O30F2]6−  and 

is summarized in table 6.   
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Table 6 Selected average bond lengths (Å) for [HVV
11O29F2]4-  54,  [H6V12O30(F)2]4-  49 and 

anionic (1) 

  [HV11O29F2]4 − [H6V12O30(F)2]4-  [V12O30(F)2]4 − 

V=O   1.60 1.62 1.60 

Vbottom –μ-O(-Vbottom) 1.83   1.83 

Vbottom-μ-O(-Vmiddle) 1.99   2.00 

Vmiddle-μ-O(-Vbottom) 1.83   1.92 

V···F 2.21 2.18 2.22 

F···F 2.75 3.11 2.74 

 

The μ3-F bridge is an interesting feature of all of these anions.  Bond distance of 

V-F 2.18 Å can be said that F in the sphere just sit and floating in the sphere by having 

ionic interaction with spherical POV in the surrounding.  As can be seen from the table 6, 

even if F- ion is too small to be a guest in the cavity without covalent interaction with V, 

but it creates a strong V-F interaction.  The V- μ3-F distances in [V12O30F4(H2O)2]4− are 

V1–F1 2.20 Å similar also with that of compound (1) anion.48  

In many cases, electronic influences can also play a role,  for instance the 

occurrence VO4 tetrahedra only in the case of VV compounds 49, so this happen to anionic 

[V12O30F2]4− which is a mixed valence VIV/VV then it is all VO5 square pyramid. The 

existence of mixed valence will be described BVS calculation and proven by CV analysis 

later. 

There are no “classical hydrogen bonds” between the {n-Bu4N}+ cations and the 

[V12O30(F)2]4- anion in (1), however  there are several CH⋅⋅⋅O short contacts in the range 

2.591–2.714 Å between these units. These interactions involve both terminal and bridged 

oxo groups of [V12O30(F)2]4- anions.  
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3.4.3 Bond Valence Sum (BVS) Calculation  

The oxidation states of the Vanadium atoms in complex (1) are established by a 

combination of charge balance considerations, check of bond lengths, and bond valence 

sum (BVS)calculations.55 BVS values for V atom in complex (1) are between 4.400 and 

5.058, indicating that the respective valences are +4 and +5, respectively. The unclear 

/slight difference of whether which V atoms holding +4 suggest that there is 

delocalization of charge due to the spherical shape of anionic (1).  

Table 7 BVS calculation of compound (1)  

VIV  VV   V1 V2 V3 V4 V5 V6  

0 12 
VIV  4.479 4.807 4.818 4.606 4.4 4.8 

VV 4.715 5.047 5.058 4.849 4.632 5.04 

The mixed valence of VIV / VV is supported by CV analysis.  From BVS calculation, 

complex (1) is mixed valence [VV
10VIV

2O30F2]4- where delocalization of charge happens 

due to spherical shape. 

3.4.4 Cyclic Voltammetry (CV) analysis  

The reversible reductive peaks in CV (figure 11)  coupled with oxidative peaks 

appeared in the range. There are four reductive peaks at 0.39, 0.08, -0.67, and -1.27 V, 

and four oxidative peaks at -1.00, -0.50, 0.12, 0.53 V. The reductive peaks (VV
 - VIV) and 

oxidative peaks (VIV
 - VV) are redox pairs and reversible. The voltage at 0.08 V is the 

initial state of VV
10VIV

2O30F2]4- 
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Figure 14 Cyclic voltammograms of (a) (n-Bu4N)4[V12O30F2] in acetonitrile solvent. 

(Scan rate was 0.05 V/s, the supporting electrolyte used was {n-Bu4N}PF6, solvent was 

acetonitrile, scan rate was 0.05 V/s, working electrodes was glassy carbon, and counter 

electrode was Pt) 

Electrochemical behavior of (1) show that complex (1) can accept reversibly up to four 

electrons (Figure 14).  The reduction process is reversible (reaction 1) and the structure 

of the anion is basically unchanged .   

[VV
12O30(F)2]2−  + 4 e− ⇌ [VIV

4VV
8O30(F)2]6−                             (1) 
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Figure 15 Four electron redox electron sponge system of anion (1) 

This is a promising material for electron sponge for energy storage application, 

compared with single reversible electron transfer in currently used Li ion battery.  This 

behavior of the ability in accepting and releasing specific number of electrons without 

any change or decomposition of the structures of compound (1)  is attributed to reduced 

POMs, for the so-called heteropoly blue.23 
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3.4.5 UV-Vis Absorption Spectra 

Figure 14 shows the UV-vis absorption spectra on solid samples of compound (1). The 

UV−vis spectrum of the compound 1 showed absorption bands above 600 nm, suggesting that 

the vanadium species are mixed valence of reduced VIV and the oxidized to VV.  

 

 
Figure 16 UV Vis spectra of complex (1) (blue) compared with precursor  

{n-Bu4N}4[HV11O29F2]  (red) 

The intervalence charge-transfer (IVCT) bands is corresponding to electronic transfer between 

d1 and d0 Vanadium moieties. The overall charge of the cluster is -4, indicating that it is a 

mixed-valence system consisting of two VIV and ten VV centers.  

3.4.6 The IR spectrum  

The complex (1) exhibits characteristic absorption peaks of POV located in the range of 

400 – 1000 cm-1.  

 

Figure 17 FTIR spectra of {n-Bu4N}4[V12O30(F)2]·CH3CN  
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The IR spectrum of (1) shows strong bands around 989 cm-1, which correspond to the 

ν(V=Oterminal) stretching frequencies (Figure 5). Stretching of the V–Obridge bond appears in the 

range 500–900 cm-1. Complex (1) also has µ2-O bridges and exhibits distinct peaks in the 750–

900 cm–1 region. The relatively  weak spectrum in the range of 750 – 900 cm-1 is due to the 

lack of µ2-O bridges (5 bridges) compared with  μ3-O bridges (13 units) 51. 

3.4.7 Thermogravimetric (TG) Analysis 

The thermal stability of compounds 1 were investigated on powder samples in an air 

atmosphere in the temperature range 30-300 oC.   

 

 

Figure 18 TG of crystalline complex [1]  

The TGA data shows that the title compound is thermally stable up to about 65 °C and 

has weight loss 0.16 mg corresponding to about 1.6% weight loss attributed to evaporation and 

loss of solvent of crystallization acetonitrile. The weight loss of temperature range 250 - 300°C 

corresponds to the decomposition of the POV. 

TG analysis coupled with elemental analysis suggest the acetonitrile was part of the 

solvated  solvent in the structure of compound (1). So, the formula is best written as  (n-

Bu4N)4[V12O30F2].(CH3CN)  
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3.5 Conclusions 

As fluorine incorporation in POV is very important to enhance POV coordination 

ability with transition metal, we achieved a new fluorine incorporated dodecavanadate. This 

complex can later be used coordinate with Pd ion to form the actual linker. Here, F− 

inclusion dodecavanadate clusters is presented and characterized. 

Reduction of [HV11O29F2]4- to give [V12O30(F)2]4- means that addition of electron that 

change the electrostatic balance makes structural change of the dodecavanadate. Beside the 

use of precursor for polyoxometalates framework which will be described in chapter 4, 

compound (1) is good catalyst and potential energy storage material with high capacity.  
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CHAPTER 4 SYNTHESIS OF A REDUCED PALLADIUM SUPPORTED FLUORIDE 

INCORPORATED DODECAVANADATE 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2].2CH3CN 

 

Abstract 

This chapter describe the construction for the first time of a new POM based 

inorganic linker unit. The linker is in a reduced form synthesized from the reduced POV 

precursor (compound 1). To provide a bidentate coordination site of the linker unit, Pd2+ 

was chosen to react with anion 1 while the remaining two coordination sites of Palladium 

ion are occupied by leaving group ligands. The synthesized complex is 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2].2CH3CN (compound 2).   

The synthesis by using reaction of Pd2+ ion wit precursor synthesized before {n-

Bu4N}4[V12O30(F)2]·CH3CN was performed by solution-based synthetic method and 

crystallization process was in ambient pressure and temperature. The POM starting 

materials are dissolved in the DMSO solvent by which the reaction with Pd2+ solution 

results in the reformation of metal oxide fragments to form a discrete mixed valence Pd-

V12 anionic clusters.  

This chapter will discuss the synthesis and characterization of the two electron 

reduced Pd- supported dodecavanadate compound featuring spherical Fluoride 

incorporated cluster isolated for the first time. The dodecavanadate component consisted 

of ten VO5 units and two VO4 units in the framework with two fluorides inside and each 

VO4 unit was coordinated to Pd2+.   

This chapter will also describe some synthetic parameters by which the title 

compound can be obtained. Furthermore, discussion of structure will also be presented. 

Lastly, potential application will be discussed based on the structure. 
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Graphical Abstract 

 

Figure 19 Synthetic Scheme to product [{Pd(DMSO)2}2V12O32(F)2]4-  
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4.1 Introduction 

The negatively charged polyoxometalate can serve as an inorganic ligand that is able to 

form a metal complex through the coordination of the oxido groups. However, the coordination 

ability is very weak that only few examples of metal coordinated POV found so far. Successful 

incorporation of two fluorides anion inside the dodecavanadate cluster (compound 1) before 

would overcome this problem. This would open up the possibility for its coordination with 

transition metal, especially specified transition metal with definite coordination mode for 

making a inorganic linker for framework structure.  

Among the few examples, our lab has studied the coordination chemistry of 

polyoxometavanadate species against Cu2+, Ni2+, and Pd2+ cations. In Cu2+ and Pd2+ complexes, 

the heteropolyoxovanadate complexes incorporated the metal cations without the coordination 

of hydroxide or water ligands.56  

Furthermore, our group has succeeded in the synthesis of tetravanadate-supported 

organopalladium complex [{(η3-C4H7)Pd}2V4O12]2− which was obtained by reaction of [Pd(η3-

C4H7)Cl]2 with (n-Bu4N)VO3 in acetonitrile. The two (η3-C4H7)Pd groups on both side of the 

tetra- vanadate ring supported the cyclic tetravanadate structure with an inversion center on the 

center of the molecule57. 

However, the Pd supported POV complex above is limited only on a blocked Pd 

coordination sites complex, so that there is no possible free site of Pd which is available to 

coordinate with others. All the coordination sites of Pd are occupied, so that it is not available 

for supramolecular or other complexes formation.  

Our research now has unique in creating Pd supported POV that is able to provide two 

free sites of Pd for coordination.  It is a good point of the complex 2 and complex 3 we 

synthesize, because the ligand DMSO or Nitrate is easy to remove from Pd resulting in a free 

coordination site of Pd to coordinate with others.   

DMSO has sulfur center which is nucleophilic toward soft electrophiles and the oxygen 

that is nucleophilic toward hard electrophiles.  The coordination sites of DMSO can be O or S 

atom or both, for example in the complex (RuCl2(DMSO)4), three DMSO ligands are bonded 

to ruthenium through sulfur, while the fourth DMSO is bonded through oxygen.58  
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Diao et.al has studied DMSO coordination to Palladium(II) in solution and solid state on 

complex Pd-(DMSO)2(TFA)2 (TFA = trifluoroacetate). He found that coordination of DMSO 

to palladium(II) in both the solid state and in solution. has one O-bound and one S-bound 

DMSO ligand (figure 19)59. 
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Figure 20 DMSO coordination to Pd(TFA)2 with O or S coordination of the DMSO are possible.  

In general, the anion of POVs sits in the sphere, for example NO3
− and Br-. This is not 

the case for F- where two anion F- sit inside the sphere to stabilize the structure of the sphere. 

Polyoxovanadates with both VO5 and VO4 units have the potential to stabilize both anions and 

metal cations. The Pd2+ units are exploited without conventional organic ligands to provide a 

linker site in POMOF chemistry and also this material is potential in the field of catalysis.  

4.2 Experimental  

4.2.1 Hypothetic polymeric structure of {n-Bu4N}2Pd{V12O32(F)2}]n  and 

serendipitous formation of compound (2).  

Mixture of Pd(cod)Cl2 (75 mg, 0.26 mmol) and AgBF4 (105 mg, 0.53 mmol) in 10 mL 

of acetonitrile was stirred for 2 hours and the resulting white precipitates of AgCl was removed 

by filtration. The filtered yellow solution was added to 10 mL of {n-

Bu4N}4[V12O30(F)2]·CH3CN (250 mg, 0.12 mmol), and stirred to give deep green precipitate 

200 mg.  

This reaction was targeting a composition to potentially an a polymeric structure of  

hypothetic {n-Bu4N}2Pd{V12O32(F)2}]n .   
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Figure 21 Imaginary view of 1-D V12 chain bridged by Pd2+  

The reaction equation expected is as follows;  

Pd(cod)Cl2 + 2AgBF4  → Pd(BF4)2 + 2AgCl + cod 

Pd(BF4)2 + {n-Bu4N}4[V12O30(F)2]·CH3CN → [(n-Bu4N)2Pd{V12O32(F)2}]n + {n-

Bu4N}BF4  

Unfortunately, the crystallizations did not succeed to prove the structure. Some 

crystallization method effort e.g. varying concentration, slow reactant diffusion, changing 

solvents was not successful so that structure determination by single crystal X-Ray could 

not be performed to prove to this 1-D polymeric structure. However this product can be  

used to form compound (2) in the following procedure. 

4.2.2 Synthesis of [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2] from hypothetic 

polymeric [(n-Bu4N)2Pd{V12O32(F)2}]n  

Previous experiments by our group led to the formation of complex 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2] with serendipity.  Powder sample of hypothetic 

[(n-Bu4N)2Pd{V12O32(F)2}]n  (50 mg) was dissolved in 1.5 mL DMSO. Slow diffusion of 0.5 

mL acetone into the solution gave crystal of [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2]. 

However, this method was not reproducible even using other methods, e.g. using air sensitive 

solvents and performing reaction in nitrogen-purged glovebox.  

The synthesis of products [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2] was expected 

from the breaking of hypothetic polymeric [(n-Bu4N)2Pd{V12O32(F)2}]n  so that we would 

have {Pd(DMSO)2}2V12O32(F)2] anion and {n-Bu4N}+ cations. In fact [n-Bu4N]+ cation 

was not obtained in the crystal structure, but VO(DMSO)5]2+ instead.  
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The complex [{Pd(DMSO)2}2V12O32(F)2] which ever obtained serendipitously with this 

method, contained discrete anion [{Pd(DMSO)2}2V12O32(F)2]4- accompanied with two counter 

cations [VO(DMSO)5]2+.  The following will discuss the modified synthetic procedure to yield 

compound [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2].  

4.2.3 Fair Yield Synthesis of [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2]  

Mixture of Pd(cod)Cl2 (20.5 mg, 0.07mmol) and AgBF4 (28 mg, 0.14 mmol) in 2.5 mL 

Acetnitrile was stirred for 2 hours and the resulting white precipitates of AgCl was removed 

by filtration. The filtered yelllow filtrate was added to the solution of (n-Bu4N)4[V12O30F2]   (77 

mg, 0.04 mmol) which was previously added and stirred in small amount of hot DMSO (75 

oC).  After standing overnight, dark green crystal 63 mg was obtained. Yield 72% based of V. 

(cod = 1,5-cyclooctadiene). Elemental Analysis calcd for C18H54F2O42Pd2S9V13 : C 

12.93%, H 3.25%, N 0%, F:  1.46%, S 17.21% found : C 13.14%, H 3.48%, N 0%, F 1.38% S 

17.68% 

Upon the investigation of the reaction procedures by comparing with DMSO 

crystallization of hypothetic polymeric [(n-Bu4N)2Pd{V12O32(F)2}]n  before, it can be noticed 

that the succesfull synthesis and crystallization of [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2] 

is proceeded by dissolution of [V12O30F2] in DMSO first before the reaction with Pd2+ . To 

improve the reaction rate by heating was maintained below the decomposition temperature of 

DMSO (boiling temperature of 189 °C at normal pressure).    

Standing in closed vial with solvent evaporation is sufficient to grow single crystals. 

The fair yield of the synthesis of [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2] using {n-

Bu4N}4[V12O30(F)2]·CH3CN precursor and Pd2+  cation from the product of Pd(cod)Cl2 and 

AgBF4. Instead of cation {n-Bu4N}+ from the salt of the precursor {n-

Bu4N}4[V12O30(F)2]·CH3CN, the cation [VO(DMSO)5]2+ is present. This unexpected 

cation is the side product of V12 decomposition. The reaction was performed in open air 

which can imply that the product is not air sensitive.  

4.2.4 Improved Synthesis Method   

As the cation VO(DMSO)5
2+ is derived from decomposition product of mother 

product [V12O30F2]4−, this decomposition lowers the yield. Some efforts to increase the 

yield had been done, e.g. the use of other counter cations, TBABF4, PPh4BF4, TEABF4 

with negative results.  
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4.3 Characterization 

The sample was characterized with SCXRD, FTIR, UV Vis, TG, Elemental Analysis 

performed on the crystals. 

Single Crystal X‒ray Diffraction (SXRD) 

The crystallographic data can be seen in Table 8. The atomic coordinates, anisotropic 

thermal parameters, selected bond distances and angles and bond valence sums calculations 

can be seen in the following tables 9-11:   

Table 8 Crystallographic data for [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2]  

Crystal System monoclinic 
Lattice Type Primitive 
Lattice Parameters a =  15.3402(4) Å 

 b =  16.9053(4) Å 

 c =  21.3642(5) Å 
 β = 105.0720(10) o 

 V = 5349.8(2) Å3 
Space Group P21/c (#14) 
Z value 4 
Dcalc 3.016 g/cm3 
No. Observations (All 
reflections) 

10507 

Residuals: R (I>2.00σ(I)) 0.0874 
Residuals: R (All reflections) 0.0000 
Residuals: wR (All reflections) 0.2575 
Goodness of Fit Indicator 0.959 
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Table 9 Atomic coordinates and Biso/Beq  

atom    x    y    z  Beq 

C0Z     0.5396(7)  0.1378(5)  0.4947(4)  1.90(14) 

C1      0.6440(9)  0.3385(9)  0.7665(6)  4.5(3) 

C12     0.3672(8)  0.1687(6)  0.7348(5)  7.3(5) 

C12     1.2046(10)  0.2265(15)  0.8132(8)  7.3(6) 

C13     0.4254(8)  0.3650(6)  0.8166(5)  2.76(16) 

C15     0.3690(7)  0.0823(5)  0.4937(4)  2.37(16) 

C17     0.8571(8)  0.3973(9)  0.6568(7)  4.7(3) 

C19     0.3405(10)  0.3990(8)  0.8094(6)  4.0(2) 

C1B     0.5124(10)  0.0797(7)  0.7269(5)  4.0(3) 

C1H     1.0223(12)  0.4559(12)  0.7265(11)  7.1(5) 

C33     1.1195(9)  0.1538(9)  0.7930(6)  4.4(3) 

C6      0.7669(19)  0.1125(14)  0.6502(17)  13.3(8) 

F1      0.4956(2)  0.5866(2)  0.50619(17)  0.54(7) 

N1E     0.2714(11)  0.4263(10)  0.8018(8)  7.1(4) 

O1      0.4801(3)  0.2897(3)  0.5508(2)  0.81(8) 

O10     0.5401(3)  0.5674(3)  0.6365(2)  0.83(8) 

O11     0.4218(4)  0.6887(3)  0.6436(2)  1.34(9) 

O111    0.5166(5)  0.0342(3)  0.5812(3)  2.33(14) 

O12     0.3574(3)  0.5612(3)  0.5607(2)  1.00(8) 

O13     0.2068(3)  0.4936(3)  0.4915(3)  1.41(11) 

O14     0.3614(3)  0.4032(3)  0.5482(2)  0.88(8) 

O15     0.4112(4)  0.4509(3)  0.6755(2)  1.16(9) 

O16     0.4276(4)  0.2986(3)  0.6631(2)  1.11(9) 

O17     0.9740(19)  0.4835(17)  0.5496(14)  16.0(9) 

O18     1.1056(5)  0.3067(5)  0.6012(4)  3.77(18) 

O19     0.9065(12)  0.1440(11)  0.8451(15)  22.6(11) 

O1G     0.9753(11)  0.2921(17)  0.8966(10)  15.2(10) 

O2      0.6176(3)  0.3035(3)  0.4906(2)  0.92(9) 

O20     0.7961(7)  0.2821(7)  0.8293(10)  9.5(4) 

O21     0.8588(8)  0.2207(8)  0.7227(11)  11.0(4) 

O22     0.9305(8)  0.3606(7)  0.7790(6)  6.7(3) 

O23     1.0349(7)  0.2262(10)  0.7999(9)  11.0(5) 

O24     0.3510(7)  0.0571(5)  0.6451(4)  4.8(2) 

O3      0.6602(4)  0.2798(3)  0.6158(2)  1.28(9) 

O4      0.5538(3)  0.4099(3)  0.6269(2)  0.77(8) 

O5      0.6701(3)  0.4336(3)  0.5685(2)  0.74(8) 

O6      0.6986(4)  0.5065(3)  0.6941(2)  1.21(9) 

O7      0.6667(3)  0.5764(3)  0.5701(2)  0.77(8) 

O8      0.6916(4)  0.7298(3)  0.5294(3)  1.28(11) 

O9      0.5582(3)  0.7028(3)  0.5813(2)  0.87(9) 

Pd1     0.44987(4)  0.20726(3)  0.60952(2)  0.996(13) 

S0B     0.9576(2)  0.3659(2)  0.7146(2)  5.62(9) 

S1      0.7443(3)  0.3640(2)  0.8272(2)  3.22(9) 

S10     1.1248(2)  0.2148(3)  0.8553(2)  5.62(10) 

S11     0.8585(4)  0.0994(4)  0.8907(7)  10.5(3) 

S12     0.7509(6)  0.3465(6)  0.7714(5)  4.3(2) 

S2      0.8728(5)  0.1497(4)  0.6849(9)  20.3(5) 

S8      0.47382(15)  0.10656(10)  0.54739(9)  1.57(3) 

S9      0.41273(18)  0.12064(12)  0.67713(10)  2.30(4) 
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V0A     0.92406(15)  0.2593(2)  0.8251(2)  9.60(15) 

V1      0.43859(8)  0.38913(7)  0.62716(5)  0.68(2) 

V2      0.62341(8)  0.50555(6)  0.62579(5)  0.56(2) 

V3      0.31413(7)  0.49702(7)  0.49864(6)  0.67(2) 

V4      0.59962(8)  0.33803(6)  0.56214(5)  0.63(2) 

V5      0.60956(8)  0.66850(6)  0.52376(5)  0.61(2) 

V6      0.45134(8)  0.64020(7)  0.58753(5)  0.66(2) 

 

Table 3.3: Anisotropic displacement parameters 

atom   U11   U22   U33   U12   U23 

O1     0.018(2) 0.004(2) 0.008(2) 
 -

0.0003(18) 
 0.0013(17) 

F1     0.0110(18) 0.0038(17) 0.0056(17)  0.0008(14) 
 -
0.0003(13) 

V1     0.0168(6) 0.0039(5) 0.0064(5)  0.0001(4)  0.0006(4) 

C33    0.042(6) 0.064(8) 0.049(7)  0.018(6)  0.005(6) 

O24    0.114(8) 0.039(4) 0.036(4) -0.051(5) -0.008(3) 

O23    0.027(5) 0.170(14) 0.218(17)  0.017(7)  0.151(14) 

O22    0.075(7) 0.090(8) 0.072(7) -0.023(6)  0.049(6) 

O21    0.041(6) 0.061(7) 0.29(2)  0.011(5) -0.020(11) 

O20    0.037(5) 0.064(7) 0.241(19)  0.006(5)  0.066(10) 

C1     0.049(7) 0.083(10) 0.032(6)  -0.003(7)  0.023(6) 

O11    0.028(3) 0.012(2) 0.014(2)  0.006(2) -0.002(2) 

O13    0.010(2) 0.019(3) 0.025(3)  0.002(2)  0.002(2) 

S12    0.055(5) 0.060(6) 0.058(6)  0.027(4)  0.028(4) 

O12    0.020(2) 0.008(2) 0.012(2)  0.0026(19)  0.0037(18) 

S1     0.029(2) 0.036(2) 0.055(3) 
-

0.0022(15) 
 0.0164(18) 

O111   0.068(5) 0.005(3) 0.014(3)  0.010(3)  0.002(2) 

V2     0.0122(5) 0.0043(5) 0.0035(5)  0.0008(4)  -0.0001(4) 

O2     0.019(3) 0.005(2) 0.011(2)  0.0037(18) 
 -
0.0014(18) 

S2     0.083(4) 0.080(4) 0.60(3)  0.002(3) -0.090(9) 

V6     0.0165(6) 0.0039(5) 0.0058(5)  0.0029(4) -0.0010(4) 

O6     0.020(3) 0.012(2) 0.009(2)  0.002(2) 
 -
0.0015(19) 

C6     0.123(19) 0.075(14) 0.23(3) -0.027(13)  0.051(18) 

O3     0.022(3) 0.011(2) 0.013(2)  0.006(2)  0.003(2) 

V3     0.0086(5) 0.0070(5) 0.0107(6)  0.0017(4)  0.0010(4) 

O4     0.017(2) 0.006(2) 0.007(2)  0.0002(18) 
 -
0.0009(17) 

V4     0.0135(6) 0.0033(5) 0.0065(5)  0.0034(4)  0.0009(4) 

O5     0.011(2) 0.007(2) 0.010(2)  0.0021(17)  0.0010(18) 

V5     0.0129(6) 0.0030(5) 0.0069(5) -0.0012(4)  0.0001(4) 

O8     0.021(3) 0.010(2) 0.017(3) -0.006(2)  0.002(2) 

O7     0.012(2) 0.006(2) 0.011(2)  0.0002(17)  0.0005(18) 

O9     0.020(3) 0.005(2) 0.007(2) 
 -

0.0012(18) 
 0.0006(17) 

C12    0.037(7) 0.18(2) 0.061(9) -0.013(10)  0.030(12) 

S11    0.049(3) 0.066(4) 0.312(15)  0.035(3)  0.106(7) 

S10    0.0392(17) 0.092(3) 0.081(3)  0.0096(17)  0.008(2) 
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O10    0.019(2) 0.006(2) 0.007(2)  0.0000(18) 
 -
0.0011(17) 

O15    0.026(3) 0.008(2) 0.013(2)  0.002(2) 
 -
0.0005(19) 

O14    0.017(2) 0.006(2) 0.012(2)  0.0002(18)  0.0000(18) 

O16    0.025(3) 0.009(2) 0.010(2)  -0.001(2)  0.0023(18) 

O19    0.175(17) 0.167(17) 0.61(5)  0.095(13)  0.24(2) 

O18    0.024(3) 0.072(6) 0.057(5) -0.012(3) -0.013(4) 

C1B    0.102(10) 0.034(6) 0.019(4)  0.036(6)  0.009(4) 

 

Table 10 Bond lengths (Å) 

atom atom distance  atom atom distance 

Pd1 O1 2.008(5)  Pd1 S8 2.247(2) 

Pd1 S9 2.232(2)  Pd1 O16 2.004(5) 

O1 V4 1.964(5)  O1 V51 1.947(4) 

F1 V6 2.217(4)  F1 V41 2.186(3) 

F1 V5 2.185(3)  V1 O4 1.803(5) 

V1 O15 1.600(5)  V1 O14 1.807(4) 

V1 O16 1.740(5)  C33 O23 1.82(2) 

C33 C12 1.76(2)  C33 S10 1.669(15) 

O24 S9 1.477(9)  O23 V0A 1.993(15) 

O23 S10 1.578(13)  O22 V0A 1.991(13) 

O22 S0B 1.540(15)  O21 S2 1.49(2) 

O21 V0A 2.25(2)  O20 S12 1.658(19) 

O20 S1 1.591(12)  O20 V0A 2.025(13) 

C1 S12 1.621(17)  C1 S1 1.788(12) 

O11 V6 1.611(5)  O13 V3 1.615(5) 

S12 S1 1.258(12)  O12 V6 1.939(5) 

O12 V3 1.708(5)  O111 S8 1.484(6) 

V2 O6 1.608(4)  V2 V31 3.0515(18) 

V2 O4 1.941(5)  V2 V4 3.1216(14) 

V2 O5 1.987(5)  V2 O7 1.924(5) 

V2 O10 1.712(5)  O2 V61 1.973(4) 

`O2 V4 1.724(5)  S2 C6 1.72(3) 

V6 V41 3.1098(15)  V6 V5 3.1138(18) 

V6 O9 1.985(5)  V6 O10 1.929(5) 

O3 V4 1.610(5)  V3 O51 1.916(5) 

V3 V51 3.1178(16)  V3 O71 2.002(5) 

V3 O14 1.940(5)  O4 V4 2.095(5) 

V4 O5 1.929(5)  V5 O8 1.610(6) 

V5 O7 1.929(5)  V5 O9 1.724(5) 

V5 O141 2.095(5)  S8 C0Z 1.776(11) 

S8 C15 1.764(9)  S9 C12 1.765(12) 

S9 C1B 1.761(13)  V0A O19 2.03(2) 

V0A O1G 1.62(2)  S0B C17 1.787(12) 

S0B C1H 1.80(2)  C12 S10 1.709(19) 

S11 O19 1.56(3)  C13 C19 1.395(19) 

C19 N1E 1.13(2)     
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4.4 Results and Discussion 

4.4.1 Single Crystal X-ray Diffraction (SXRD) Analysis   

A new Pd supported polyoxometalate compound has been synthesized in mixed 

CH3CN/DMSO media. The title compound 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2].2CH3CN, crystallizes in the monoclinic space 

group, P21/c (#14), Z = 4. The crystallographic data is presented in Table 8 which includes 

the unit cell parameters and other relevant information. Tables 9 and 10 provide the atomic 

and anisotropic displacement parameters for the title compound, respectively. Figure 18 

illustrates the structure of the compound (2) anion. 

Single crystal X-ray analysis revealed that the asymmetric unit of the title compound 

consists of one half of the [{Pd(DMSO)2}2V12O32(F)2]4- anions. Two molecules 

[VO(DMSO)5]2+ cations are the symmetrically dependent parts generated through the 

crystallographic center of symmetry to compensate the anion. The acetonitrile molecules 

present in the crystal structure is confirmed by TG Analysis. 

Compound (2) consists of Pd supported fluoride incorporated anion.  As described in 

figure 18, [{Pd(DMSO)2}2V12O32(F)2]4- anion is composed of two tetrahedral VO4 units 

(red) and ten square pyramid VO5 units (green and blue), and two F− reside inside the cage 

(green sphere). Each tetrahedral VO4 is connected to Pd. Two DMSO ligands are connected 

to Pd to from Pd square planar coordination geometry.  
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Figure 22 The comparison of precursor and anionic [{Pd(DMSO)2}2V12O32F2]
4- , the VO4 unit 

(red tetrahedral) and the VO5 unit (green and blue square pyramids, Pd (brown, F (dark 
green), O (red, C (black), S (yellow)and  H atoms are omitted for clarity.  

Like the precedented difluoride-incorporated polyoxovanadates that possess the structure 

of [V12O32(F2)]n– or its lacunary type structure,7  anion 2 has three layers of one belt layer 

sandwiched by two cap layers. The belt layer has edge-sharing VO5 units and three corner-

sharing VO5 units to form [V3O13] fragment for each of the two cap layers.7  

The structure is similar to the structures of reported [H6VV
2VIV

10O30F2]6 −60 

[VIV
2VV

12O36F4]8 −  61 and [HVV
11O29F2]4 − 51. The V- μ3-F distances of all these anions are in 

the range 2.217 and 2.185 Å.  Like other F incorporated POV, F- ion is too small to be a single 

guest in the cavity, so two F ions are needed. F- V bond, however creates a strong V-F 

interaction. 62 The repulsion of the F- ions in the center determine the structure (F…F = 2.946 

Å). 

Pd-DMSO bond  

DMSO was chosen firstly in the experiment to deal with probable polymeric structure 

generated because DMSO has great dissolving ability and also DMSO is a common ligand in 

coordination chemistry.  In the other hand, DMSO which have basic character is an 

excellent ligand.  

From the structure of compound (2), Pd atoms support the structure at both ends. The 

square planar Pd2+ ion are accomplished with two DMSO molecules with S coordination to 

form coordination number four of Palladium ion.  The bond length of Pd-S is 2.232 Å. This 

value of long distance Pd-S indicates the weak bonding between Pd and DMSO ligand that 

make DMSO as a leaving group. The anion is discrete because the Pd-coordinated DMSO was 

not connected to the other moieties. 

In the providing Pd2+ cation, it is important to have the anions with very small 

coordinating ability for the preparation of the Pd complexes where Pd(II) is bound directly to 

the neutral monodentate ligands. The anions tetrafluoroborate were found to satisfy this 

requirement.28 So the use of non-coordinating BF4
- in the synthesis of 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2]  is essential for the general preparation of 

complexes [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2] because Pd(II) is bound directly to 

neutral monodentate ligands DMSO.   
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There are 12 terminal V=O units that fix at around 1.601 – 1.614 Å.Two types of oxido 

bridges are present in the structure, with  V-μ-O bridges with bond lengths in the range 1.712–

1.930(1) Å and  V-μ3-O bridges with bond lengths in the range 1.917–2.114 Å. Heavy disorder 

was found in cation [VO(DMSO)5]4+ .  

The dimethylsulfoxide oxovanadyl(IV) cation, VO(DMSO)5
2+ have a short V=O bond, 

dV=O = 1.623 Å, four longer ones perpendicular to the V=O bond in the range of 1.991–2.028 

Å, mean 2.009 Å, and the fifth DMSO molecule which is trans to the V=O bond is more weakly 

bound, dV-O = 2.253 Å.   

 

Figure 23 Ball stick structure of the VO(DMSO)5
2+ cation in disordered form. O (red), C (black), S 

(yellow) and H atoms are omitted for clarity. 

 

4.4.2 The IR spectrum  

The IR spectra of compound (2) (figure 24) shows characteristic POV peaks below 1000 

cm-1. Strong bands at 985 cm− 1 corresponding to the ν(V=O) frequencies, and a bands with 

maxima at 600, 736 cm− 1 corresponding to the Oxido bridges which are different form the 

precursor [V12O30(F)2] confirm the change in the spherical shapes from V12O30(F)2 to 

V12O32(F)2 main cluster. 

Some small peaks in the region of far IR is indicative of presence of Pd-S bonding.63 

However, there is no evidence for exclusive oxygen bonding in the far-ir spectrum which 

should exhibit a single strong band (478 cm-1) attributable to Pd-O stretching.63 This means 

DMSO coordination Pd is only through S atom as described in X-ray structure analysis.  
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Figure 24 IR spectrum of compound (2) (blue) compared with compound (1) (red). Peak at 1045 cm-1 
is the S=O stretching of DMSO 

 

4.4.3 Bond Valence Sum (BVS) Calculation 

The charges of V atoms as mixed valences of 4+ and 5+ as indicated by the bond 

valence sums calculations shown in Table 11. The bond valence sums of V6 is 4+ and the 

rest are 5+. 

Table 11 BVS calculation of anion of compound (2) 

2 VIV 10 VV 

 V1 V2 V3 V4 V5 V6  Pd1 

VIV 4.66 4.74 4.72 4.77 4.8 4.36  

VV 4.91 4.99 4.97 5 5.04 4.58  

2 PdII 0 PdIV 
PdII       2.46 

PdIV       2.36 

  

Table 12 BVS calculation of cation of compound (2) 

2 VIV OVV 

 V00A 

VIV 4.161 

VV 4.380 

 So, the BVS suggests the mixed valence POV with formula 

[VIVO(DMSO)5]2[{PdII(DMSO)2}2VIV
2VV

10O32F2].2CH3CN. From the charge balance this 

is equal as there are two [VIVO(DMSO)5]2+ cation and a 

[{PdII(DMSO)2}2VIV
2VV

10O32(F)2]4- anion.  
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4.4.4 Thermogravimetric (TG) Analysis   

TGA measurements of compound (2) is illustrated in Figure 23. 

 

Figure 25 Thermogravimetric analysis (TGA) plots for 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2].2CH3CN. 

TGA measurement shows that the title compound 

[VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2].2CH3CN starts to release solvent of 

crystallization acetonitrile at 50 °C up to 100 °C. The weight loss at the point is about 3 % 

equal to two molecules of acetonitrile. The loss of mass observed between 150 °C and 240 

oC is likely the result of a loss of four molecules DMSO ligands of the anion and five 

molecules of DMSO ligands of the cation which should correspond totally to approximately 

26% of the total formula weight. Acetonitrile has lower boiling point than DMSO that result 

in earlier than DMSO on evaporation as performed on TG data above. 

4.4.5 UV-Vis Absorption Spectra 

UV-Vis spectrum is a finger print characterization method to find whether the POM is 

reduced or oxidized. Most of the POMs in their highest oxidation state only give Metal to 

Oxygen charge transfer band at the short wavelength. Most of POMs do not have peak above 

600 nm attributed intervalence charge transfer.   

If POM get reduced, it shows intense blue color based on intervalence band, so that POM 

is often referred as polyoxo blue (Heteropoly blue). So we can check whether our POM is 

reduced compound or not by seeing the appearance of intervalence band peak of peak maximize 

around 800-900 nm.  
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UV/Vis spectrum of compound (2) in DMSO is illustrated in figure 22.   

 

Figure 26 UV-vis spectrum data of compound (2)   

UV/Vis spectrum of compound (2) in DMSO compared with compound (1) clearly shows 

a peak above 600 nm which is attributed to Intervalence Charge Transfer (IVCT) of these two 

POVs. This imply that there are mixed valence Vanadium atoms in compound (2) like 

previously discussed compound (1). This confirms the BVS calculation before.    

 

4.4.5 Stability of complex 2    

Sometimes reduced POVs complex are highly air sensitive so that they are difficult to 

handle under the conventional environment.  In our case, this is not significantly seen as the 

complex 2 is stable enough that did not need a moisture-free and oxygen-free environment in 

a nitrogen filled glove box for preparation.  The preparation of complex 2 both in a glove box 

and outside a glove box produced the same result.  

4.4.6 Low solubility of complex 2  

Compound (2) is insoluble in most organic solvents, except in polar aprotic solvents 

DMSO and DMF. This insolubility of the complex make it restricted in exploring its reaction 

with others.  The solution of this problem should be on choosing appropriate counter ions, so 

that compound (2) will be soluble in organic solvents with specific polarity. Research on the 

use of counter cation {n-Bu4N}+, PPh4
+, TEA+ and so is on progress.  

4.5 Potential Application 

4.5.1 POMOF  

The anionic [{Pd(DMSO)2}2V12O32(F)2]4- is a potential linker in Polyoxometalate based 

Metal Organic Framework Chemistry.  Ligand DMSO can be considered a leaving ligand 
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which can be replaced by other bidentate ligands to grow a framework structure as illustrated 

in figure 23.  

 

Figure 27 Illustration of how bi-dentate ligands (L) as linker and the binding of two Pd metal 

centers can help Pd-POV fragments to grow in any direction for forming POMOFs. 

So, [{Pd(DMSO)2}2V12O32(F)2]4- is considered as a building block for making 3-D 

framework structures. Besides that, making use of the catalytic active Pd site in addition to 

catalytic active V is also interesting to explore in catalysis field.   

4.5.2 Catalysis 

The direct supporting of metal ions onto the surface oxygens of polyoxometalates at 

molecular levels is the improvement in polyoxometalate-based catalysts.64 The design of 

molecules based on a combination of noble metals like Pd and V atoms is very interesting for 

developing new oxidation catalysts because each of them is effective for catalysis.  

For this reason, complex [VO(DMSO)5]2[{Pd(DMSO)2}2V12O32(F)2] is potential for the 

catalysis. Due to the its insolubility in most organic solvent, the complex still can be used in 

heterogeneous system. 

4.6 Conclusions 

Here, a new Pd supported F− inclusion dodecavanadate clusters is presented. We have 

achieved an inorganic linker by supporting Pd2+ on both end of dodecavanadate cluster.  

This complex is the inorganic linker unit that has the composition of dodecavanadate 

moiety and Pd atoms support the structure at both ends. The square planar Pd ion are 

accomplished with two DMSO molecules with S coordination mode to form coordination 
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number four for Palladium ion. The BVS calculation and thermal analysis suggests the 

mixed valence [VO(DMSO)5]2[{Pd(DMSO)2}2V2
IVV10

VO32F2].2CH3CN formula.  

In conclusion, we have reported direct preparation of a new Pd supported fluorinated 

dodecavanadate inorganic linker in reduced form. The next chapter 5 will discuss the synthesis 

of the fully oxidized one.  

4.6.1 Future Work 

Even though the complex compound (2) is ionic, the compound is not soluble in most 

organic solvents, except DMF and DMSO. It would be interesting to see if the yield and 

solubility of the title compound could essentially be increased and tuned by replacing the 

cation VO(DMSO)5
2+ with other cations which would result in more soluble complex and 

higher yield.  

In addition, it is needed to explore the properties with respect to catalytic activity of 

the title compound and the utility of the compound in formation of novel frameworks. The 

POMOF construction from compound (2) is also interesting by making use of e.g. 

symmetric linking ligands bidentate 4,4'-bipyridine, 4,4'-Trimethylenedipyridine, 4-

Dimethylaminopyridine etc. Apart from coordination polymer, 

[{Pd(DMSO)2}2V12O32(F)2]4- is also possible to form a discrete Pd(II) complex with 2,2'-

bipyridine.   
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CHAPTER 5 SYNTHESIS OF A FULLY OXIDIZED PALLADIUM SUPPORTED 

FLUORIDE INCORPORATED DODECAVANADATE {n-

Bu4N}4[{Pd(NO3)(DMSO)}2V12O32(F)2]·2DMSO 

Abstract 

In the objective of obtaining stable Pd-Polyoxovanadate linker unit against oxidation, 

complex {n-Bu4N}4[{Pd(NO3)(DMSO)}2V12O32(F)2]·2DMSO (3) was synthesized. The 

air stable complex 3 can be obtained by oxidation of both complex 2 as precursor and some 

other POVs.  

This chapter will describe the synthesis and characterization of a fully oxidized form 

of Pd-supported fluoro dodecavanadate. In addition to fully oxidized form, the compound 

(3) have Nitrate ligand beside DMSO ligand that make it different form the previously 

synthesized compound (2). Full characterization of the complex will be described.  

The complex (3) is an air stable complex which can be synthesized from precursor 

{n-Bu4N}4[V10O26]. This chapter will also mention some synthetic procedures by which 

the title compound can be obtained by different ways. The synthesis of complex 3 was done 

on the use of the solution-based synthetic methods and the crystallization by slow 

evaporation technique.  

 

Graphical Abstract  

 

 

Figure 28 Synthetic Scheme to the anionic (3)  
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5.1 Introduction 

 

As mentioned in chapter 4, the negatively charged polyoxometalate can serve as an 

inorganic ligand that is able to form a metal complex through the coordination of the oxido 

groups to a metal. The tetrahedral-VO4-unit in particular has coordination ability and it binds 

cations to act as a ligand5665  This happens again in the formation of fully oxidized Pd-fluoro 

dodecavanadate cluster (3).  

As described at complex (2) in the previous chapter, not like other single anion in the 

sphere,21 two anion F- sit in the sphere to stabilize the structure of the sphere of the fluoride-

incorporated polyoxovanadates. 51,66 . 

Furthermore, some fluoride-incorporated polyoxovanadates such as [V7O19(F)]n−, is 

constructed from VO5 and VO4 units, while most of anion-incorporated polyoxovanadates 

consist of only VO5 units. The VO5 and VO4 units present together in Polyoxovanadates have 

potential to stabilize both anions and metal cations.  

In studying other possible ligand for Pd beside DMSO, nitrate ligand is also interesting 

to explore. Playing role as a ligand in coordination chemistry, Nitrate (O−NO2
-) is a 

monoanionic and a monodentate ligand. As palladium prefers tetra-coordinate square planar 

arrangement, so the nitrates are bonded in monodentate binding motif.  

In this work, we demonstrated the formation of a fully oxidized Pd supported fluoro 

decavanadate by deliberately choosing F− as the incorporated anions and Nitrate as the other 

ligand beside DMSO for the Pd-V12 complex. This give rise to a spherical fluoride-

incorporated polyoxovanadate which are also have Pd2+ units on the polyoxovanadate 

framework ready to use as linker sites (figure 29). 
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Figure 29 Polyhedral and ball-and-stick representation of the anion part of compound (3). 
Orange polyhedra and green, gray, red, light blue, yellow and black spheres represent 

vanadium-oxygen units, fluorine, palladium, oxygen, nitrogen, sulfur, and carbon atoms, 
respectively. Hydrogen atoms are omitted for clarity. 

5.2 Experimental  

Compound (3) can be approached from many choices of POV which imply the stability 

of this compound. For some consideration of best approach, the main precursor for the 

synthesis of complex (3) is {n-Bu4N}4[V10O26]. The yield obtained was the best among other 

POV precursors. At the same time, {n-Bu4N}4[V10O26] is an easily prepared metastable species 

which can convert to VO5-based polyoxovanadates.  

In-situ prepared Pd(NO3)2 was used. Pd(cod)Cl2 (11 mg, 0.038 mmol, cod = 1,5-

cyclooctadiene) was dissolved in the mixed solvent of nitromethane and DMSO (4:1, v/v, 1.25 

mL). AgNO3 (13 mg, 0.077 mmol) was added to the solution, and the white precipitates of 

AgCl were removed by filtration. The filtrate was mixed with the nitromethane solution of {n-

Bu4N}4[V10O26] (23 mM, 1 mL). Addition of 30% H2O2 (0.05 mL, 4.4 mmol) and HNO3 (0.33 

M, 0.015 mL diluted by DMSO) give reddish yellow solution. The slow evaporation of the 

solvent yielded red crystals of 1. Red crystals were collected by filtration, washed by acetone 

and dried (60% yield based on Pd). Anal. Calcd. for {n-

Bu4N}4[{Pd(NO3)(DMSO)}2V12O32(F)2]·2DMSO: C, 31.10; H, 6.09; N, 3.02; F, 1.37; S, 4.61, 

found: C, 31.84; H, 6.34; N, 2.99; F, 1.32; S, 4.78. IR (KBr pellet; 4000−400 cm−1): 2961, 2931, 

2876, 2839, 1509, 1483, 1463, 1382, 1353, 1296, 1143, 1112, 1047, 1023, 984, 852, 808, 707, 

624, 580, and 488 cm−1. 51V NMR (105.15 MHz, CD3CN, 25°C): δ −444, −458, −525, and 

−542 ppm. 19F NMR (376.17 MHz, CD3CN, 25°C, CF3COOH (δ = 0 ppm)): δ −71 ppm. 1H 

NMR (399.78 MHz, CD3CN, 25°C): δ 0.97 (24H), 1.38(16H), 1.62(16H), 2.50 (6H), 3.17 

(16H), 3.37 (4.5H), and 4.41 ppm (1.5H). 
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5.2.1 Alternative Synthetic Routes for Synthesis of Compound (3)   

Basically complex 3 can be obtained by oxidation of complex 2 synthesized before. 

However, the cation VO(DMSO)5
2+ lower the yield of resulting complex 3 because the cation 

VO(DMSO)5
2+ also contain Vanadium.  

To obtain better POV precursors, some other POVs are also tested. This results in the 

other synthetic procedures toward the synthesis of complex 3 beside the beside the best one 

{n-Bu4N}4[V10O26]:  

a. Synthesis of of (3) with precursor complex {n-Bu4N}4[V12O30(F)2]·CH3CN 

Mixture of Pd(cod)Cl2 (12 mg, 0.04mmol) and AgBF4 (16 mg, 0.08 mmol) in 0.5 mL 

Acetonitrile was stirred for 2 hours and the resulting white precipitates of AgCl was removed 

by filtration. The filtered yellow filtrate was added to the solution of (n-Bu4N)4[V12O30F2]  [1] 

(44 mg, 0.02 mmol) which was previously added and stirred in small amount of hot DMSO (75 

oC).  After standing overnight, dark green crystal of [3] obtained is filtered, and the green 

filtrate was added with H2O2 50 µL. The red filtrate gave red crystal of compound (3) after 

standing overnight.  

b. Synthesis of of (3) with precursor complex {n-Bu4N}3[V10O28H3]  

Mixture of Pd(cod)Cl2 (0.04 mmol) and AgBF4 (0.08 mmol) in 0.5 mL Nitromethane was 

stirred for 2 hours and the resulting white precipitates of AgCl was removed by filtration. The 

filtered yelllow filtrate was added to the small amount of hot DMSO (75 oC) solution of {n-

Bu4N}3[V10O28H3] (0.02 mmol). After standing 1 week, the mixture turned brown. Red crystal 

was obtained was obtained by Ether diffusion.  

c. Synthesis of of (3) with precursor complex {n-Bu4N}4[HV11O29F2]   

AgNO3 (77 µmol, 13 mg) was dissolved in 0.25 mL DMSO, and 1 mL Nitromethane was 

added. Pd(cod)Cl2 (38 µmol, 11 mg)) was then added, and stirred for 2 min. The resulting white 

precipitates of AgCl was removed by filtration. The filtered filtrate was added to the 1 mL 

nitromethane solution of {n-Bu4N}4[HV11O29F2]  (23 µmol). The mixture was stirred, and then 

oxidant H2O2 50 µL was added so that the solution turns red. HNO315 µmol (46.7 µL, 0.328 

M in DMSO) was added finally to conclude the reaction. After standing overnight, few amount 

red crystal complex (3) was obtained.  
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5.3 Characterization 

5.3.1 Materials and Measurements. 

{n-Bu4N}F, AgNO3, and solvents were purchased from commercial sources and used as 

received. Pd(cod)Cl2 and {n-Bu4N}4[V10O26] were prepared according to the reported 

procedures67 68 45 . 

1H, 51V and 19F NMR spectra were measured at 399.78, 105.15, and 376.17 MHz, 

respectively recorded with JEOL JNM-LA400. All spectra were obtained in the indicated 

solvent, at 25ºC unless otherwise noted. 19F NMR spectra were referenced to neat CF3COOH 

(δ = 0.00). 51V NMR spectra were referenced using a sample of 10 mM NaVO3 in 2.0 M NaOH 

(−541.2 ppm). 

Voltammetric experiments was performed with ALS/CH Instruments electrochemical 

analyzer (Model 600A). The working electrode was glassy carbon, the counter electrode was 

Pt wire, and the reference electrode was Ag/Ag+. The voltage scan rate was set at 100 mV s−1. 

The potentials in all voltammetric experiments were converted using data derived from the 

oxidation of ferrocene (ferrocene / ferrocenium) as an external reference.  

5.3.2 X-ray crystallographic analysis.  

Single crystal structure analysis was performed at 90 K by using a Bruker D8 VENTURE 

diffractometer with graphite monochromated Cu Kα radiation (λ = 1.54178 Å). The data 

reduction and absorption correction were done using APEX3 program. the structural analyses 

were performed using APEX3, and WinGX4 for Windows software. The structures were solved 

by SHELXS-2014 (direct methods) and refined by SHELXL-2014. Non-hydrogen atoms were 

refined anisotropically. Hydrogen atoms are positioned geometrically and refined using a 

riding model. 

The crystallographic data can be seen in Table 12. The atomic coordinates, 

anisotropic thermal parameters, selected bond distances and angles and bond valence sums 

calculations can be seen in tables 13-15.  
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Table 13 Crystallographic data 

Empirical Formula C72H168F2N6O42Pd2S4V12 

Formula Weight 2780.47 

Crystal Color, Habit orange, block 

Crystal Dimensions 0.200 x 0.200 x 0.200 mm 

Crystal System Orthorhombic 

Lattice Type Primitive 

Cell Determination (2q range) 9600 ( 5.8 - 144.8o ) 

Lattice Parameters a =  20.0743(4) Å 

 b =  19.1110(4) Å 

 c =  30.3484(6) Å 

 V = 11642.9(4) Å3 

Space Group Pbca (#61) 

Z value 4 

Dcalc 1.586 g/cm3 

Reflection/Parameter Ratio 16.12 

Residuals: R (I>2.00s(I)) 0.0499 

Residuals: R (All reflections) 0.0000 

Residuals: wR (All reflections) 0.1396 

Goodness of Fit Indicator 1.027 

Max Shift/Error in Final Cycle 0.001 
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Table 14 Atomic coordinates and Biso/Beq 

atom    x    y    z  Beq 

S201    0.47532(6)  0.24876(6)  0.34286(4)  2.96(3) 

C201    0.5313(3)  0.2324(3)  0.38683(19)  3.95(13) 

C202    0.4050(3)  0.2001(3)  0.36000(19)  3.87(12) 

C301    0.5964(3)  0.4905(3)  0.28775(18)  3.68(12) 

C302    0.6262(3)  0.4393(3)  0.25439(19)  4.45(14) 

C303    0.6120(3)  0.3641(3)  0.26755(19)  4.47(14) 

C304    0.6424(4)  0.3099(4)  0.2375(2)  5.50(18) 

C305    0.5465(3)  0.5681(3)  0.23001(16)  3.24(11) 

C306    0.4819(3)  0.5285(4)  0.2315(2)  4.87(16) 

C307    0.4412(3)  0.5389(4)  0.1890(2)  4.58(16) 

C308    0.4708(5)  0.5063(6)  0.1493(3)  8.1(3) 

C309    0.6562(3)  0.5957(4)  0.25914(19)  4.08(13) 

C310    0.7059(4)  0.5999(5)  0.2964(3)  6.8(2) 

C311    0.7715(8)  0.6284(10)  0.2770(6)  4.8(4) 

C312    0.8041(5)  0.5908(8)  0.2368(4)  6.5(4) 

C361    0.7621(14)  0.6587(19)  0.2887(9)  6.5(8) 

C362    0.8091(9)  0.6753(13)  0.3268(6)  6.3(5) 

C313    0.5562(3)  0.6066(3)  0.30853(16)  3.34(11) 

C314    0.5537(3)  0.6849(3)  0.30385(18)  3.87(13) 

C315    0.5173(4)  0.7173(3)  0.3420(2)  5.11(16) 

C316    0.5173(4)  0.7956(4)  0.3416(2)  5.18(17) 

C401    0.2675(3)  0.6913(3)  0.4880(2)  4.84(14) 

C402    0.2624(4)  0.7287(5)  0.4446(3)  7.0(2) 

C403    0.2920(4)  0.6884(4)  0.4071(3)  6.0(2) 

C404    0.2936(5)  0.7252(6)  0.3644(3)  8.8(3) 

C405    0.2383(4)  0.7993(4)  0.5298(2)  6.6(2) 

C406    0.3088(4)  0.8197(4)  0.5407(3)  6.7(2) 

C407    0.3322(8)  0.9049(9)  0.5402(6)  5.3(4) 

C408    0.2998(6)  0.9468(7)  0.5769(5)  6.1(4) 

C457    0.2995(10)  0.8934(9)  0.5438(6)  3.7(4) 

C458    0.3659(10)  0.9206(9)  0.5549(6)  4.5(4) 

C409    0.2468(4)  0.6830(5)  0.5676(3)  8.4(3) 

C410    0.2096(6)  0.7089(9)  0.6093(4)  15.2(5) 

C411    0.2351(6)  0.6698(11)  0.6501(5)  16.0(5) 

C412    0.2220(6)  0.5993(10)  0.6527(6)  17.2(6) 

C413    0.1559(6)  0.7237(8)  0.5249(5)  3.9(3) 

C414    0.1297(6)  0.6503(7)  0.5296(6)  5.3(4) 

C415    0.0573(7)  0.6428(11)  0.5143(10)  7.7(5) 

C416    0.0195(10)  0.6100(17)  0.5311(7)  10.2(8) 

C463    0.1486(6)  0.7006(9)  0.5068(6)  3.0(3) 

C464    0.1288(7)  0.6256(8)  0.4949(7)  4.6(4) 
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C465    0.0518(9)  0.6218(12)  0.4848(8)  5.8(5) 

C466    0.0350(18)  0.5608(18)  0.499(3)  32(3) 

S501    0.1903(3)  0.5096(2)  0.38711(13)  10.19(13) 

S551    0.1728(5)  0.4596(7)  0.3632(4)  9.1(3) 

O501    0.1507(4)  0.5331(4)  0.3509(2)  7.97(18) 

C502    0.1530(11)  0.4346(12)  0.4101(7)  21.1(11) 

C501    0.2570(6)  0.4713(11)  0.3681(5)  14.8(6) 

N101    0.3484(4)  0.3331(5)  0.2758(2)  7.0(2) 

N301    0.5896(2)  0.5655(2)  0.27144(13)  3.21(9) 

N401    0.2265(3)  0.7221(4)  0.5259(2)  6.13(16) 

O1      0.51924(14)  0.63045(15)  0.44595(9)  1.89(6) 

O2      0.63575(14)  0.60894(16)  0.40658(9)  2.17(6) 

O3      0.39131(14)  0.59502(15)  0.47212(9)  1.85(5) 

O4      0.28158(14)  0.51669(17)  0.47942(10)  2.42(6) 

O5      0.53244(13)  0.51034(14)  0.40182(9)  1.67(5) 

O6      0.39284(13)  0.47304(14)  0.43044(9)  1.77(5) 

O7      0.42087(15)  0.58661(16)  0.37617(10)  2.18(6) 

O8      0.43146(15)  0.46535(17)  0.33689(9)  2.35(6) 

O9      0.62311(13)  0.47886(15)  0.45321(9)  1.76(5) 

O10     0.38081(13)  0.41495(14)  0.50268(9)  1.79(5) 

O11     0.61283(15)  0.39713(16)  0.37774(9)  2.26(6) 

O12     0.36152(15)  0.33302(16)  0.42738(10)  2.26(6) 

O13     0.48346(14)  0.38126(15)  0.40333(9)  1.88(5) 

O14     0.58667(14)  0.34198(15)  0.45483(9)  1.95(6) 

O15     0.46531(15)  0.30931(15)  0.47890(9)  2.02(6) 

O16     0.56873(16)  0.26868(16)  0.53018(10)  2.46(6) 

O102    0.4108(3)  0.3498(3)  0.27687(15)  6.21(13) 

O103    0.3076(5)  0.3866(5)  0.2762(4)  12.7(3) 

O104    0.3388(4)  0.2748(3)  0.2758(2)  8.1(2) 

O201    0.5039(2)  0.21723(19)  0.30281(12)  3.68(8) 

Pd1     0.45032(2)  0.36165(2)  0.34025(2)  2.306(7) 

V1      0.44459(3)  0.50811(4)  0.38604(2)  1.729(13) 

V2      0.58411(3)  0.57186(3)  0.43930(2)  1.548(12) 

V3      0.36081(3)  0.51275(4)  0.48506(2)  1.658(13) 

V4      0.56944(3)  0.41402(4)  0.42050(2)  1.653(12) 

V5      0.42090(3)  0.37555(4)  0.45065(2)  1.663(12) 

V6      0.54156(3)  0.34041(4)  0.51000(2)  1.777(12) 

F1      0.50334(11)  0.43659(12)  0.47669(7)  1.73(4) 
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Table 15 Anisotropic displacement parameters 

atom   U11   U22   U33   U12   U13   U23 

S201   0.0466(7) 0.0327(6) 0.0330(6) -0.0011(5) -0.0022(5) -0.0133(5) 

C201   0.066(4) 0.036(3) 0.048(3)  0.010(3) -0.016(3) -0.016(2) 

C202   0.058(3) 0.042(3) 0.047(3) -0.009(3)  0.008(3) -0.013(2) 

C301   0.052(3) 0.051(3) 0.037(3)  0.014(3)  0.007(2)  0.023(2) 

C302   0.057(4) 0.071(4) 0.041(3)  0.028(3)  0.014(3)  0.021(3) 

C303   0.066(4) 0.067(4) 0.037(3)  0.027(3)  0.007(3)  0.008(3) 

C304   0.077(5) 0.082(5) 0.050(4)  0.031(4)  0.004(3)  -0.001(3) 

C305   0.044(3) 0.047(3) 0.032(2)  0.007(2)  0.001(2)  0.015(2) 

C306   0.056(4) 0.078(5) 0.051(3) -0.009(3) -0.004(3)  0.023(3) 

C307   0.055(4) 0.057(4) 0.062(4) -0.003(3) -0.013(3)  0.009(3) 

C308   0.091(7) 0.119(8) 0.097(7)  0.006(6) -0.017(5) -0.034(6) 

C309   0.040(3) 0.073(4) 0.042(3)  0.003(3)  0.005(2)  0.026(3) 

C310   0.052(4) 0.137(8) 0.068(5) -0.020(4) -0.018(3)  0.047(5) 

C311   0.031(6) 0.076(11) 0.076(11)  -0.003(6) -0.009(7)  0.015(7) 

C312   0.037(6) 0.114(12) 0.095(10)  -0.002(6)  -0.002(6)  0.031(9) 

C361   0.046(12) 0.13(3) 0.071(16)  -0.003(16)  0.008(11)  0.027(17) 

C362   0.042(9) 0.127(19) 0.072(13)  0.006(10) -0.011(8)  0.014(12) 

C313   0.048(3) 0.052(3) 0.027(2)  0.003(2)  0.005(2)  0.014(2) 

C314   0.066(4) 0.048(3) 0.033(3) -0.011(3)  0.000(2)  0.012(2) 

C315   0.092(5) 0.047(3) 0.055(4)  0.005(3)  0.019(3)  0.015(3) 

C316   0.088(5) 0.052(4) 0.057(4) -0.004(4) -0.003(3)  0.006(3) 

C401   0.037(3) 0.051(3) 0.096(5)  0.024(3)  0.006(3)  0.019(3) 

C402   0.074(5) 0.092(6) 0.101(6)  0.056(5)  0.039(5)  0.041(5) 

C403   0.080(5) 0.071(5) 0.076(5)  0.032(4) -0.034(4) -0.005(4) 

C404   0.098(7) 0.145(9) 0.090(6)  0.062(7)  0.018(5)  0.030(6) 

C405   0.081(5) 0.100(6) 0.068(4)  0.071(5)  0.031(4)  0.035(4) 

C406   0.105(6) 0.080(5) 0.070(5)  0.060(5)  0.022(4)  0.011(4) 

C407   0.038(9) 0.089(11) 0.073(9)  0.013(9)  0.009(8)  0.007(8) 

C408   0.043(6) 0.078(9) 0.110(12) -0.006(6)  -0.002(7) -0.013(8) 

C457   0.042(10) 0.043(8) 0.057(9)  0.022(8)  0.000(8)  0.007(7) 

C458   0.046(10) 0.050(9) 0.075(12)  0.000(7) -0.010(8)  0.011(8) 

C409   0.052(4) 0.144(8) 0.125(7)  0.055(5)  0.035(4)  0.097(7) 

C410   0.115(8) 0.34(2) 0.123(9)  0.152(11)  0.080(7)  0.157(12) 

C411   0.090(8) 0.35(2) 0.167(12)  0.107(12)  0.054(8)  0.191(15) 

C412   0.084(8) 0.29(2) 0.28(2) -0.023(11) -0.045(10)  0.220(19) 

C413   0.037(6) 0.067(9) 0.044(8)  0.021(6)  -0.005(6)  0.004(6) 

C414   0.050(7) 0.061(8) 0.091(12)  0.014(6)  -0.004(7)  0.008(8) 

C415   0.040(7) 0.083(12) 0.17(2)  0.003(7) -0.017(11)  0.072(15) 

C416   0.079(12) 0.20(3) 0.108(15)  0.007(16) -0.012(11)  0.077(17) 

C463   0.018(5) 0.060(10) 0.036(8)  0.019(6) -0.006(5)  0.007(7) 

C464   0.036(7) 0.043(8) 0.094(14)  0.006(6)  -0.001(7)  0.017(8) 

C465   0.045(9) 0.093(15) 0.082(13)  -0.002(8) -0.012(9) -0.030(12) 
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C466   0.08(2) 0.08(2) 1.06(19) -0.032(17) -0.16(5)  0.17(5) 

S501   0.173(4) 0.116(3) 0.098(3)  0.050(3) -0.091(3) -0.036(2) 

S551   0.097(7) 0.148(10) 0.102(7)  0.012(6) -0.031(5) -0.007(7) 

O501   0.124(5) 0.100(5) 0.079(4)  0.024(4) -0.046(4) -0.003(3) 

C502   0.30(3) 0.27(3) 0.23(2)  0.01(2)  -0.011(19)  0.18(2) 

C501   0.071(7) 0.35(3) 0.142(11)  0.017(11) -0.039(7) -0.093(14) 

N101   0.100(6) 0.102(6) 0.063(4)  -0.003(5) -0.024(4) -0.029(4) 

N301   0.037(2) 0.055(3) 0.030(2)  0.0075(19)  0.0050(17)  0.0197(19) 

N401   0.041(3) 0.098(5) 0.094(4)  0.046(3)  0.026(3)  0.057(4) 

O1     0.0279(15) 0.0243(14) 0.0196(13)  0.0003(11)  -0.0007(11)  0.0026(11) 

O2     0.0259(14) 0.0332(16) 0.0232(14) -0.0099(12)  0.0036(11)  0.0018(12) 

O3     0.0219(13) 0.0258(14) 0.0225(13)  0.0036(11)  -0.0010(11)  0.0006(11) 

O4     0.0187(14) 0.0432(18) 0.0301(15)  0.0012(13) -0.0027(12)  -0.0009(13) 

O5     0.0194(13) 0.0263(14) 0.0178(12) -0.0024(11)  -0.0001(10)  0.0014(11) 

O6     0.0206(13) 0.0254(14) 0.0213(13)  -0.0007(11) -0.0012(11)  -0.0005(11) 

O7     0.0280(15) 0.0304(15) 0.0244(14)  0.0000(12)  -0.0001(12)  0.0030(12) 

O8     0.0326(16) 0.0373(17) 0.0193(14)  0.0029(13)  -0.0011(12)  0.0007(12) 

O9     0.0199(13) 0.0274(14) 0.0194(13)  -0.0007(11)  0.0010(10)  -0.0003(11) 

O10    0.0188(13) 0.0276(14) 0.0215(13) -0.0041(11)  0.0005(10)  -0.0010(11) 

O11    0.0286(15) 0.0337(16) 0.0236(14)  0.0029(13)  0.0050(12) -0.0022(12) 

O12    0.0289(15) 0.0329(16) 0.0242(14) -0.0100(13) -0.0014(12) -0.0020(12) 

O13    0.0262(14) 0.0266(14) 0.0188(13)  -0.0001(12) -0.0015(11) -0.0028(11) 

O14    0.0252(14) 0.0261(14) 0.0226(14)  0.0017(12)  0.0010(11) -0.0020(11) 

O15    0.0314(15) 0.0221(14) 0.0231(14) -0.0030(12)  0.0026(11) -0.0014(11) 

O16    0.0365(17) 0.0258(15) 0.0312(16)  0.0037(13)  -0.0001(13)  0.0046(12) 

O102   0.109(4) 0.078(3) 0.049(3)  0.029(3) -0.031(3) -0.033(2) 

O103   0.142(7) 0.140(7) 0.201(10)  0.071(6) -0.073(7) -0.045(7) 

O104   0.170(7) 0.067(4) 0.072(4)  0.012(4)  0.006(4) -0.014(3) 

O201   0.058(2) 0.042(2) 0.0397(19) -0.0017(17)  0.0067(17) -0.0191(16) 

Pd1    0.03446(18) 0.03231(18) 0.02086(16) -0.00228(13) -0.00300(12) -0.00737(12) 

V1     0.0217(3) 0.0263(4) 0.0177(3) -0.0017(3) -0.0013(2)  0.0004(3) 

V2     0.0178(3) 0.0233(3) 0.0177(3) -0.0043(3)  0.0013(2)  0.0021(2) 

V3     0.0169(3) 0.0263(4) 0.0198(3)  0.0006(3) -0.0019(2)  0.0003(3) 

V4     0.0211(3) 0.0227(3) 0.0190(3)  0.0003(3)  0.0023(2) -0.0023(2) 

V5     0.0216(3) 0.0226(3) 0.0190(3) -0.0058(3)  0.0005(2) -0.0028(2) 

V6     0.0233(3) 0.0215(3) 0.0227(3)  0.0013(3)  0.0011(3)  0.0001(3) 

F1     0.0216(11) 0.0245(11) 0.0198(10)  -0.0008(9)  0.0011(9)  -0.0004(9) 
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Table 16 Bond lengths (Å) 

atom atom distance  atom atom distance 

S201 C201 1.772(6)  S201 C202 1.769(6) 

S201 O201 1.473(4)  S201 Pd1 2.2165(12) 

C301 C302 1.530(8)  C301 N301 1.523(7) 

C302 C303 1.519(8)  C303 C304 1.509(9) 

C305 C306 1.502(9)  C305 N301 1.527(7) 

C306 C307 1.540(9)  C307 C308 1.481(12) 

C309 C310 1.510(10)  C309 N301 1.503(7) 

C310 C311 1.542(19)  C310 C361 1.61(3) 

C311 C312 1.56(2)  C311 C361 0.70(4) 

C311 C362 1.91(3)  C361 C362 1.53(3) 

C313 C314 1.504(8)  C313 N301 1.528(7) 

C314 C315 1.503(9)  C315 C316 1.496(10) 

C401 C402 1.502(11)  C401 N401 1.532(9) 

C402 C403 1.497(12)  C403 C404 1.475(13) 

C405 C406 1.505(11)  C405 N401 1.499(11) 

C406 C407 1.695(19)  C406 C457 1.424(19) 

C407 C408 1.52(2)  C407 C457 0.70(3) 

C407 C458 0.86(3)  C408 C457 1.43(2) 

C408 C458 1.57(2)  C457 C458 1.47(3) 

C409 C410 1.551(16)  C409 N401 1.525(11) 

C410 C411 1.53(2)  C411 C412 1.38(3) 

C413 C414 1.50(2)  C413 C463 0.72(2) 

C413 N401 1.418(13)  C414 C415 1.53(2) 

C414 C463 1.24(2)  C414 C464 1.15(3) 

C415 C416 1.11(3)  C415 C464 1.59(2) 

C415 C465 0.99(4)  C415 C466 1.69(5) 

C416 C465 1.56(3)  C416 C466 1.39(7) 

C463 C464 1.53(2)  C463 N401 1.718(15) 

C464 C465 1.58(2)  C465 C466 1.29(5) 

S501 S551 1.250(13)  S501 O501 1.429(8) 

S501 C502 1.76(2)  S501 C501 1.631(16) 

S551 O501 1.520(15)  S551 C502 1.55(2) 

S551 C501 1.711(16)  N101 O102 1.293(10) 

N101 O103 1.310(13)  N101 O104 1.131(11) 

O1 V2 1.729(3)  O1 V61 1.894(3) 

O2 V2 1.601(3)  O3 V3 1.732(3) 

O3 V61 1.906(3)  O4 V3 1.601(3) 
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O5 V1 1.828(3)  O5 V2 1.937(3) 

O5 V4 2.064(3)  O6 V1 1.829(3) 

O6 V3 1.933(3)  O6 V5 2.041(3) 

O7 V1 1.602(3)  O8 Pd1 2.020(3) 

O8 V1 1.721(3)  O9 V2 1.987(3) 

O9 V31 1.908(3)  O9 V4 1.919(3) 

O10 V21 1.913(3)  O10 V3 1.985(3) 

O10 V5 1.926(3)  O11 V4 1.596(3) 

O12 V5 1.606(3)  O13 Pd1 2.061(3) 

O13 V4 1.909(3)  O13 V5 1.911(3) 

O14 V4 1.761(3)  O14 V6 1.904(3) 

O15 V5 1.770(3)  O15 V6 1.894(3) 

O16 V6 1.597(3)  O102 Pd1 2.093(5) 

V2 V31 3.0177(9)  V2 V4 3.0841(10) 

V3 V5 3.0693(10)  V4 V6 3.1096(9) 

V4 F1 2.203(2)  V5 V6 3.0923(9) 

V5 F1 2.174(2)  V6 F1 2.234(2) 

 

5.4 Results and Discussion 

5.4.1 Single Crystal X-ray Diffraction (SXRD) Analysis   

Into the solution of Pd(NO3)2, {n-Bu4N}4[V10O26] and {n-Bu4N}F was added. The 

addition of excess amount of hydrogen peroxide was to assure the full oxidation of all 

vanadium atoms. To control the speciation of polyoxovanadate nitric acid was added51.  Red 

crystal suitable for single X-ray crystallographic analysis compound (3) were obtained from 

the solution in ca 50% yield based on Pd2+ (Figure 25). 

Four tetra-n-butyl ammonium cations per one polyoxovanadate were determined. The 

anion structure of compound (3) exhibited the basal fluoride-incorporated polyoxovanadates 

with three layers of one belt layer of four VO5 units and two cap layers of [V3O13] fragments.  

If compound (2) was grown in acetonitrile-DMSO media, then compound (3) is a 

new fully oxidized Pd supported polyoxometalate compound synthesized in mixed 

CH3NO2/DMSO media. It crystallizes in Orthorhombic space group Pbca, Z = 4. The 

crystallographic data in Table 12 includes the unit cell parameters and other relevant 

information. Tables 13, 14 and 15 provide the atomic coordinate and anisotropic 

displacement parameters and bond length for the title compound, respectively. Figures 26 

illustrate the structure of the anion of compound (3) with all building units. 
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Figure 30 belt (blue) and cap layers (red) and addenda VO4 unit (yellow) in the anion structure 
of (3) 

 

Like previous compound (2), compound (3) possessed two F− surrounded by ten VO5 

units. The shortest V· ·F distance (2.17 Å) is longer than that of the usual V−F bonds (ca. 1.8 

Å). This suggests that the vanadium atoms and a fluoride anion are not directly bonded like 

other fluoride-incorporated polyoxovanadates.   In addition to the parent structure, two VO4 

units existed between the belt and cap layers.  

The two Pd2+ atoms have square planar geometry bridged by an oxygen atom from a VO4 

unit and a bridging oxygen atom between edge-shared VO5 units on the cap layer.  The square 

planar Pd2+ ion are accomplished with DMSO and NO3
− molecules.  The bond length of Pd-S 

is 2.2165 Å and Pd-O is 2.093 Å against both ligands respectively.  These values of long 

distances indicate the weak bonding between Pd and DMSO ligand and Pd and NO3
− ligand 

that make DMSO and NO3
−  as a good leaving group.  
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The peripheral sites of the anion are occupied by an oxygen atom from NO3
− and a sulfur 

atom of DMSO. The N−O distances of NO3
− are 1.22, 1.24, and 1.43 Å. The N−O distance 

with O coordinated to Pd is longer than the others.  

While free DMSO has S-O distance 1.531 Å, the S−O and S−C distances of Pd-

coordinated DMSO are 1.47, 1.77, and 1.78 Å, respectively. These values are comparable to 

those of free DMSO, indicating the weak interaction between Pd and DMSO. The anion is 

discrete because the Pd-coordinated NO3
− and DMSO were not connected to the other moieties. 

In the other report,  Pd(DMSO)2(NO3)2 exhibit dimer configuration bridged by nitrate.69 

From X-ray crystallographic, elemental, and thermogravimetric analyses show that the 

formula of (3) is {n-Bu4N}4[{Pd(NO3)(DMSO)}2V12O32(F)2]·2DMSO.  

The reaction equation for the formation of (3) can be expressed by the following equation 

(2):   

10Pd2+ + 6 [V10O26]4− + 10F− + 6H2O2 + 4H+ + 10NO3
− 

→5[{Pd(NO3)}2V12O32(F)2]4− (2) 

Compound (3) is the first example of fully oxidized polyoxovanadates with available 

metal coordination sites as a linker unit, to best of our knowledge. 

 

5.4.2 Bond Valence Sum (BVS) Calculation  

The charges of V atoms are all pentavalent by the bond valence sums calculations 

shown in Table 16.  

 

Table 17 BVS calculation of compound (3) 

VIV VV  
Bond Valence Sum 

V1 V2 V3 V4 V5 V6  V7 V8 V9 V10 V11 V12 

0 12 
VIV  4.594 4.744 4.752 4.861 4.825 4.821       

VV 4.836 4.994 5.003 5.104 5.064 5.062       

 

The BVS calculation confirm the formula of compound (3) in term of charge balance and 

the missing of IVCT peak in UV Vis spectra. 
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5.4.3 The IR spectrum  

The IR spectra of compound (3) shows characteristic POV peaks in the region of 

1000−400 cm-1. Interestingly these peaks are similar in shape to that of [HV11O29F2]4−, 54 which 

possess the similar fully oxidized structure (figure 30).  

 

Figure 31 The IR spectrum of 3 in the region of (3) (blue) comparable with that of 
[HV11O29F2]4−(green)  

 

Two peaks of S−O stretching vibration at 1050 and 1110 cm−1, are due to free and 

coordinated DMSO, respectively. The higher wavenumber of coordinated DMSO suggested 

the coordination to palladium center via sulfur atom, as shown in crystallographic analysis70. 

Peaks due to symmetric and asymmetric vibration of NO3
− were observed at 1356 and 1511 

cm−1, respectively70. 

5.4.4 NMR Spectroscopy Analysis 

The solution state of compound (3) was studied by NMR spectra measurement in CD3CN.  

The 51V NMR spectrum show the four resonance peaks at −444, −458, −525, and −542 ppm 

with the intensity ratio of 2:1:2:1 (figure 32).  
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Figure 32 51V NMR spectra of complex 3 in CD3CN. 

The 51V NMR spectra of the anion (3) is in perfect agreement with data of the crystal 

data by SCXRD as illustrated in figure 29. 

 As we can see from the crystal structure of anion 3, there two possible ways of assigning 

based on the symmetry of V atoms. However, based on the previous report, we can take to 

account the V atom coordinated to Pd atoms, where vanadium-supported noble metal complex 

tends to resonate downfield56.   

So, the downfield peak with intensity ratio 2 can be assigned to the equivalent vanadiums 

(the blue color V4, V5) and the downfield with intensity ratio 1 can be assigned at the green 

color V6, which are all connected with Pd2+ through an oxygen bridge. The upfield peaks at 

intensity ratio 2 were assigned to the residual vanadiums (V2 and V3 red color) at belt position 

and the last peak with intensity ratio1 is assigned to the brown color V7 at cap position not 

connected to O-Pd.  
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Figure 33 Assignment of 51V NMR of V atoms differentiated by different colors.  

This is the assignment based the factor that the 51V NMR signal of a vanadium-supported 

noble metal complex tends to resonate downfield 56. So all the intensity ratio was in accordance 

with the symmetry of the crystal structure of 3. However, it is also possible for the other 

alternative assignment, where the green V atoms come to grey, and the red one comes to blue. 

The result of 19F NMR spectrum (figure 34) that shows single signal at −71 ppm 

ascertains both the presence of F in the sphere and the structural integrity of the dodecavanadate 

framework of 3 in the solution state.  

 

Figure 34  19F, NMR spectra of 3 in CD3CN. 
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For the 1H NMR spectrum, the four peaks observed at 0.97, 1.38, 1.62, and 3.17 ppm are 

due to tetra-n-butylammonium as counter cations. A peak observed at 2.50 ppm is to free 

DMSO.  

 

Figure 35 1H NMR spectra of 3 in CD3CN.13 

 

Furthermore, two singlet peaks with intensity ratio 3:1 at 3.37 and 4.41 ppm were 

observed. The total peak area was same as that of free DMSO. If mixed solvent DMSO-d6 and 

CD3CN were used instead, these two peaks disappeared. These suggests that peaks at 3.37 and 

4.41 ppm are because of the exchangeable Pd-coordinated DMSO. It is also known that 1H 

NMR peak due to Pd-coordinated DMSO via sulfur is observed at lower field than that via 

oxygen 59.  

Compared with the previous works, the peak at 3.37 ppm is due to Pd-coordinated DMSO 

via oxygen, and the other is due to that via sulfur, indicating that in the solution state DMSO 

coordination via oxygen atom to the Pd center is preferable.59 The peak at 2.16 ppm and 2.08 

ppm are due to the presence of small amount of water and aceton respectively in the measured 

solution. 
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5.4.5 UV-Vis Absorption Spectra 

From the measurement of  UV/Vis spectrum of 3 in CH3CN, there are peaks at 244 and 

470 nm and shoulders at 300 and 370 nm, with ε = 5.6×104, 7.4×103, 2.4×104, and 1.1×104 

M−1cm−1, respectively (Figure 36).  

This results is similar adsorption band in the similar region with the fully oxidized 

fluoride-incorporated polyoxovanadate, [HV11O29F2]4−, which also has similar structural units 

with compound (3), (shoulders at 330 and 465 nm with ε = 1.1×104 and ε = 2.3×103 M−1cm−1, 

respectively).51 

Figure 36 UV/vis spectrum of compound (3). 

The UV−vis spectrum of the compound (3) showed no absorption band above 600 nm, 

proving that the vanadium species are not mixed valence of VIV / VV.  Compound (3) that only 

has Vanadium(V) does not contain d electrons, obviously is restricted to intra-ligand LMCT 

absorptions only. The observed red color of compound (3) is because LMCT bands lie in the 

visible region (absorbed blue-green color in 490 nm). 
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5.4.6 Cyclic voltammetry Analysis 

Cyclic voltammogram result of compound (3) in CH3CN showed a reductive peak at 

−0.50 V and an oxidative peak at −0.37 V versus ferrocene/ferrocenium (Figure 37).   

 

Figure 37 Cyclic voltammogram of compound (3)  

This redox pair was observed in the higher potential in comparison with the that of 

[HV11O29F2]4−. 51 

 

5.4.7 Thermogravimetric (TG) Analysis 

TGA measurements were done on ground powders (∼10 mg). The heating profile for 

the measurement included a heating rate of 10 °C/min from room temperature to 300 °C, 

followed by a return cooling rate of 10 °C/min. 

  

Figure 38 TG of compound 3    

15 % 
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TGA measurements illustrated in Figure 10 show that compound (3)   starts to release 

both ligands (DMSO and NO3
− ) 160 °C up to 180 °C at a point about 15% weight loss 

occurs. 

5.5 Conclusion 

In this chapter, we have successfully overcome the weakness of complex 2 before for 

becoming best linker for MOF or supramolecular frameworks.  We can get rid of annoying 

counter cation VO(DMSO)5
2+ away as found in complex 2. We can also get a soluble in organic 

solvent linker because the counter cation is a very popular {n-Bu4N}+ cation. The complex is 

stable in the air with it fully oxidized state. Its diamagnetic properties allow for 51V NMR study. 

By NMR evidence the structure integrity is kept in solution too. So, this is very good for 

supramolecular MOF linker. 

Anionic (3) is a new building block of polyoxometalates designed by utilizing the 

unique structural features of fluoride-incorporated polyoxometalates. By the combination 

of both tetrahedrally and square-pyramidally coordinated vanadium atoms, both cations 

and anions are stabilized by one polyoxovanadate framework. Measurement of 1H NMR 

shows the ligand exchange property of Pd-coordinated DMSO with at the same time 

maintaining the polyoxovanadate framework.  

5.5.1 Potential Application 

Different form complex (2) which is insoluble in most solvents, complex (3) is soluble 

in most organic solvents. This enable the exploration of the chemistry of the complex better 

than previously prepared complex (2).  Like anionic [{Pd(DMSO)2}2V12O32(F)2]4-  in complex 

(2), anion {Pd(NO3)(DMSO)}2V12O32(F)2]4- is also potential linker in Polyoxometalate based 

Metal Organic Framework Chemistry.  Ligand DMSO and Nitrate are weakly bonded and 

considered as the leaving group which can be replaced by other organic multidentate ligands 

to grow a framework structure as described chapter 4. Apart from coordination polymer / 

POMOF linker, catalytic activity of complex (3) is also very interesting subject to study. 
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CONCLUDING REMARKS  

 

Even if POMs can afford high negative charge, in general they still have weak 

coordination ability because their high negative charges are delocalized along the cluster. This 

problem hinders the use of POMs as the building units (linkers) for the construction of 

framework structures.   This projects were successful in dealing with the mentioned problem 

by successful synthesis of transition metal supported polyoxovanadate.  

During this experiment we have successfully performed a systematic stepwise synthesis 

of Pd-POV linker units. We started from the synthesis of precursor fluoride-incorporated 

dodecavanadate [V12O30F2]4− through the modification of other polyoxovanadate 

[HV11O29F2]4−.  The two types of linkers successfully obtained afterwards are a reduced 

Palladium Supported Fluoride Incorporated Dodecavanadate [{Pd(DMSO)2}2V12O32(F)2]4- 

and a fully oxidized [{Pd(DMSO)2}2V12O32(F)2]4-. 

The synthesized anions [{Pd(DMSO)2}2V12O32(F)2]4- and 

[{Pd(DMSO)(NO3)}2V12O32F2]4- provides two available metal coordination sites at both ends 

of POMs which in turn would play role as a linker unit. The attached ligands DMSO and nitrate 

are leaving groups which are easily removed by additional ligands. Furthermore, the definite 

square planar 90°-degree coordination of Pd2+ is very good for rational synthesis of framework 

structures.  The diamagnetic properties of [{Pd(DMSO)(NO3)}2V12O32F2]4-  anion allows their 

study later by NMR spectroscopy.   

These complexes are also useful for researchers who need inorganic linkers. Therefore, 

this research opens up the future works in the new field of POM chemistry, a so called POM 

based frameworks (POMOFs) or Metal Inorganic Frameworks fields.  

Lastly, the complexes are very potential for catalysis due to the availability of catalyst 

active sites V and Pd at the same time. The redox active [V12O30F2]4− anion synthesized is 

interesting because it can store and release electrons that make it potential for high capacity 

energy storage electrode materials.  
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