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Abstract

Data-driven approach is an effective solution to achieve the optimal controllers in

the control process. In this approach, a mathematical model of a plant is not re-

quired, only a set of data directly collected from the plant to be controller is required

for designing the controller. It means that we do not have to implement the identifi-

cation to know the dynamics of the plant, this is an advantage in compare with the

conventional method. In addition, since the data obtained from the practical system

includes the dynamics of the plant more explicitly and directly than mathematical

models which is described in the form of the compressed formula, data-driven ap-

proach is expected to bring more desired controllers. Due to these reasons, there

are many authors studying and developing data-driven approach to control systems

such that, H.Hjalmarsson and F.De Bruyne in [6, 7, 8] with iterative feedback tun-

ing (IFT), M.C.Campi, A.Lecchini, G.O.Guardabassi in [13, 14, 12] with virtual

reference feedback tuning (VRFT) and S.Souma [9], O.Kaneko [10, 11, 15, 16, 17],

H.T.Nguyen [18, 19, 20] with fictitious reference iterative tuning (FRIT).

Cascade control systems are developed and used for practical multiple-loop con-

trol systems, and are applied to many industrial processes such that, temperature,

humidity control, pressure, level of fluids control, oil-gas industry and adjustment

of DC motor speed e.g.,.Cascade control system consists of the inner loop and the

outer loop, which are often referred as the secondary loop and the primary loop,

respectively. Inner loop or secondary loop controller is designed to eliminate the

effect of the disturbance, to achieve faster recovery from disturbance, to improve

the dynamics for the outer loop. Outer loop or primary loop controller is designed

to obtained the final purpose of the controlled systems. one of the main features on

cascade control systems is to be possible to independently assign the characteristics
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of both these two loops for two different purposes.

In this dissertation, data-driven approach to the cascade control system is pre-

sented. Here, I treat two representative methods on this issue, one is virtual ref-

erence feedback tuning (VRFT), the other is fictitious reference iterative tuning

(FRIT). Main feature to be pointed out for these two methods is that only one-shot

experimental data is required for obtaining the desired controllers. I apply these

two methods (VRFT and FRIT methods) of data-driven approaches to cascade con-

trol systems to obtain the optimal parameters for both inner and outer controllers .

Particularly, I focus on VRFT method and clarify the meaning of the cost function.

Furthermore, the prefilter is originally derived for cascade control systems to assign

the inner and the outer loop property independently. This is also effective strategy

to overcome non-proper problem in the VRFT method to cascade system.

Finding out the original prefilter for cascade control systems is extremely im-

portant point, it enable us to have a new method of applying VRFT approach to

achieve the optimal parameters for both inner and outer controllers in the cascade

scheme. Also this point is a big difference from study of the results derived by

F.Previdi et.al. in [5]. The simulation results of illustrated examples demonstrate

the effectiveness and the validity of my proposal results.
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Chapter 1

Introduction

1.1 Cascade control system

A cascade control system (see Fig. 1.1) is a multiple-loop system where the output

of the controller in the outer loop (the “primary” or “master”) is the set point of a

controller in the inner loop (the “secondary” or “slave”). The inner loop controller

generates an intermediate process variable that can be used to obtain more effective

control of the outer process variable. Cascade control systems are developed and

used for practical multiple-loop control systems, and are applied to many industrial

processes such that, temperature, humidity control, pressure, level of fluids control,

oil-gas industry and adjustment of DC motor speed [1, 2, 3, 4] e.g.,.

In the configuration of the cascade control system, the process is divided into

two parts (the inner process and the outer process) and therefore two controllers are

used, but only one signal generated from inner controller is manipulated. These two

processes can be affected by disturbances d1 and d2, respectively.

Fig. 1.1: Block diagram of a cascade control system
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The closed-loop of cascade control system can be shown in a block diagram

form (Fig. 1.1). Here, the outer (master) controller generates the set point S P2 for

the inner loop which includes the inner (slave) controller and the inner process. The

controlled variable of the inner loop (y1) also affects the outer process and therefore

it also affects the primary controlled variable (y), which is also the output of cascade

control system.

Cascade control system has several advantages on applications where the inner

process has a large dead time or time lag . Cascade control system is also effective

when the large disturbance occurs in the secondary loop. Because the disturbance

applied to the inner loop is eliminated by the inner controller before they affect on

the outer process.

The case where the cascade control system is not affected by disturbances then

the configuration of cascade control system can be shown in the Fig. 1.2.

Fig. 1.2: Cascade Control System

As shown in Fig.1.2, the cascade control system consists of an inner loop where

an inner controller C2 operates as a feedback controller for plant P1 and an outer

loop where an outer controller C1 performs the same function for inner closed loop
P1C2

1+P1C2
, which is serially connected to a plant P2. The outer controller C1 generates

the set point signal for the inner loop, which includes the inner controller C2. The

controlled variable of the inner loop y1 affects on the outer loop y. Though this

is an ideal configuration, it is useful to analyze the mechanism of cascade control

architecture.
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1.2 Data-driven Approach

Similarly to most other control architectures, appropriate mathematical models are

needed to design controllers. Practically speaking, many cases exist in which a con-

troller has already been designed to achieve desired specifications based on math-

ematical models reflecting dynamics. It might thus be important to maintain the

initial desired performance under aging changes, sudden changes, or intrinsic un-

certainties. In these cases, it is desirable to develop update and tuning methods for

parameters of the implemented controllers based on directly used measured data.

This is a basic principle of ” data-driven approach” to control.

Studies on data-driven controller tuning and updating have been developed such

as, iterative feedback tuning (IFT, [6, 7, 8]), fictitious reference iterative tuning

(FRIT, [9, 10]) and virtual reference feedback tuning (VRFT, [12, 13, 14]).

Specifically, FRIT and VRFT require only a one-shot experiment for the desir-

able parameter, so they have practical advantages over IFT, which requires many

experiments in off-line nonlinear optimization.

In the structure of cascade control system, we want to design desired controllers

C1 and C2, then the first important step is to obtain a mathematical model of plants

P1 and P2 as exactly as possible. Controllers are designed by using conventional

methods to meet a given specification based on mathematical models. Nevertheless,

there are cases in where a desirable experiment to achieve mathematical model of

the plants is too hard to be done. And it is also very difficult to take much time and

cost to execute efficient experiments for identification P1 and P2. To overcome these

problems, an effective solution should be used is to apply data-driven approaches to

cascade control system.

In reference [5], Previdi et.al. studied VRFT design of cascade control systems

with application to an electro-hydrostatic actuator. In this work the author gave two

desired reference model (for the inner and the outer loop). The optimal parameters

of the inner controller is achieved by adjusting the inner loop to obtain tracking

properties of the inner loop so as to be approximated as desired inner reference

model with respect to the outer loop. Also, the author gave the outer desired ref-

3



erence model, and use the same way to find the optimal parameters of the outer

controller. In fact, in the reference [5] the authors minimized the cost function and

used the prefilter introduced by Campi et.al. [13] to obtain the two desired con-

trollers.

As another approach of application of VRFT to cascade control systems, in my

proposed method, I applied and developed VRFT methods to cascade control sys-

tems in the cases in where plants are minimum and non-minimum phase systems.

Here, I construct the original cost function for cascade control system, and simul-

taneously obtain optimal parameters for both inner and outer controllers by only

minimizing this cost function. The most important point and different points com-

pared with the Previdi’s work, I clarified the meaning of the cost function in VRFT

without the prefilter. As a result, it is clarified that the cost function of VRFT aims

to optimize the open loop transfer function. Moreover, I also derived the original

prefilter for cascade control system not only to avoid the problem of non-properness

appearing in the cost function but also to obtain the matching between optimal pa-

rameters achieved from model reference criterion of VRFT and one yielded from

original cost function. The above two points are major important different points

compared the reference [5].

Besides, I also developed FRIT for cascade control systems in [18]. In the

reference [18] , the authors have just applied FRIT method to cascade control system

to deal with the case plants are minimum phases . FRIT for cascade control systems

with non-minimum phase systems will be also implemented in this dissertation.

1.3 Outline of The Dissertation

The structure of dissertation consists of the following items

Chapter 2, VRFT approach to cascade control system is applied to simultane-

ously achieve the optimal parameters for both inner and outer controllers such that

the output of outer cascade control system can be approximated well with a de-

sired reference model of cascade control system. Besides, the meaning of the cost

function is also explained clearly.

4



Chapter 3 presents the derivation of the prefilter used in the VRFT for the cas-

cade control systems, which guarantees the optimality of the cost function to be

minimized. The similar method to obtain the prefilter is also used in the FRIT case,

as shown in Chapter 4.

Chapters 5 and 6 presented the extensions of VRFT and FRIT for cascade con-

trol systems to the non-minimum phase case. The strategy for the unstable zeros

are presented.

Chapter 7 presented the concluding remarks and future works.
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Chapter 2

Virtual Reference Feedback Tuning

for Cascade Control Systems

Virtual Reference Feedback Tuning (VRFT), proposed by Campi et-al.,[13] is one

of the effective data-driven tuning methods used in feedback controllers in the sense

that desired parameters implemented in the controller are obtained by using only

one-shot experiment data. In this chapter, I present a VRFT method for the cascade

control system. I propose a direct tuning method for controllers in cascade control

system to simultaneously obtain optimal parameters for both the inner and outer

controllers by performing one-shot experiment to collect a set of initial data from

the cascade system. I also clarify the meaning of the cost function in my proposed

method and provide an example for demonstrating our proposal’s effectiveness and

validity.

2.1 Cascade control systems

In the introduction part of chapter 1, cascade control system was described as

multiple-loop control system ( see Fig. 1.2). It includes two loops such that inner

loop and outer loop.

The inner loop the inner controller C2 generates input control signal u to control

the plant P1, and y1 is the output of the inner loop, it also affects on the plant P2 of

the outer loop and the output of the cascade control system y.

7



The outer loop cascade contains the outer controller C1 operating as a feedback

controller for the inner for inner closed loop P1C2
1+P1C2

, which is serially connected to

a plant P2. The output of the outer loop y also is the output of the cascade control

system.

Consider the cascade control system with tunable parameters in Fig. 2.1.

Fig. 2.1: Cascade control system with tunable parameters

In this case, we consider that P1 and P2 are linear, time-invariant, single-input

single-output, strictly proper, stable and minimum phase. The two controllers of

cascade control system are parameterized as

C1(θ) =
θn+1qm + · · · + θν−1q + θν

qn + θ1qn−1 + · · · + θn−1q + θn
(2.1)

and

C2(θ) =
θν+n′+1qm′ + · · · + θµ−1q + θµ

qn′ + θν+1qn′−1 + · · · + θν+n′−1q + θν+n′
(2.2)

by using a parameter vector

θ =

[
θ1 · · · θν θν+1 · · · θµ

]
. (2.3)

A transfer function with a tunable parameter vector θ from r to y is defined by

T (θ), it is shown as

T (θ) =
P1P2C1(θ)C2(θ)

1 + P1C2(θ) + P1P2C1(θ)C2(θ)
(2.4)

Similarly, input, output, and inner output with parameter θ are denoted by u(θ), y(θ),

and y1(θ).

Using a parameter vector θini, assume that the current or initial closed loop is

stable. The desired tracking closed loop transfer function from r to y is given as M.
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The initial output yini := y(θini) is different from desired output of cascade sys-

tem yd := Mr. Here, the purpose of tuning parameters is to find optimal parameter

vector θ∗ such that the output of cascade control system with these optimal param-

eters can approximated well with the desired output yd := Mr.

To find the optimal parameters for both inner and outer controllers we have to

minimize ‖y(θ∗)−Mr‖2N and use the initial data uini = u(θini), yini, and y1ini := y1(θini).

2.2 Basic of VRFT method

In this section, I present some main points of an original VRFT method based on

reference [13]. A diagram of conventional feedback system with the tunable con-

troller is shown in Fig. 2.2.

Fig. 2.2: A conventional feedback control system

Here, we consider that P is a linear, time-invariant, single-input, single-output

dynamical system. We also assume that P is unknown. Controller C(θ) is parame-

terized by using tunable parameter vector θ := [θ1 θ2 · · · θν] as follow:

C(θ) =
θn+1qm + · · · + θν−1q + θν

qn + θ1qn1
+ · · · + θn−1q + θn

. (2.5)

The only set of data we use is the one-shot experimental data of input u and output

y. We also give desired reference transfer function M from r to y.

With above conditions, virtual reference signal r̄ is given to satisfy

y = Mr̄ (2.6)

by using actual (initial) output, and define virtual error

ē := r̄ − y. (2.7)
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Cost function

JV(θ) = ‖u −C(θ)ē‖2N (2.8)

is then minimized for θ. u is actual (initial) input and C(θ)ē is referred as virtual

input.

Roughly speaking, the ideal minimization of JV(θ) is equivalent to that of

u−C(θ)ē = 0, i.e., u = C(θ)ē = C(θ)(r̄−Pu). The last relation is also equivalent

to stating that

(1 + PC(θ)) u = C(θ)r̄ (2.9)

where the right side of (2.9) is equal to

C(θ)r̄ = C(θ)
1
M
y =

C(θ)P
M

u. (2.10)

From (2.9) and (2.10), we see that

Mu =
PC(θ)

1 + PC(θ)
u (2.11)

holds.

To briefly explain the mechanism of VRFT in [13], the closed loop with optimal

θ is thus close to desired model M under the influence of initial input data u.

The problem of the non-properness of 1/M that appears in the virtual reference

is avoided by using prefilter L = M(1 − M), which guarantees the optimality of JV

in cases where ideal minimization can not be achieved, applied to data. In [13],

a more theoretical analysis of this prefilter is discussed for cases in which C(θ) is

linearly parameterized, which is done by convex optimization. See [13] for details.

2.3 VRFT approach for cascade control systems

2.3.1 Construct an original cost function of cascade control sys-

tems

In presenting of VRFT approach to cascade control systems, we concentrate on the

inner closed loop. Applying [13] to the inner loop, we introduce cost function

JV(θ) = ‖uini −C2(θ)ē1‖
2
N . (2.12)
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ē1 is the error between the initial output of inner closed-loop y1ini and virtual refer-

ence r̄1 for the inner loop, which is calculated as

ē1 = r̄1 − y1ini (2.13)

Note that r̄1 is also virtual output of outer controller C1.

Now let us focus on the outer loop of the cascade control system. Similar to the

inner loop, we introduce virtual error ē by using actual output yini as follows:

ē = r̄ − yini (2.14)

r̄ is a virtual reference such that

yini = Mr̄ (2.15)

for the outer loop.

As stated above, r̄1 is also the output of C1(θ). We thus see

r̄1 = C1(θ)ē (2.16)

By substituting r̄1 in (2.16) into (2.13) with (2.14) and (5.19), we obtain

ē1 = C1(θ)ē − y1ini

= C1(θ)(r̄ − yini) − y1ini

= C1(θ)
(

1
M
− 1

)
yini − y1ini. (2.17)

Last, we substitute ē1 in (2.17) into (2.12) to obtain performance index JV(θ) of

cascade control system as

JV(θ) =

∥∥∥∥∥∥uini + C2(θ)y1ini −C1(θ)C2(θ)
(

1
M
− 1

)
yini

∥∥∥∥∥∥2

N

(2.18)

As seen trivially, JV is minimized by using only initial one-shot experimental data

yini, uini and y1ini. This means that our proposed method has practical advantages in

cascaded controller tuning.

To minimize the above cost function JV(θ), we only perform one-shot experi-

ment on cascade control system to collect a set of initial data {uini, y1ini, yini}. After

minimizing the cost function, we simultaneously obtain the optimal parameters for
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both inner and outer controllers of the cascade control system such that the output

of cascade control system with these optimal parameters is almost the same with

desired output yd = rM. This important point is a big difference from F. Previdi’s

studies in [5].

In the reference [5], F. Previdi and co-authors gave a VRFT method design

of cascade control systems with application to an electro-hydrostatic actuator. In

the pages 628, 629 of reference [5], F. Previdi gave two desired reference models

(the inner desired reference model Mv, the outer desired reference model Mx), and

then he used cost functions introduced by Campi [13], JVR(θv) = 1
N

∑N
t=1(uvL(t) −

Cv(θv)evL(t))2 for the inner loop, and JVR(θx) = 1
N

∑N
t=1(rvL(t) − Cx(θx)exL(t))2 for the

outer loop.

To obtain the tracking properties of the inner loop, he minimized the cost func-

tion JVR(θv) to achieve the optimal parameters of the inner controller Cv. Similarly,

the optimal parameters of the outer controller Cx are obtained by minimizing outer

cost function JVR(θx).

From these points, we see that in my proposed method , I present an VRFT ap-

proach to cascade control system such that we achieve the tracking properties of the

outer cascade control system , the output of cascade control system can approximate

well with desired output. Also, I calculated to establish the original cost function

(equation 2.18) of VRFT method for cascade systems. Only one-shot experiment

to collect the initial data is necessary for minimizing the cost function (2.18). Min-

imizing this cost function simultaneously yields the optimal parameters for both

inner and outer controllers. These important points are absolutely different from the

study of authors in [5].

2.3.2 The meaning of the cost function with ideal case

First, we consider the meaning of JV(θ) in the ideal case, i.e., the case in which θ∗

exists such that JV(θ∗) = 0. In this case, note that

uini + C2(θ∗)y1ini −C1(θ∗)C2(θ∗)
(

1
M
− 1

)
yini = 0 (2.19)
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holds generically. Note that trivial relations

P1uini = y1ini (2.20)

P2y1ini = yini (2.21)

Also hold. Using them, we rewrite (2.19) as(
1 + P1C2(θ∗) −C1(θ∗)C2(θ∗)P1P2

(
1
M
− 1

))
uini = 0

which is equivalent to

1 + P1C2(θ∗)
C1(θ∗)C2(θ∗)P1P2

uini =

(
1
M
− 1

)
uini. (2.22)

Simple algebraic manipulation of (2.22) then yields

T (θ∗)uini = Muini (2.23)

which means that the optimal closed loop is achieved over initial input.

2.3.3 The meaning of the cost function with ordinary case

It is difficult to achieve JV(θ) = 0. Even in this case, we rationally interpret the

minimization of JV(θ). First, note that

M
1 − M

=: HM (2.24)

is interpreted as the desired open loop transfer function for M. This is because

1−M is the sensitivity function of desired closed loop M and the open loop transfer

function of the feedback loop is represented by the ratio of sensitivity function 1 −

M and the complementary sensitivity function where the later function is equal to

closed loop transfer function M from the reference signal to output .

Similarly, an open loop transfer function for T (θ) with parameter θ is interpreted

as

T (θ)
1 − T (θ)

=: HT (θ) (2.25)

From the Fig. 2.1, after some simple calculations yield

HT (θ) =
P1P2C1(θ)C2(θ)

1 + P1C2(θ)
(2.26)
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The cost function (2.18) is also rewritten as follows:

JV(θ) =

∥∥∥∥∥∥
(
1 + P1C2(θ) − P1P2C1(θ)C2(θ)

(
1
M
− 1

))
uini

∥∥∥∥∥∥2

N

=

∥∥∥∥∥∥(1 + P1C2(θ))
(
1 −

P1P2C1(θ)C2(θ)
1 + P1C2(θ)

1
HM

)
uini

∥∥∥∥∥∥2

N

=

∥∥∥∥∥∥(1 + P1C2(θ))
(
1 −

HT (θ)
HM

)
uini

∥∥∥∥∥∥2

N

(2.27)

The part 1
1+P1C2(θ) is regarded as the sensitivity function of the inner loop.

Above equation in (2.27) shows that the minimization of JV(θ) in (2.18) corre-

sponds to that of the relative error between open loop transfer function HT (θ) and

HM under the influence of the inverse sensitivity function of the inner loop and

initial input data uini.

2.3.4 Algorithm

The proposed method is summarized in the following algorithm:

1. Set initial parameter vector θini

2. Execute a one-shot experiment to achieve a set of data {uini, y1ini, yini}. With

θini, controllers are assumed to stabilize the closed-loop cascade control sys-

tem so that these data are bounded.

3. Calculate the virtual reference signal as r(θ) = 1
My(θini) and construct perfor-

mance index JV(θ) as equation (2.18).

4. Minimize performance index JV(θ) using nonlinear optimization such as the

Least Squares, Gauss-Newton, Gradient methods, or CMA-ES[21].

5. Obtain optimal parameter vector θ∗ := arg minθ JV(θ), which yields optimal

controllers and desired output of the cascade control system.

2.3.5 Remarks

To overcome the problem non-properness of 1
M appearing in the cost function of

VRFT to cascade control system, we have to use prefilter introduced by Campi [13],
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this prefilter also guarantees the optimality of the cost function in VRFT method.

This prefilter is applied for convention system, and it can be used to avoid problem

non-properness of 1
M in cost function (2.18). Of course, finding out an original

prefilter for cascade control systems in VRFT method is an important issue which

allows us to obtain better results. We will focus on this work in the next chapter.

In this method, we conducted one-shot experiment on closed loop cascade con-

trol system to collect the initial data. However, we can also obtain good results in

the open loop cascade control systems case.

The meaning of cost function in VRFT method for cascade control system given

by equation (2.27) shows that when we minimize it, we consider the relative error

between the open loop desired transfer function and the open loop transfer function

cascade system. In the case of FRIT to cascade control system in [19], the meaning

of the cost function is considered by the relative error between the closed loop

desired transfer function and the closed loop transfer function cascade system. This

point is an important difference between two methods.

2.4 Numerical Example

To demonstrate the validity of the proposed method, we give an illustrative example

of a cascade control system in a continuous-time domain.

Unknown plants of cascade control system are described as follows:

P1 =
s + 8

s2 + 3s + 2
(2.28)

and

P2 =
s + 9

s2 + 7s + 5
(2.29)

The outer and inner controllers are parameterized as

C1(θ) =
θ1s2 + θ2s + θ3

θ4s2 + θ5s + θ6
(2.30)

and

C2(θ) =
θ7s + θ8

θ9s + θ10
(2.31)
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with θ := [θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10]T .

Fig. 2.3: Initial input uini

The desired reference model of the cascade control systems M is given by

M =
1

s + 1
. (2.32)

Initial parameter vectors are set as

θini = [0.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0]T

We then conduct a one-shot experiment on a cascade control system to obtain

initial data uini, y1ini and yini.

The initial input uini and the initial output of the inner loop y1ini are shown as in

Fig. 2.3 and Fig. 2.4.

In Fig. 2.5, initial output of cascade control system yini is drawn as a solid line,

reference signal r as a dot-dash line, and desired output yd := Mr as a dotted line.
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Fig. 2.4: Initial output of the inner loop y1ini

Fig. 2.5: Initial cascade control system output yini (solid line), reference signal r

(dot-dash line), and desired output yd (dotted line).

By applying our proposed algorithm with VRFT and using the prefilter intro-

duced by Campi [13] L = M(1 − M), the performance index JV(θ) minimization

problem is solved by using covariance matrix adaptation evolution strategy CMA-

ES in [21].

In this study, we programmed the CMA-ES algorithm in MATLAB and ran it

on a calculator with a 3.6 GHz Core i7-4790 CPU, 8GB RAM, and iterative step

N = 3000.
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We obtained the optimal parameter vector as

θ∗ = [0.4664 1.7533 1.3209 0.0283 1.2162 −0.0010 0.8008 0.2504 0.0494 1.0844]T .

We then conducted the experiment by using optimal parameter vectors θ∗, obtaining

the results in Fig. 2.6.

In Fig. 2.6, the actual output of cascade control system with optimal parameter

vectors y(θ∗) is shown as a solid line, reference signal r as a dot-dash line, the

desired output yd as a dotted line.

Input with optimal parameters u(θ∗) is shown in Fig. 2.7 and inner loop output

with optimal parameters in Fig. 2.8.

Fig. 2.6: Cascade control system output with optimal parameters y(θ∗) (solid line),

the reference signal r (dot-dash line), and desired output yd (dotted line)

Results in Fig. 2.6 show that actual output y(θ∗) and desired output yd are almost

the same, implying that we can achieve the desired output of the cascade control

system by using optimal parameter vectors θ∗.
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Fig. 2.7: Input with optimal parameters u(θ∗)

Fig. 2.8: Inner loop output with optimal parameters y1(θ∗)

2.5 Comparing my proposed method with F.Previdi’s

method in the reference [5]

In this section, I use the method of F. Previdi in the reference [5] to apply for the

same example given in the section 2.4. I also show clearly the advantage of my

proposed method over than F. Previdi’s method by comparing the results of two

methods.

The structure of the cascade control system which F. Previdi used in the refer-
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ence [5] is given as in Fig. 2.9

Fig. 2.9: Closed loop cascade control architecture

Where the inner and outer controllers are given such as Cv and Cx. F. Previdi

used the cost functions introduced by Campi [13] for the inner and outer loops

The cost function of the inner loop is shown such as

JVR(θv) =

∥∥∥∥∥∥u0 −Cv(θv)
(

1
Mv

− 1
)
v0

∥∥∥∥∥∥2

N

(2.33)

And the cost function of the outer loop is

JVR(θx) =

∥∥∥∥∥∥r0
v −Cx(θx)

(
1

Mx
− 1

)
x0

∥∥∥∥∥∥2

N

(2.34)

Where Mv and Mx are desired reference models of the inner and outer loops.

The initial data {u0, v0, x0} are obtained from the cascade control system Fig. 2.9 by

conducting a single experiment.

We give the desire reference model of the inner loop such as Mv = 1
2s+1 , and

choose the same desired reference model like in the section (2.4) for the outer loop

such as Mx = 1
s+1

Similarly, the structures of the inner and outer controllers are selected as

Cv(θv) =
θ′7s + θ′8
θ′9s + θ′10

(2.35)

and

Cx(θ) =
θ′1s2 + θ′2s + θ′3
θ′4s2 + θ′5s + θ′6

(2.36)

Where θv = [θ′7 θ′8 θ′9 θ′10]T , θx = [θ′1 θ′2 θ′3 θ′4 θ′5 θ′6]T

By choosing the initial data such as
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θ0
v = [1.0 1.0 1.0 0.0]T , θ0

x = [0.0 1.0 1.0 0.0 1.0 0.0 1.0]T ,

we obtain the same initial output of the cascade control system as in Fig.2.5. The

non-properness problems of 1
Mv

and 1
Mx

appeared in the cost functions( 2.33), (2.34)

are avoided by using prefilters introduced by Campi [13] such as Lv = Mv(1 − Mv)

and Lx = Mx(1 − Mx).

We minimize the cost functions (2.33) and (2.34) by using a calculator with a

3.6 GHz Core i7-4790 CPU, 8GB RAM, and iterative step N = 3000 to run the

CMA-ES algorithm in MATLAB.

This brings out the optimal parameter vectors for the inner and outer controllers

as

θ∗v = [0.5062 0.2354 2.4708 − 0.0118]T

θ∗x = [0.4188 0.8970 0.7839 0.0046 1.3773 0.0061]T

Using these optimal parameter vectors to implement again on the cascade con-

trol system Fig.2.9, we obtain the outputs of the cascade control system as in

Fig.2.10

Fig. 2.10: Cascade control system outputs with optimal parameter vectors

In the Fig.2.10, the solid line, dotted line and dot-dash line indicate the actual

output of the cascade control system with optimal parameters, desired output and

reference signal, respectively.

Obviously, when comparing result obtained by my proposed method as in the
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Fig. 2.6 with the achieved result by using F. Previdi’s method as in Fig. 2.10,

we see that the result in Fig. 2.10 does not satisfy the tracking property as in my

result. From that observation, we can conclude that my proposed method works

much better than F. Previdi’s one.

2.6 Summary

In this chapter, I presented VRFT method to the cascade control systems. Only a

set data of input/output experiments collected from a closed cascade control system

loop is required to simultaneously achieve the optimal parameters for both inner

and outer controllers in my approach. Using optimal parameters, we are able to

bring out the results showing that the output of cascade control systems is almost

the same with a desired output.

Also, I have shown that VRFT method effectively yields both the optimal con-

trollers in the cascade systems. Moreover, the meaning of the cost function is theo-

retically analyzed by using my proposed method.
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Chapter 3

Prefilter Approach to Virtual

Reference Feedback Tuning for

Cascade Control Systems

In this chapter, I develop the work of chapter 2 with cascade control systems by pro-

viding a more effective data-driven approach. It is based on finding out an original

prefilter of Virtual Reference Feedback Tuning (VRFT) method to cascade control

systems.

Deriving an original prefilter of cascade control system is a very important point,

it not only overcomes the problem of non-properness existed in the cost function

of VRFT method but also ensures whether the optimal parameters obtained from

model reference criterion in VRFT method are closed to the optimal parameters

achieved from VRFT original cost function. In addition, it enables us to have a new

VRFT approach to cascade control systems. Using the original prefilter is also the

main difference in comparison with the study by authors in reference [5].

The proposed approach allows us to obtain the optimal parameters of the in-

ner and outer controllers in the structure of cascade control systems. A numerical

example is given to demonstrate my proposal’s effectiveness and validity.
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3.1 Problem Formulation

Consider again a cascade control system with the tunable controller as in Fig. 3.1.

We assume that P1 and P2 are linear, time-invariant, single-input single-output,

strictly proper, stable and minimum phase. And we also do not mention the ef-

fect of the disturbance in the explanation.

Fig. 3.1: Cascade control system with tunable parameters

The two controllers are parameterized as

C1(θ) =
θn+1qm + · · · + θν−1q + θν

qn + θ1qn−1 + · · · + θn−1q + θn
(3.1)

and

C2(θ) =
θν+n′+1qm′ + · · · + θµ−1q + θµ

qn′ + θν+1qn′−1 + · · · + θν+n′−1q + θν+n′
(3.2)

by using a parameter vector

θ =

[
θ1 · · · θν θν+1 · · · θµ

]
. (3.3)

A transfer function with a tunable parameter vector θ from r to y is denoted by

Gry(θ), which is represented as

Gry(θ) =
P1P2C1(θ)C2(θ)

1 + P1C2(θ) + P1P2C1(θ)C2(θ)
(3.4)

Similarly, input, output, and inner output of cascade system with parameter θ

are denoted by u(θ), y(θ), and y1(θ).

Using a parameter vector θ0, we assume that with this parameter the initial out-

put of the closed loop cascade control system is bounded.

The desired reference model of a closed loop cascade system is given by M.

Initial output y0 := y(θ0) is different from the desired output yd := Mr. Here, the

optimal parameter vector θ∗ is found by minimizing ‖y(θ∗) − Mr‖2N and using the

initial data u0 := u(θ0), y0, and y0
1 := y1(θ0).
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3.2 Prefilter for Virtual Reference Feedback Tuning

in the structure of cascade control systems

3.2.1 VRFT approach to cascade control systems

Standard of VRFT method for a convention closed-loop control system (Fig. 2.2)

is shown by M. Campi [13]. It is based on minimizing the criterion index to obtain

the optimal parameters for the controller.

JN
VR(θ) =

1
N

N∑
t=1

[u(t) −C(θ)e(t)]2 (3.5)

In the chapter 2, I have applied VRFT method to cascade control systems. As

shown in the chapter 2 and reference [27], a virtual reference signal r̄ of cascade

control system is introduced to satisfy

y = Mr̄ (3.6)

And the criterion index of cascade control system JK
VR(θ) is described as

JK
VR(θ) =

1
K

K∑
t=1

[
u(t) + C2(θ)y1(t) −C1(θ)C2(θ)

(
1
M
− 1

)
y(t)

]2

(3.7)

In here, we note that the output of the inner loop y1(t) and the output of the outer

loop cascade control y(t) are expressed through the input u(t) such that

y1(t) = u(t)P1 and y(t) = y1(t)P2 = u(t)P1P2

Hence, the criterion index of cascade control system JK
VR(θ) can be described as

JK
VR(θ) =

1
K

K∑
t=1

[(
1 + C2(θ)P1 −C1(θ)C2(θ)P1P2

(
1
M
− 1

))
u(t)

]2

(3.8)

By using a compatible prefilter Lc, the signals u(t), y1(t) and y(t) are filtered into

Lcu(t), Lcy1(t) and Lcy(t), respectively.

When the number of data increases (K → ∞), using the discrete Parseval theo-

rem [28, 29], the criterion JK
VR(θ) is rewritten in the frequency domain as

JVR(θ) =
1

2π

∫ π

−π

∣∣∣∣∣∣Lc

[
1 + C2(θ)P1 −C1(θ)C2(θ)P1P2

(
1
M
− 1

)]∣∣∣∣∣∣2 Φudω (3.9)

Where Φu is the power spectrum density of u(t).
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3.2.2 Derivation of original prefilter for cascade control systems

As stated above, the purpose of control in VRFT approach to cascade control system

scheme is to achieve the optimal parameter vector θ∗ by minimizing the following

model reference criterion

JMR(θ) =
∥∥∥Gry(θ) − M

∥∥∥2

2

=

∥∥∥∥∥ P1P2C1(θ)C2(θ)
1 + P1C2(θ) + P1P2C1(θ)C2(θ)

− M
∥∥∥∥∥2

N
(3.10)

With a reference signal r is used as a virtual input of the cascade control system, we

expect that it yields the desired output of cascade system.

Model reference criterion of cascade control system JMR(θ) can be described as

JN
MR(θ) =

1
N

N∑
t=1

[
Mr −Gry(θ)r

]2
(3.11)

Similarly to section 3.1, when N → ∞ using the discrete Parseval theorem [28, 29]

we obtain

JMR(θ) =
1

2π

∫ π

−π

∣∣∣Gry(θ) − M
∣∣∣2 Φrdω (3.12)

Where Φr is the power spectrum density of the signal r.

We introduce two ideal controllers Cd
1 and Cd

2 such that

P1P2Cd
1Cd

2

1 + P2Cd
2 + P1P2Cd

1Cd
2

= M (3.13)

In the scheme of cascade control system, Cd
1 , Cd

2 are chosen to satisfy the problem

model-matching such that the output of closed loop cascade control system is equal

to the desired output Mr.

By substituting the desired reference model of the cascade control system M in

(3.13) to equation (3.12), and after some simple calculations, the model reference

criterion JMR(θ) is rewritten as

JMR(θ) =
1

2π

∫ π

−π

∣∣∣∣∣∣ P1P2C1C2

1 + P1C2 + P1P2C1C2
−

P1P2Cd
1Cd

2

1 + P1Cd
2 + P1P2Cd

1Cd
2

∣∣∣∣∣∣
2

Φrdω

=
1

2π

∫ π

−π

|P1P2|
2|C1C2(1 + P1Cd

2) −Cd
1Cd

2(1 + P1C2)|2

|1 + P1C2 + P1P2C1C2|
2|1 + P1Cd

2 + P1P2Cd
1Cd

2 |
2
Φrdω (3.14)
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We consider again the cost function JVR(θ) in (3.9) used in the VRFT framework

for cascade control system. By using prefilter Lc and substituting M in (3.13) to

equation (3.9) and after some calculations, we obtain the representation for cost

function JVR(θ) of cascade control system as follows

JVR(θ) =
1

2π

∫ π

−π

|Lc|
2|P1P2|

2|C1C2(1 + P1Cd
2) −Cd

1Cd
2(1 + P1C2)|2

|M|2|1 + P1Cd
2 + P1P2Cd

1Cd
2 |

2
Φudω

(3.15)

By comparing equation (3.14) with equation (3.15), the prefilter Lc is chosen as

|Lc|
2 =

|M|2

|1 + P1C2 + P1P2C1C2|
2

Φr

Φu
(3.16)

to guarantee that JVR(θ) = JMR(θ) and hence minimizing JVR(θ) is the same as

minimizing JMR(θ).

In addition, from the equation (3.13) we acquire

1
|1 + P1Cd

2 + P1P2Cd
1Cd

2 |
2

=
|1 − M|2

|1 + P1Cd
2 |

2
(3.17)

In here, the purpose of control is to obtain the model-matching problem such as

the output of cascade control system equals to the desired reference model output

y = Mr. So, we expect that |1 + P1C2 + P1P2C1C2|
2 ≈ |1 + P1Cd

2 + P1P2Cd
1Cd

2 |
2 and

|1 + P1C2|
2 ≈ |1 + P1Cd

2 |
2 for

argminJMR(θ) = argminJVR(θ) (3.18)

With above respect, the prefilter Lc need to satisfy

|Lc|
2 = |M|2|1 − M|2

1
|1 + P1C2|

2

Φr

Φu
(3.19)

In the equation (3.19), the prefilter Lc is still unclear since the term 1
|1+P1C2 |2

remains

unknown. However, we can overcome this difficulty by a strategy given in the next

explanation.

In the diagram of cascade control system Fig. 3.1, we concentrate on the inner

loop where the sensitivity function of the inner loop is given by

S i = 1 −
P1C2

1 + P1C2
=

1
1 + P1C2

(3.20)
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If M1 is a desired reference model of the inner loop, we expect that it is possible

to obtain the model-matching of the inner loop such that the closed loop transfer

function of the inner loop is equal to the desired reference model M1

P1C2

1 + P1C2
= M1 (3.21)

If we hold the above condition, then the sensitivity function of the inner loop S i is

rewritten as

S i =
1

1 + P1C2
= 1 − M1 (3.22)

Finally, we obtain the original prefilter Lc of the cascade control systems by

substituting equation (3.22) to equation (3.19) to get

|Lc|
2 = |M|2|1 − M|2|1 − M1|

2 Φr

Φu
(3.23)

The derivation of above original prefilter Lc enables us to have a new strategy in

applying VRFT approach to cascade control systems. This is an important different

point from the work of the chapter 2 and [27].

Besides, finding out the original prefilter of VRFT method for cascade control

system in equation (3.23) is also the main difference in comparison with work of F.

Previdi and co-authors in [5]. In the pages 628, 629 of the reference [5], F. Previdi

only used the cost function and prefilter introduced by Campi [13] for using VRFT

method to apply to an electro-hydrostatic actuator.

By constructing the cost function of outer loop cascade system as equation

(2.18) with original prifilter of cascade system in (3.23), we can achieve the track-

ing properties problem of cascade control system such that the output of cascade

control system y(θ∗) with optimal parameters can be almost the same with desired

output yd = rM.

Identify prefilter Lc:

The original prefilter of cascade control system Lc in (3.23) can be calculated

exactly if we know the power spectrum density of r, u signals as Φr, Φu. In this

case, before implementing an experiment on structure of cascade control system,

the designer should decide the kind of excited input signal and author also should

consider to estimate Φr and Φu.
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In another case, the original prefilter of cascade control system Lc can be con-

sidered to identify as follows:

From equation (3.23), under the effect of the initial signals r0, u0, the original

prefilter of cascade systems can be selected as

Lcu0 = M(1 − M)(1 − M1)r0 (3.24)

If we give a structure of the original prefilter Lc and parameterize it by vector

η = [η1 η2... ηn]T , then we establish the cost function of Lc as

JLc(η) = ‖Lc(η)u0 − M(1 − M)(1 − M1)r0‖2N (3.25)

Where the initial data r0, u0 are collected from cascade control system by one-shot

experiment, M1 and M are desired reference models of the inner loop and outer

loop.

The optimal parameters of the original prefilter cascade control system Lc can

be obtained by minimizing the cost function (3.25) as

η∗ = argminηJLc(η) (3.26)

3.2.3 Algorithm

We summarize the proposed method by the following algorithm:

In the scheme of cascade control system Fig. 3.1 we implement

1. Tuning inner loop of the cascade control system to obtain the optimal inner

controller C2(θ∗II):

• Given a reference model M1 of the inner loop cascade control systems

• As presented in [13], we construct the cost function of the inner loop

such as

JVRin(θII) =

∥∥∥∥∥∥uini −C2(θII)
(

1
M1
− 1

)
y1ini

∥∥∥∥∥∥2

N

(3.27)
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Where: {uini, y1ini} are initial data of the inner loop. We also can use

prefilter of Campi in [13] L1 = M1(1 − M1) to avoid the problem of the

non-properness of 1
M1

that appears in the above cost function.

• Minimizing the cost function (3.27) to achieve the optimal parameters

of the inner controller C2(θ∗II).

2. Tuning outer loop of cascade control system, which includes the outer con-

troller C1(θI) and the optimal inner controller C2(θ∗II) to achieve the optimal

outer controller C1(θ∗I ) :

• A desired reference model of the outer loop cascade control system is

given by M. Conducting the second experiment on outer cascade con-

trol systems to obtain a set of initial data {u0, y0
1, y

0} from cascade con-

trol system. With these initial data, the outer controller is assumed to

stabilize the closed-loop cascade control system so that these data are

bounded.

• As shown in the chapter 2 and reference [27], using the original prefilter

Lc derived in the equation (3.23), the cost function of the outer loop

cascade control system is described as

JVRout(θI) =

∥∥∥∥∥∥Lcu0 + C2(θ∗II)Lcy
0
1 −C1(θI)C2(θ∗II)

(
1
M
− 1

)
Lcy

0

∥∥∥∥∥∥2

N

(3.28)

• Minimize the cost function (3.28) using nonlinear optimization methods

such as the Least Squares, Gauss-Newton, Gradient methods, or CMA-

ES [21] to obtain the optimal parameters of outer controller C1(θ∗I ).

3.3 Numerical Example

In this section we demonstrate the validity of the proposed method by giving an

illustrative example of a cascade control system in a continuous-time domain and

assume that it is not affected by disturbance.
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Two unknown plants of cascade control system are described as follows:

P1 =
s + 1

s2 + 5s + 6
(3.29)

and

P2 =
s + 5

s2 + 2.5s + 1.5
(3.30)

Firstly, we will turn the closed- loop inner of cascade control system to guarantee

that the sensitivity function of the inner loop is approximate to the desired reference

model of the inner loop M1.

A desired reference model of the inner loop is given by:

M1 =
1

2s + 1
(3.31)

The inner controller is parameterized as:

C2(θII) =
θ1s2 + θ2s + θ3

θ4s2 + θ5s + θ6
(3.32)

with θII := [θ1 θ2 θ3 θ4 θ5 θ6]T .

We use an initial parameter vector θIIini = [0.0 1.0 1.0 0.0 1.0 0.0]T , and then

conduct an one-shot experiment on the inner closed-loop cascade control system to

obtain initial data {uini, y1ini}. The initial input of the inner loop is shown in Fig. 3.2.

Fig. 3.2: The initial input of the inner loop.
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Fig. 3.3: Initial inner loop cascade control system output y1ini (solid line), reference

signal r (dot-dash line), and desired inner loop output y1d (dotted line).

In Fig. 3.3, the initial output of the inner loop cascade control system y1ini is the

solid line, reference signal r is the dot-dash line and the desired inner loop output

y1d := M1r is the dotted line.

We can obtain the cost function of the inner loop by using equation (3.27) and

the prefilter introduced by Campi [13] L1 = M1(1 − M1). Then the cost function

JVRin(θII) minimization problem is solved by using covariance matrix adaptation

evolution strategy CMA-ES in [21].

Here, a calculator with a 3.6 GHz Core i7-4790 CPU, 8GB RAM, and iterative

step N = 1000 are used to run CMA-ES algorithm program in MATLAB.

The optimal parameter vector of the inner controller is achieved as

θ∗II = [0.3338 1.3079 1.5522 0.5180 0.5176 0.0]T .

We implement the experiment again on the inner loop cascade control system by

using the optimal parameter vector θ∗II to obtain the results in Fig. 3.4, in this figure

the actual output of the inner loop cascade control system with optimal parameter

vector y1(θ∗II), the reference signal r and the inner desired output y1d are shown in

solid line, dot-dash line and dotted line respectively.

We also achieve the input of the inner loop with the optimal parameters u(θ∗II)

as in Fig. 3.5.
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Fig. 3.4: Inner loop cascade control system output with optimal parameters

y1(θ∗)(solid line), the reference signal r (dot-dash line), and desired inner loop out-

put y1d (dotted line).

Fig. 3.5: The input of inner loop with the optimal parameters u(θ∗II).

Results in Fig. 3.4 show that we achieved the tracking property of the inner

loop such that actual output of the inner loop cascade control system with optimal

parameters y1(θ∗II) and desired output y1d are truly the same.

Next, we implement tuning the outer loop cascade control system to get the

optimal outer controller C1(θ∗I ) after obtaining the optimal inner controller C2(θ∗II).
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The outer controller cascade control system should be parameterized as

C1(θI) =
θ′1s3 + θ′2s2 + θ′3s + θ′4
θ′5s3 + θ′6s2 + θ′7s + θ′8

(3.33)

Where θI := [θ′1 θ′2 θ′3 θ′4 θ′5 θ′6 θ′7 θ′8]T .

Desired reference model of the outer loop cascade system M is given by

M =
1

s + 1
(3.34)

Initial parameter vector is chosen as θ0
I = [0.0 1.0 1.0 1.0 0.0 1.0 1.0 2.0]T ,

then we conduct one -shot experiment on the outer loop cascade control systems to

achieve the set of the initial data {u0, y0
1, y

0}.

In Figs. 3.6 and 3.7, I show the first two signals ( initial input u0 and initial

output of inner loop y0
1 of the second tunning). The initial output of the outer loop

cascade control system y0 (solid line), the reference signal r (dot-dash line) and the

desired output yd = Mr (dotted line) are shown respectively in Fig. 3.8.

Fig. 3.6: Initial input of the outer loop cascade control system u0.
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Fig. 3.7: Initial output of the inner loop y0
1.

Fig. 3.8: Initial outer loop cascade control system output y0 (solid line), reference

signal r (dot-dash line), and desired output yd (dotted line).

We use original prefilter Lc in (3.23) to establish the cost function of the outer

loop cascade control system as shown in equation (3.28).

Identify original prefilter Lc:

The original prefilter Lc is identified as follows

We give the structure of the original prefilter Lc as

Lc =
η1s2 + η2s + η3

η4s3 + η5s2 + η6s + η7
(3.35)

With the parameter vector η = [η1 η2 η3 η4 η5 η6 η7]T . Then, the cost function of
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the original prefilter Lc is established as (3.25)

JLc(η) = ‖Lc(η)u0 − M(1 − M)(1 − M1)r0‖2N (3.36)

Where the initial data {u0, r0} are obtained from cascade control system at the

second experiment (tuning outer loop cascade system).

To minimize the cost function (3.36), we use CMA-ES program. Here, a calcu-

lator with a 3.6 GHz Core i7-4790 CPU, 8GB RAM, and iterative step N = 5000

are used to run CMA-ES algorithm program in MATLAB.

The optimal parameter vector of the original prefilter Lc is achieved as

η∗ = [1.5998 0.2602 − 0.0100 0.9939 7.0649 3.5228 1.9913]T (3.37)

Therefore, we can obtain the original prefilter Lc for cascade control system as

Lc =
1.5998s2 + 0.2602s − 0.0100

0.9939s3 + 7.0649s2 + 3.5228s + 1.9913
(3.38)

This original prefilter Lc is used in the cost function of the outer loop cascade

control system JVRout(θI) (3.28).

To minimize the cost function JVRout(θI), we use the same method (iterative step

N = 3000) and tool as in the first tuning of the inner loop. The optimal parameter

vector of the outer controller is obtained as:

θ∗I = [1.4036 3.5248 3.2346 0.8723 0.0082 0.4025 2.9443 − 0.0011]T (3.39)

By using this optimal parameter vector to perform again experiment on the outer

loop cascade control system, we achieve results as in Figs. 3.9, 3.10 and 3.11. The

actual output of the outer loop cascade control system with the optimal parameter

vector y(θ∗I ) (solid line), the reference signal r (dot-dash line), and the desired output

yd (dotted line ) are shown in Fig. 3.9. The input and the inner loop output with the

optimal parameters u(θ∗I ), y1(θ∗I ) are also shown in Fig. 3.10 and Fig. 3.11.
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Fig. 3.9: Cascade control system output with optimal parameters y(θ∗I ) (solid line),

reference signal r (dot-dash line), and desired output yd (dotted line).

Fig. 3.10: Input with optimal parameters u(θ∗I ).
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Fig. 3.11: Inner loop output with optimal parameters y1(θ∗I ).

Besides, we consider the case the output of cascade control systems is affected

by measurement noise. The results are shown in Fig 3.12, we see that the output of

cascade system with optimal parameters still can be approximated well with desired

output in the measurement noise case.

Fig. 3.12: Cascade control system output with optimal parameters y(θ∗I ) (solid line)

affected by measurement noise, reference signal r (dot-dash line), and desired out-

put yd (dotted line).

Positively, results in Fig. 3.9 indicate that the output of cascade control systems

38



y(θ∗I ) achieved by using the optimal outer controller C1(θ∗I ) is almost the same with

the desired output yd.

3.4 Comparing with F.Previdi’s method in the refer-

ence [5]

In this section, To show the usefulness of my proposed method over than the method

of F. Previdi and co-authors in the reference [5], we will apply F. Previdi’s method

for the same plants as in the section 3.3, P1 = s+1
s2+5s+6 and P2 = s+5

s2+2.5s+1.5

Similar to the section 2.5 of chapter 2, the cost functions of the inner and outer

loops are shown as

JVR(θv) =

∥∥∥∥∥∥u0 −Cv(θv)
(

1
Mv

− 1
)
v0

∥∥∥∥∥∥2

N

(3.40)

and

JVR(θx) =

∥∥∥∥∥∥r0
v −Cx(θx)

(
1

Mx
− 1

)
x0

∥∥∥∥∥∥2

N

(3.41)

We also use the same desired reference models of the inner and outer loops as

Mv = 1
2s+1 and Mx = 1

s+1 .

The inner and outer controllers are parameterized as

Cv(θv) =
θ′1s2 + θ′2s + θ′3
θ′4s2 + θ′5s + θ′6

(3.42)

and

Cx(θx) =
θ′′1 s3 + θ′′2 s2 + θ′′3 s + θ′′4
θ′′5 s3 + θ′′6 s2 + θ′′7 s + θ′′8

(3.43)

Where , θv = [θ′1 θ′2 θ′3 θ′4 θ′5 θ′6]T , θx = [θ′′1 θ′′2 θ′′3 θ′′4 θ′′5 θ′′6 θ′′7 θ′′8 ]T .

We choose the same initial parameter vectors as in the section 3.3

θ0
v = [0.0 1.0 1.0 0.0 1.0 0.0]T

θ0
x = [0.0 1.0 1.0 1.0 0.0 1.0 1.0 2.0]T
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to obtain the initial outputs of the cascade control system like in Fig. 3.13. In

this figure, the output of outer cascade control system with initial parameter vectors,

the desired output and the reference signal are demonstrated such as solid line,

dotted line and dot-dash line, respectively.

Fig. 3.13: Initial outputs of outer cascade control system

Here, we use the prefilters introduced by Campi [13] for the inner and outer

loops as Lv = Mv(1 − Mv), Lx = Mx(1 − Mx) to overcome the non-properness

problems of 1
Mv

and 1
Mx

appeared in the cost functions (3.40), (3.41).

To minimize the cost functions (3.40) and (3.41), a calculator with a 3.6 GHz

Core i7-4790 CPU, 8GB RAM, and iterative step N = 3000 are used to run CMA-

ES algorithm program in MATLAB.

This yields the optimal parameter vectors of the inner and outer controllers as

θ∗v = [0.2304 1.1356 1.8772 0.4418 0.6320 − 0.0003]T ,

θ∗x = [0.2980 2.0303 4.2835 0.5666 0.0027 0.0969 1.8198 0.0026]T

Using these optimal parameter vectors to conduct again the experiment on the

cascade control system Fig.2.9, we obtain the outputs of the cascade control system

as in Fig.3.14
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Fig. 3.14: Cascade control system outputs with optimal parameter vectors

In the Fig.3.14, the solid line, dotted line and dot-dash line present the actual

output of the cascade control system with optimal parameters, desired output and

reference signal, respectively.

By comparing Fig. 3.9 and Fig. 3.14, we can easily deduce that the obtained

result of my method is better than achieved result of F. Previdi’s method.

3.5 Summary

In this chapter, I have presented a new VRFT approach for cascade control systems

by deriving an original prefilter for cascade control systems . This method allows us

to obtain the optimal parameters for both inner and outer controllers. The optimal

parameters for both inner and outer controllers guarantee that the output of cascade

systems can approximate well with desired output.

Through an illustrative example, I have shown that the optimal controllers of

cascade control systems are absolutely achieved. This brings out a precise evi-

dence of the proposed method. Moreover, finding out the original prefilter of VRFT

method for cascade control systems is a crucial point which distinguishes my works

from F. Previdi’s works in [5].
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Chapter 4

Prefilter of FRIT Approach to

Cascade Control Systems

In chapter 3 , I derived the original prefilter for cascade control system in VRFT

approach. This original prefilter guarantees that the optimal parameters obtained

from criterion reference model is closed to the optimal parameters achieved from

the original cost function of cascade control systems.

Similarly, in this chapter, the original prefilter of cascade control structure is

derived in FRIT method. This original prefilter allows us to achieve optimal param-

eters for both controllers in the cascade control systems. A numerical example is

given to demonstrate the effectiveness and validity of this study.

4.1 Basic of FRIT approach to cascade control sys-

tems

4.1.1 Problem formulation

Consider a cascade control system with the tunable controller as in Fig. 4.1. We

assume that P1 and P2 are linear, time-invariant, single-input single-output, strictly

proper, stable and minimum phase. In this case, the effect of the disturbance to

cascade control system is omitted. Two controllers of cascade control system are

parameterized as
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Fig. 4.1: Cascade control system with tunable parameters

C1(ρ) =
ρn+1qm + · · · + ρν−1q + θν

qn + ρ1qn−1 + · · · + ρn−1q + ρn
(4.1)

and

C2(ρ) =
ρν+n′+1qm′ + · · · + ρµ−1q + ρµ

qn′ + ρν+1qn′−1 + · · · + ρν+n′−1q + ρν+n′
(4.2)

by using a parameter vector

ρ =

[
ρ1 · · · ρν ρν+1 · · · ρµ

]
. (4.3)

We denote a transfer function with a tunable parameter vector ρ from r to y by

Gry(ρ), which is shown as

Gry(ρ) =
P1P2C1(ρ)C2(ρ)

1 + P1C2(ρ) + P1P2C1(ρ)C2(ρ)
(4.4)

Similarly, Let u(ρ), y(ρ), and y1(ρ) denote input, output, and inner output of

cascade system with parameter ρ, respectively.

Using a parameter vector ρ0, assume that with this parameter the initial output

of the closed loop cascade control system is bounded.

The desired reference model of a closed loop cascade system is given as Td.

Initial output y0 := y(ρ0) is different from desired output yd := Tdr.

Here, the purpose of tuning parameters is to find the optimal parameter vector

ρ∗ that minimizes ‖y(ρ∗) − Tdr‖2N by using the initial data u0 := u(ρ0), y0 := y(ρ0),

and y0
1 := y1(ρ0).

We use a suitable LF for signals u0, y0
1 and y0 of cascade control system respec-

tively, which are LFu0, LFy
0
1 and LFy

0. It is reasonable to expect that by using this

suitable prefilter, the optimal parameters obtained in FRIT method is closed to the

optimal parameters for the original cost function.
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4.1.2 FRIT method for cascade control system[18]

In the reference [18], the authors have developed FRIT method to cascade control

systems. In the following, I show a brief review along the reference [18].

First, we introduce the fictitious reference signal of cascade control systems as

r̃ = C1(ρ)−1C2(ρ)−1u0 + C1(ρ)−1y0
1 + y0 (4.5)

The cost function in FRIT for cascade control systems is described by

JF(ρ) = ‖y0 − Td r̃‖2N (4.6)

By substituting r̃1 in (4.5) into (4.6), the cost function in FRIT for cascade con-

trol systems is shown by

JF(ρ) = ‖(1 − Td)y0 − TdC1(ρ)−1C2(ρ)−1u0 − TdC1(ρ)−1y0
1‖

2
N (4.7)

As seen trivially, JF(ρ) is minimized by using only initial one-shot experimental

data y0, u0 and y0
1 from cascade system loop.

4.2 Original prefilter of Fictitious Reference Iterative

Tuning to cascade control systems

The purpose of control in cascade control structure is to achieve the optimal param-

eter ρ∗ by minimizing of the following model reference criterion

J(ρ) =
∥∥∥Gry(ρ)r − Tdr

∥∥∥2

N

=

∥∥∥∥∥ P1P2C1(ρ)C2(ρ)
1 + P1C2(ρ) + P1P2C1(ρ)C2(ρ)

r − Tdr
∥∥∥∥∥2

N
(4.8)

Similarly to [13], as N → ∞ by using the discrete Parseval theorem [28] under the

Ergode assumptions, we obtain

J(ρ) =
1

2π

∫ π

−π

∣∣∣Gry(ρ) − Td

∣∣∣2 Φrdω (4.9)

45



where Φr is the power spectrum density of r.

We then introduce the ideal controllers Cd
1 and Cd

2 such that the closed loop

transfer function cascade control system with these controllers is equivalent to the

desired closed loop Td as

P1P2Cd
1Cd

2

1 + P2Cd
2 + P1P2Cd

1Cd
2

= Td (4.10)

By substituting the desired reference model described by (4.10) to the equation (4.8)

and after some calculations, the model reference criterion J(ρ) is rewritten as

J(ρ) =
1

2π

∫ π

−π

∣∣∣∣∣ P1P2C1C2

1 + P1C2 + P1P2C1C2
−

P1P2Cd
1Cd

2

1 + P1Cd
2 + P1P2Cd

1Cd
2

∣∣∣∣∣∣
2

Φrdω

=
1

2π

∫ π

−π

|P1P2|
2

|1 + P1C2 + P1P2C1C2|
2

|C1C2(1 + P1Cd
2) −Cd

1Cd
2(1 + P1C2)|2

|1 + P1Cd
2 + P1P2Cd

1Cd
2 |

2
Φrdω

(4.11)

We focus on JF(ρ) in (4.7). Here, we apply prefilter LF to the initial data of

cascade control loop as LFy
0, LFy

0
1 and LFu0. By applying LF , the cost function in

FRIT to cascade control systems can be modified as

JF(ρ) = ‖(1 − Td)LFy
0 − TdC1(ρ)−1C2(ρ)−1LFu0 − TdC1(ρ)−1LFy

0
1‖

2
N (4.12)

We use trivial relationships P2y
0
1 = y0 and P1P2u0 = y0 to rewritten the cost function

JF(ρ) as

JF(ρ) =

∥∥∥∥∥∥
(
1 − TdC−1

1 C−1
2

1
P1P2

− TdC−1
1

1
P2
− Td

)
LFy

0

∥∥∥∥∥∥2

N

=

∥∥∥∥∥∥
[
1 − Td

(
1 + P1C2 + P1P2C1C2

P1P2C1C2

)]
LFy

0

∥∥∥∥∥∥2

N

(4.13)

Next, we substitute Td in (4.10) to equation (4.13), do some calculations again

and use the discrete Parseval theorem [28] under the Ergode assumptions to obtain

the cost function in FRIT to cascade control systems as

JF(ρ) =
1

2π

∫ π

−π

|LF |
2|C1C2(1 + P1Cd

2) −Cd
1Cd

2(1 + P1C2)|2

|C1C2|
2|1 + P1Cd

2 + P1P2Cd
1Cd

2 |
2

Φy0dω (4.14)

Where Φy0 is the power spectrum density of y0.
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By comparing equation (4.14) with equation (4.11), the original prefilter LF

should be chosen as

|LF |
2 =

|P1P2|
2|C1C2|

2

|1 + P1C2 + P1P2C1C2|
2

Φr

Φy0
(4.15)

so that JF(ρ) = J(ρ) and minimizing JF(ρ) is the same as minimizing J(ρ).

As shown in [13] and [10], we might expect that |Cd
1Cd

2 |
2 ≈ |C1C2|

2 and |1 +

P1Cd
2 + P1P2Cd

1Cd
2 |

2 ≈ |1 + P1C2 + P1P2C1C2|
2 for argminJF(ρ) = argminJ(ρ)

Finally, with above respect, the original prefilter LF in FRIT method to cascade

control systems is given as

|LF |
2 =

|P1P2|
2|Cd

1Cd
2 |

2

|1 + P1Cd
2 + P1P2Cd

1Cd
2 |

2

Φr

Φy0

= |Td|
2 Φr

Φy0
(4.16)

Finding out the above original prefilter LF enables us to have an effective strat-

egy in applying FRIT method to cascade control systems which allows us to achieve

the optimal parameters for both inner and outer controllers.

4.3 Algorithm

We summarize the proposed method by the following algorithm:

In the diagram of cascade control systems Fig. 4.1 we implement

1. Given a desired reference model of cascade control systems Td

2. Set an initial parameter vector ρ0

3. Conduct a one-shot experiment to achieve a set of data u0, y0
1, y

0. Using this

parameter vector, the controllers is assumed to stabilize the closed-loop cas-

cade control system so that these data are bounded.

4. Calculate the fictitious reference signal r̃ as in (4.5), use original prefilter LF

in (4.16) to construct the cost function of cascade control system JF(ρ) as in

(4.12).
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5. Minimize the cost function JF(ρ) using a nonlinear optimization such as CMA-

ES [21].

6. Obtain the optimal parameter vector ρ∗ := argminJF(ρ), which yields the

optimal controllers and the desired output of the cascade control system.

4.4 Numerical Example

In this section, I demonstrate the validity of the proposed method by giving an

illustrative example of a cascade control system in a continuous-time domain and

assume that it is not affected by disturbance.

Two unknown plants of cascade control system are described as follows:

P1 =
s + 1.2

s2 + 2.7s + 1.8
(4.17)

and

P2 =
s + 2.5

s2 + 6.5s + 10.5
(4.18)

A desired reference model of cascade control system is given by:

Td =
1

2s + 1
(4.19)

The outer and inner controllers are parameterized as

C1(ρ) =
ρ1s2 + ρ2s + ρ3

ρ4s2 + ρ5s + ρ6
(4.20)

and

C2(ρ) =
ρ7s + ρ8

ρ9s + ρ10
(4.21)

with ρ := [ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10]T

Initial parameter vectors are set as ρ0 = [1.0 2.0 7.0 3.0 1.0 3.0 17.0 0.0 2.0 0.0]T .

We then conduct one-shot experiment on a cascade control system to obtain initial

data u0, y0
1 and y0. The first two signals are shown in Fig. 4.2 and Fig. 4.3.
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Fig. 4.2: Initial input u0

Fig. 4.3: Initial output of the inner loop y0
1

In Fig. 4.4, initial output of cascade control system y0 is drawn as a solid line,

reference signal r as a dot-dash line, and desired output yd := Tdr as a dotted line.

By applying our proposed algorithm with FRIT and using the original prefilter

LF as in (4.16), the cost function JF(ρ) minimization problem is solved by using

covariance matrix adaptation evolution strategy CMA-ES in [21].

In this study, we programmed the CMA-ES algorithm in MATLAB and ran it

on a calculator with a 3.6 GHz Core i7-4790 CPU, 8GB RAM, and iterative step

N = 3000.

This yielded optimal parameter vector as

ρ∗ = [0.5218 4.2790 9.8957 0.9734 4.6909 0.0001 16.9954 5.1102 0.0712 0.0136]T .
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Fig. 4.4: Initial cascade control system output y0 (solid line), reference signal r

(dot-dash line), and desired output yd (dotted line)

We then implement again the experiment by using optimal parameter vectors ρ∗

to obtain the results in Fig. 4.5, in this figure the actual output of cascade control

system with optimal parameter vectors y(ρ∗) is shown as a solid line, reference

signal r as a dot-dash line, the desired output yd as a dotted line.

Fig. 4.5: Cascade control system output with optimal parameters y(ρ∗) (solid line),

the reference signal r (dot-dash line), and desired output yd (dotted line)

Besides, input with optimal parameters u(ρ∗) and inner loop output with optimal

parameters y1(ρ∗) are shown in Fig. 4.6 and Fig. 4.7.

Results in Fig. 4.5 show that the output of cascade system using optimal pa-
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rameters y(ρ∗) and desired output yd are almost the same. It indicates that we can

achieve the desired output of the cascade control system by using optimal parameter

vectors ρ∗.

Fig. 4.6: Input with optimal parameters u(ρ∗)

Fig. 4.7: Inner loop output with optimal parameters y1(ρ∗)

4.5 Concluding Remarks

In this chapter, I have presented a new FRIT method for cascade control systems

by deriving original prefilter for cascade control systems. This original prefilter

guarantees the optimality of the cost function in FRIT method to cascade control

systems. Through an illustrative example, it is possible to see that the optimal

controllers of cascade control systems are absolutely achieved by using proposed

method.
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Chapter 5

Extension of VRFT Approach to

Cascade Control System for

Non-Minimum Phase Systems

In chapter 2 , I presented a VRFT method to cascade control systems. This method

allows us to obtain the optimal parameters for both the inner and outer controllers

by directly using data collected from the cascade system. However, we have just

considered the case in which plants are minimum phase systems.

Practically, there are many industrial systems which include unstable zeros as in

[22, 23]. In these systems, the unstable zeros cause an undershot in the initial step

response [24, 25], and they also concerned with an overshot [26]. Thus, overcoming

the problem of unstable zeros in the non-minimum phase systems is a crucial issue

not only for conventional method but also for data-driven approach.

In this chapter, I extend VRFT method to cascade control systems in the case

the plants are non-minimum phases to estimate the unstable zeros of plants and

obtain the optimal parameters of both the inner controller and the outer controller.

These optimal controllers guarantee that the output of cascade control systems has

a good approximation to the desired output. Also, I give an illustrative example to

demonstrate the effectiveness and validity of the proposed method.
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5.1 Parameterize the plants in cascade control sys-

tems

We consider the cascade control system with tunable parameters as in Fig. 5.1.

Fig. 5.1: Cascade control system with tunable parameters

In here, we address P1(s) and P2(s) in the cascade control system are linear,

time-invariant, single-input single-output, strictly proper, stable, and non-minimum

phase plants.

Let D1(s) and D2(s) denote the denominators of P1(s) and P2(s). N1m(s) and

N1n(s) denote the polynomials whose roots are stable- and unstable zeros of P1(s)

and N2m(s), N2n(s) denote the polynomials whose roots are stable- and unstable

zeros of P2(s), respectively. We assume that P1(s), P2(s) are unknown except the

degrees of the numerator and denominator of P1(s), P2(s). And the number of un-

stable zeros of P1(s), P2(s) are also known.

By using factorization technique to the unstable zeros which has already been

shown in the reference [11], P1(s) and P2(s) can be described as follows:

P1(s) = P1m(s)P1n(s) =
N1m(s)N∗1n(s)

D1(s)︸          ︷︷          ︸
P1m(s)

N1n(s)
N∗1n(s)︸ ︷︷ ︸

P1n(s)

(5.1)

P2(s) = P2m(s)P2n(s) =
N2m(s)N∗2n(s)

D2(s)︸          ︷︷          ︸
P2m(s)

N2n(s)
N∗2n(s)︸ ︷︷ ︸

P2n(s)

(5.2)

As above mention, we parameterize the plants P1(s) and P2(s) of the cascade control

system as:

P1(θ1m, θ1n, s) = P1m(θ1m, θ1n, s)P1n(θ1n, s) (5.3)
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Where

P1m(θ1m, θ1n, s) =
(
∑µ

i=0 bisi)(
∑d

i=0 cd−isi)∑ν
i=1 aisi + 1

(5.4)

P1n(θ1n, s) =

∑d
i=0 cisi∑d

i=0 cd−isi
(5.5)

with unknown parameter vectors

θ1m := [a1 . . . aν b0 . . . bµ]T ∈ Rν+µ+1

θ1n := [c0 . . . cd]T ∈ Rd+1

And

P2(θ2m, θ2n, s) = P2m(θ2m, θ2n, s)P2n(θ2n, s) (5.6)

Where

P2m(θ2m, θ2n, s) =
(
∑δ

j=0 b′js
j)(

∑d′
j=0 c′d′− js

j)∑γ
j=1 a′js j + 1

(5.7)

P2n(θ2n, s) =

∑d′
j=0 c′js

j∑d′
j=0 c′d′− js

j
(5.8)

with unknown parameter vectors

θ2m := [a′1 . . . a′γ b′0 . . . b′δ]
T ∈ Rγ+δ+1

θ2n := [c′0 . . . c′d′]
T ∈ Rd′+1

P1m(θ1m, θ1n), P2m(θ2m, θ2n) and P1n(θ1n), P2n(θ2n) are parameterized as minimum-

and non-minimum phase parts of the plants, respectively.

The inner and the outer controllers of the cascade control systems are parame-

terized as follows

C1(θC1) =
θC1,gsg + . . . + θC1,1s + θC1,0

θC1,g+ f s f + . . . + θC1,g+1s + 1
(5.9)

with a tunable vector θC1 := [θC1,0 θC1,1 . . . θC1,g+ f ]T ∈ Rg+ f +1

C2(θC2) =
θC2,g′ sg

′

+ . . . + θC2,1s + θC2,0

θC2,g′+ f ′ s f ′ + . . . + θC2,g′+1s + 1
(5.10)
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with a tunable vector θC2 := [θC2,0 θC2,1 . . . θC2,g′+ f ′]T ∈ Rg′+ f ′+1

Thus, we get the unknown parameter vectors as

θ := [θT
1m θT

1n θT
2m θT

2n θT
C1 θT

C2]T

Under the influence of these unknown parameter vectors, the input and the out-

puts of the cascade control systems are defined as u(θ, s), y1(θ, s) and y(θ, s).

Then, the closed loop cascade control system architecture with a tunable pa-

rameter θ is shown in Fig. 5.1. And Try(θ, s) denotes a transfer function from the

reference signal r(s) to the output y(θ, s).

5.2 Problem statement

5.2.1 Modification of the desired reference model

The main idea of applying VRFT method to cascade control systems is to obtain

the optimal parameter vectors for both the inner and the outer controllers by using

the direct utilization of the data collected from the closed loop cascade. In this

case, when the plants are non-minimum systems and we have no information of

the plants, so a desired reference model included the unstable zeros of the plants

should be given. In the reference [11] an useful strategy has already been shown to

overcome this problem.

According to the reference [11] , the desire reference model should be given as

Md(θn, s) = Mdm(s)P1n(θ1n, s)P2n(θ2n, s) (5.11)

with unknown parameter vector θn := [θT
1n θT

2n]T

Where Mdm(s) is the minimum phase part of the desired reference model, which

is strictly proper and given by the designer. Hence, the desired output of the cascade

control system is defined as follow

yd(θn, s) := Md(θn, s)r(s) (5.12)

Here, the setting problem is to find an optimal parameter θ∗ such that the ac-

tual output of the cascade control systems y(θ∗, s) = Try(θ∗, s)r(s) approximates

the desired output yd(θn, s) by using the initial data uini = u(θini), yini = y(θini) and
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y1ini = y1(θini) collected from the closed loop cascade with only one-shot experi-

ment.

5.2.2 Standard of VRFT method to cascade control system [27]

We briefly present about the main results of VRFT method to cascade control sys-

tem, which is based on chapter 2 and reference [27].

Consider the cascade control system in which the controllers are parameterized

by vector θ as in Fig. 5.2.

Fig. 5.2: A cascade control system with parameterized controllers θ

A desired reference model of cascade control system is given by M. The cost

function JV(θ) is described as

JV(θ) =

∥∥∥∥∥∥uini + C2(θ)y1ini −C1(θ)C2(θ)
(

1
M
− 1

)
yini

∥∥∥∥∥∥2

N

(5.13)

We minimize JV(θ) to achieve the optimal parameters for the inner and the outer

controllers. JV is minimized by using only initial one-shot experimental data yini,

uini and y1ini.

In the chapter 2 and reference [27], the authors showed the meaning of the cost

function (5.13) such as

JV(θ) =

∥∥∥∥∥∥
(
1 + P1C2(θ) − P1P2C1(θ)C2(θ)

(
1
M
− 1

))
uini

∥∥∥∥∥∥2

N

=

∥∥∥∥∥∥(1 + P1C2(θ))
(
1 −

P1P2C1(θ)C2(θ)
1 + P1C2(θ)

1
HM

)
uini

∥∥∥∥∥∥2

N

=

∥∥∥∥∥∥(1 + P1C2(θ))
(
1 −

HT (θ)
HM

)
uini

∥∥∥∥∥∥2

N

(5.14)

Above equation in (5.14) shows that the minimization of JV(θ) in (5.13) corresponds

to that of the relative error between open loop transfer function HT (θ) and HM under
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the influence of the inverse sensitivity function of the inner loop and initial input

data uini.

Where

M
1 − M

=: HM (5.15)

is interpreted as the desired open loop transfer function for M. And

T (θ)
1 − T (θ)

=: HT (θ) (5.16)

is interpreted as an open loop transfer function for T (θ) with parameter θ.

HT (θ) =
P1P2C1(θ)C2(θ)

1 + P1C2(θ)
(5.17)

A transfer function with a tunable parameter vector θ from r to y is denoted by

T (θ), which is represented as

T (θ) =
P1P2C1(θ)C2(θ)

1 + P1C2(θ) + P1P2C1(θ)C2(θ)
(5.18)

5.3 VRFT method for non-minimum phase systems

in Cascade Control Systems

5.3.1 Establishing the cost function of cascade control systems

Assume that a set of data {uini, y1ini, yini} is collected from the closed loop cascade

system (5.1), as shown in the reference [27] , the virtual reference signal r of the

cascade control system is calculated as

yini = Md(θn, s)r̄ (5.19)

As the presentation in the section 5.2.1, we modify the desired reference model

of cascade control system as

Md(θn, s) = Mdm(s)P1n(θ1n, s)P2n(θ2n, s) (5.20)
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Hence, cost function of cascade control system for non-minimum phase systems

is introduced as

JVcas(θ) =

∥∥∥∥∥∥uini + C2(θC2)y1ini −C1(θC1)C2(θC2)
(

1
Md
− 1

)
yini

∥∥∥∥∥∥2

N

(5.21)

The non-properness problem of 1/Md appearing in the equation (5.21) is avoided

by using prefilter of Campi [13], L = Md(1 − Md), which guarantees the optimality

of JVcas in cases where ideal minimization can not be achieved.

When using prefilter L = Md(1 − Md), the cost function of cascade control

system for non-minimum phase systems is rewritten as

JVcas(θ) =

∥∥∥∥∥∥Luini + C2(θC2)Ly1ini −C1(θC1)C2(θC2)
(

1
Md
− 1

)
Lyini

∥∥∥∥∥∥2

N

(5.22)

The optimal parameters of the inner and outer controllers are achieved by minimiz-

ing the cost function (5.22).

5.3.2 Algorithm

We summarize the proposed method as follows.

1. Prepare a set of initial parameter vector θini as θini := [θT
1nini

θT
2nini

θT
C1ini

θT
C2ini

]T

and give the minimum phase part of the desired reference model Mdm.

2. Conduct only one-shot experiment on the cascade control systems as in Fig.5.1

to achieve a set of data {uini, y1ini, yini}. With θini, the controllers are assumed

to stabilize the closed-loop cascade control system such that these data are

bounded.

3. Calculate the virtual reference signal r̄(θ) by using (5.19), construct cost func-

tion JVcas(θ) as in (5.22).

4. Minimize the cost function JVcas(θ) using the optimal minimization for the

nonlinear system such as Least Square, Gauss-Newton, Gradient methods or

CMA-ES program [21].
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5. Obtain the optimal parameter vector θ∗ := arg minθJVcas(θ) which yields the

optimal controllers and the desired output of cascade control systems.

5.4 Example

To demonstrate the validity of proposed method, I give an illustrative example of

a cascade control system with non-minimum phase plants in continuous -time do-

main.

The unknown non-minimum phase plants of cascade control system are de-

scribed as

P1 =
s − 1

s2 + 6s + 8.75
(5.23)

and

P2 =
s − 1.5

s2 + 3.7s + 3.4
(5.24)

Two unknown non-minimum phase plants can be factorized and parameterized as

P1 =
s + θ′4

θ′1s2 + θ′2s + θ′3︸             ︷︷             ︸
P1m

s − θ′4
s + θ′4︸︷︷︸

P1n

(5.25)

and

P2 =
s + θ′8

θ′5s2 + θ′6s + θ′7︸             ︷︷             ︸
P2m

s − θ′8
s + θ′8︸︷︷︸

P2n

(5.26)

We use controllers for outer and inner controllers and they are parameterized as

C1(θC1) =
θ1s2 + θ2s + θ3

θ4s2 + θ5s + θ6
(5.27)

and

C2(θC2) =
θ7s + θ8

θ9s + θ10
(5.28)

Where θC = [θT
C1 θT

C2]T and θC1 = [θ1 θ2 θ3 θ4 θ5 θ6]T , θC2 = [θ7 θ8 θ9 θ10]T
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We give the desired reference model which includes the unknown non-minimum

phase parts P1n(θ1n), P2n(θ2n)

Md(θn) = MdmP1n(θ1n)P2n(θ2n)

=
1

2s + 1
s − θ′4
s + θ′4

s − θ′8
s + θ′8

(5.29)

Where θn = [θ1n θ2n]T = [θ′4 θ′8]T

With the above setting, we set the initial parameter vector as

θCini = [1.0 2.0 4.0 1.0 1.0 3.0 17.0 0.0 2.0 0.0]T and θnini = [0.6 0.7]T

Then , we conduct one-shot experiment in the cascade control system diagram

as in Fig. 5.1 to obtain the initial data uini, y1ini and yini. The first two signals are

shown in Fig. 5.3 and Fig. 5.4.

Fig. 5.3: The initial input uini

In Fig. 5.5, the initial output of cascade control system yini is drawn as a solid

line, reference signal r as a dot-dash line, and the desired output yd = Mdr as a

dotted line.
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Fig. 5.4: The initial output of the inner loop y1ini

Fig. 5.5: The initial output of cascade control system yini (the solid line), the refer-

ence signal r (the dot-dash line), and desired output yd (the dotted line)

By applying the proposed algorithm with VRFT method, the minimization prob-

lem of the performance index JVcas(θ) is solved by using the covariance matrix adap-

tation evolution strategy CMA-ES algorithm [21].

In this study, I programmed the CMA-ES algorithm in MATLAB and ran it on

a calculator with a 3.6 GHz Core i7-4790 CPU, 8GB RAM, and the iterative step

N = 5000.

This yielded optimal parameter vectors as

θ∗C = [0.4023 2.4377 2.3755 0.4633 1.6874 3.3192 16.8500 0.1822 1.9234 0.0209]T
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and θ∗n = [1.0073 1.4885]T .

I then conduct the experiment by using the optimal parameter vectors θ∗C and θ∗n.

The obtained results are shown in Fig. 5.6, in this figure the actual output of cascade

control system with the optimal parameter vectors y(θ∗), the reference signal r, and

the desired output yd are drawn as the solid line, the dot-dash line, and the dotted

line, respectively.

Besides, the input with the optimal parameters u(θ∗) is shown in the Fig. 5.7,

and the output of the inner loop with the optimal parameters y1(θ∗) is also drawn in

the Fig. 5.8.

From the result shown in Fig. 5.6, we see that the actual output y(θ∗) and the de-

sired output yd of the cascade control system are almost the same, which implies that

we can achieve the desired output of cascade control system in the non-minimum

phase plants case by using the optimal parameter vectors θ∗.

Fig. 5.6: Cascade control system outputs with optimal parameters y(θ∗) (the solid

line), the reference signal r (the dot-dash line), and the desired output yd (the dotted

line)
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Fig. 5.7: Input with the optimal parameters u(θ∗)

Fig. 5.8: Inner loop output with the optimal parameters y1(θ∗)

5.5 Summary

In this chapter, I have extended VRFT method to the cascade control systems in the

case the plants are non-minimum phases. This method does not require the mathe-

matical model of the plants but only a set of initial data collected from closed loop

of cascade control systems. Two optimal controllers of cascade control architecture

are absolutely achieved by using this method. Moreover, we can obtain the unstable

zeros of the unknown plants in cascade control systems.

It has also been shown that VRFT method is an effective method to simultane-

ously obtain both optimal controllers in the cascade systems.

64



Chapter 6

Fictitious Reference Iterative Tuning

of Cascade Control Systems for

Non-minimum Phase Systems

In the reference [18], the authors presented FRIT method for cascade control system

with minimum phase and stable system case. As in the references [22, 23, 24, 25,

26], we can see the importance of solving the problem of the unstable zeros in the

non-minimum phase systems which create an undershot and overshot phenomena

in the initial step response. In chapter 5, I have introduced the VRFT method for

cascade control systems. It seems reasonable that FRIT method can also be applied

here.

Thus, I applied FRIT method to cascade control systems in the case the plants

are non-minimum phases to obtain the optimal parameters of both inner controller

and outer controller in this chapter. Also we can obtain the unstable zeros of the

unknown plants in the cascade system.

Besides, I also explain the meaning of the cost function in eliminating the un-

stable zeros. An illustrative example is given to demonstrate the effectiveness and

validity of the proposed method.

65



6.1 Standard of FRIT method

In this section, I briefly present about the main idea of FRIT, which is based on

reference [9, 10].

Consider a convention feedback system with the tunable controller as in Fig. 6.1.

Assume that the plant P is unknown and the controller C is parameterized by tunable

parameter vector ρ.

Fig. 6.1: A diagram of convention closed system with a tunable vector

The main idea of the FRIT scheme is to construct the model-reference criterion

in the fictitious domain. By using only one-shot experiment on the closed loop

system we obtain the initial data u(ρ0) and y(ρ0), the controller C(ρ0) is assumed to

stabilize the closed loop system such that u(ρ0) and y(ρ0) are bounded.

The fictitious reference signal r̃(ρ) is computed by using the initial data u(ρ0)

and y(ρ0) as follow

r̃(ρ) = C−1(ρ)u(ρ0) + y(ρ0) (6.1)

Notice that when the closed loop system with the transfer function PC(ρ)
1+PC(ρ) is

excited by r̃ then its output always equals to the initial output y(ρ0) for any ρ. For a

given reference model Td, we then introduce the cost function JF(ρ) as

JF(ρ) := ‖y(ρ0) − Td r̃(ρ)‖2N (6.2)

By substituting r̃(ρ) in (6.1) into (6.2) with respect to u(ρ0) =
y(ρ0)

P the cost function

can be computed as

JF(ρ) :=

∥∥∥∥∥∥
(
1 −

Td

Gr−y(ρ)

)
y(ρ0)

∥∥∥∥∥∥2

N

(6.3)

Where Gr−y(ρ) =
PC(ρ)

1+PC(ρ) is the transfer function of the closed loop system.
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We see that the cost function (6.2) with r̃(ρ) in (6.1) requires only the initial

data u(ρ0) and y(ρ0). This means that the minimization of (6.2) can be conducted

off-line. The meaning of the cost function is shown in the equation (6.3), that is

the minimization of the relative error of the closed loop Gr−y(ρ) and the desired

reference model Td under the effect of the initial output y(ρ0).

6.2 FRIT method for non-minimum phase systems in

the Cascade Control Systems

6.2.1 Parameterize the non-minimum phase plants

We give a diagram of cascade control system with tunable parameters as in Fig. 6.2.

Fig. 6.2: A diagram of cascade control system with tunable parameters

In here, we assume that P1(s) and P2(s) in the cascade control system are linear,

time-invariant, single-input single-output, strictly proper, stable, and non-minimum

phase plants.

Let D1(s) and D2(s) denote the denominators of P1(s) and P2(s). N1m(s) and

N1n(s) denote the polynomials whose roots are stable- and unstable zeros of P1(s)

and N2m(s), N2n(s) denote the polynomials whose roots are stable- and unstable

zeros of P2(s), respectively.

We use a factorization technique for the unstable zeros which has already been

introduced in the reference [11] .
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By using this technique, P1(s) and P2(s) can be described as follow:

P1(s) = P1m(s)P1n(s) =
N1m(s)N∗1n(s)

D1(s)︸          ︷︷          ︸
P1m(s)

N1n(s)
N∗1n(s)︸ ︷︷ ︸

P1n(s)

(6.4)

P2(s) = P2m(s)P2n(s) =
N2m(s)N∗2n(s)

D2(s)︸          ︷︷          ︸
P2m(s)

N2n(s)
N∗2n(s)︸ ︷︷ ︸

P2n(s)

(6.5)

As mentioned above, we parameterize the plants P1(s) and P2(s) of the cascade

control system as:

P1(ρ1m, ρ1n, s) = P1m(ρ1m, ρ1n, s)P1n(ρ1n, s) (6.6)

Where

P1m(ρ1m, ρ1n, s) =
(
∑µ

i=0 bisi)(
∑d

i=0 cd−isi)∑ν
i=1 aisi + 1

(6.7)

P1n(ρ1n, s) =

∑d
i=0 cisi∑d

i=0 cd−isi
(6.8)

with unknown parameter vectors

ρ1m := [a1 . . . aν b0 . . . bµ]T ∈ Rν+µ+1

ρ1n := [c0 . . . cd]T ∈ Rd+1

And

P2(ρ2m, ρ2n, s) = P2m(ρ2m, ρ2n, s)P2n(ρ2n, s) (6.9)

Where

P2m(ρ2m, ρ2n, s) =
(
∑δ

j=0 b′js
j)(

∑d′
j=0 c′d′− js

j)∑γ
j=1 a′js j + 1

(6.10)

P2n(ρ2n, s) =

∑d′
j=0 c′js

j∑d′
j=0 c′d′− js

j
(6.11)

with unknown parameter vectors
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ρ2m := [a′1 . . . a′γ b′0 . . . b′δ]
T ∈ Rγ+δ+1

ρ2n := [c′0 . . . c′d′]
T ∈ Rd′+1

P1m(ρ1m, ρ1n), P2m(ρ2m, ρ2n) and P1n(ρ1n), P2n(ρ2n) are parameterized as minimum-

and non-minimum phase parts of the plants, respectively.

The inner and outer controllers of the cascade control system are parameterized

as follows

C1(ρC1) =
ρC1,gsg + . . . + ρC1,1s + ρC1,0

ρC1,g+ f s f + . . . + ρC1,g+1s + 1
(6.12)

with a tunable vector ρC1 := [ρC1,0 ρC1,1 . . . ρC1,g+ f ]T ∈ Rg+ f +1

C2(ρC2) =
ρC2,g′ sg

′

+ . . . + ρC2,1s + ρC2,0

ρC2,g′+ f ′ s f ′ + . . . + ρC2,g′+1s + 1
(6.13)

with a tunable vector ρC2 := [ρC2,0 ρC2,1 . . . ρC2,g′+ f ′]T ∈ Rg′+ f ′+1

We get the unknown parameter vectors as

ρ := [ρT
1m ρT

1n ρT
2m ρT

2n ρT
C1 ρT

C2]T

The input and outputs of the cascade control systems are denoted as u(ρ, s),

y1(ρ, s) and y(ρ, s).

Then, the closed loop in the structure of the cascade control systems with a

tunable parameter ρ is shown in Fig. 6.2. And Gry(ρ, s) denotes a closed transfer

function from the reference signal r(s) to the output y(ρ, s).

In this case, we consider that P1(s) and P2(s) are unknown except the degrees

of the nominators and denominators of the non-minimum phase parts of P1(s) and

P2(s).

6.2.2 Modification of the desired reference model

Similar to chapter 5, we modify the desired reference model of cascade control

system as

Td(ρn, s) = Tdm(s)P1n(ρ1n, s)P2n(ρ2n, s) (6.14)

with unknown parameter vector ρn := [ρT
1n ρT

2n]T
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Where Tdm(s) is the minimum phase part of the reference model, which is

strictly proper and given by the designer. Hence, the desired output of the cascade

control system is defined as follow

yd(ρn, s) := Td(ρn, s)r(s) (6.15)

Here, the purpose of control is to find an optimal parameter ρ∗ such that the

output of the cascade control system y(ρ∗, s) = Gry(ρ∗, s)r(s) approximates the de-

sired output yd(ρn, s) by using the initial data uini = u(ρini), yini and y1ini = y1(ρini)

collected from closed loop cascade by only one-shot experiment.

6.2.3 Cost function of cascade control systems for non-minimum

phase systems

In this section, I give a FRIT method to apply for cascade control systems in the case

the plants are non-minimum phase systems, we consider a cascade control system

shown in Fig. 6.3.

Fig. 6.3: A cascade control system with parameterized controllers ρ

Assume that a set of data {uini, y1ini, yini} is collected from the closed loop cascade

system, as shown in the reference [18] , the fictitious reference signal r̃(ρ) of the

cascade control system is calculated as

r̃(ρ) = C1(ρ1)−1C2(ρ2)−1uini + C1(ρ1)−1y1ini + yini (6.16)

As the presentation in the section 6.2.2, we introduce the desired reference model

Td = Td(ρn, s). Hence, the cost function of the cascade control system for non-
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minimum phase is introduced as

JFcas(ρ) = ‖yini − Td r̃(ρ)‖2N (6.17)

By substituting r̃(ρ) in (6.16) into (6.17) the cost function of cascade control systems

for non-minimum phase systems can be described as

JFcas(ρ) = ‖(1 − Td)yini − TdC1(ρ1)−1C2(ρ2)−1uini − TdC1(ρ1)−1y1ini‖
2
N (6.18)

The above cost function, JFcas is minimized by using only initial one-shot ex-

periment data uini, y1ini and yini, which means that the minimization of (6.18) can be

conducted off-line by using a set of experimental data.

6.2.4 Analysis of the meaning of the cost function

We analyze the meaning of the cost function JFcas , let Gry(ρ) denote a closed-loop

transfer function from r to y(ρ) in the diagram of cascade control systems Fig. 6.3.

Gry(ρ) =
P1C2(ρ2)P2C1(ρ1)

1 + P1C2(ρ2) + P1C2(ρ2)P2C1(ρ1)
(6.19)

It is shown in the [18] that the cost function of the cascade control systems can be

rewritten as

JFcas =

∥∥∥∥∥∥
(
1 −

Td

Gry(ρ)

)
yini

∥∥∥∥∥∥2

N

(6.20)

Which means that the minimization of JFcas in (6.18) corresponds to that of the

relative error between closed loop Gry(ρ) and desired transfer function Td under the

influence of the initial output data yini.

In the case the plants P1 and P2 of cascade control systems are non-minimum

plants. By parameterizing P1 and P2 as in section 6.2.1, the transfer function of the

closed loop cascade can be rewritten as

Gry(ρ) =
P1m(s)P1n(s)C2(ρ2)P2m(s)P2n(s)C1(ρ1)

DN
(6.21)

where
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DN = 1 + P1m(s)P1n(s)C2(ρ2) + P1m(s)P1n(s)C2(ρ2)P2m(s)P2n(s)C1(ρ1) (6.22)

In the section 6.2.2 we gave the desired reference model as

Td(ρn, s) = Tdm(s)P1n(s)P2n(s) (6.23)

From the equation (6.18), after some simple calculations we obtain the cost

function of cascade control system in the non-minimum phase case such as

JFcas(ρ) =

∥∥∥∥∥∥
(
1 −

Td

Gry

)
yini

∥∥∥∥∥∥2

N

(6.24)

We see that in the above cost function JFcas(ρ), the minimization of JFcas(ρ) cor-

responds to that of the relative error between closed loop Gry(ρ) and desired transfer

function Td under the influence of the initial output data yini.

6.2.5 Algorithm

We summarize the proposed method as follows.

1. Prepare a set of initial parameter vector ρini as ρini := [ρT
1nini

ρT
2nini

ρT
C1ini

ρT
C2ini

]T

and give the minimum phase part of the desired reference model Tdm.

2. Using the system as in Fig.6.3, conduct one-shot experiment to achieve a set

of data {uini, y1ini, yini}. With ρini, the controllers are assumed to stabilize the

closed-loop cascade control system such that these data are bounded.

3. Calculate the fictitious reference signal r̃(ρ) by using (6.16), construct cost

function JFcas(ρ) as in (6.18).

4. Minimize the cost function JFcas(ρ) using the optimal minimizing for the non-

linear system such as Least Square, Gauss-Newton, Gradient,...methods or

CMA-ES program [21].

5. Obtain the optimal parameter vector ρ∗ := arg minρJFcas(ρ) which yields the

optimal controllers and the desired output of cascade control system.
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6.3 Example

To demonstrate the validity of proposed method, I give an illustrative example of

a cascade control systems with non-minimum phase plants in continuous -time do-

main.

The unknown non-minimum phase plants of cascade control systems are de-

scribed as

P1 =
s − 1

s2 + 3s + 2
(6.25)

and

P2 =
s − 2

s2 + 1.5s + 0.5
(6.26)

Two unknown non-minimum phase plants can be factorized and parameterized as

P1 =
s + ρ′4

ρ′1s2 + ρ′2s + ρ′3︸             ︷︷             ︸
P1m

s − ρ′4
s + ρ′4︸ ︷︷ ︸

P1n

(6.27)

and

P2 =
s + ρ′8

ρ′5s2 + ρ′6s + ρ′7︸             ︷︷             ︸
P2m

s − ρ′8
s + ρ′8︸ ︷︷ ︸

P2n

(6.28)

We use the outer and inner controllers which are parameterized as

C1(ρC1) =
ρ1s2 + ρ2s + ρ3

ρ4s2 + ρ5s + ρ6
(6.29)

and

C2(ρC2) =
ρ7s + ρ8
ρ9s + ρ10

(6.30)

Where ρC = [ρT
C1 ρT

C2]T and ρC1 = [ρ1 ρ2 ρ3 ρ4 ρ5 ρ6]T , ρC2 = [ρ7 ρ8 ρ9 ρ10]T

We give the desired reference model which includes the unknown non-minimum

phase parts P1n(ρ1n), P2n(ρ2n)

Td(ρn) = TdmP1n(ρ1n)P2n(ρ2n)

=
1

2s + 1
s − ρ′4
s + ρ′4

s − ρ′8
s + ρ′8

(6.31)
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Where ρn = [ρ1n ρ2n]T = [ρ′4 ρ′8]T

With the above setting, we set the initial parameter ρCini = [1 1 1 1 1 1 3 0 5 0]T

and ρnini = [0.5 0.6]T

Then , we conduct one-shot experiment in the cascade control systems as in Fig.

6.1 to obtain the initial data uini, y1ini and yini. The first two signals are shown in

Fig. 6.4 and Fig. 6.5.

Fig. 6.4: The initial input uini

Fig. 6.5: The initial output of the inner loop y1ini

In Fig. 6.6, the initial output of cascade control system yini is drawn as a solid

line, reference signal r as a dot-dash line, and the desired output yd = Tdr as a dotted
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line.

Fig. 6.6: The initial output of cascade control system yini (the solid line), the refer-

ence signal r (the dot-dash line), and desired output yd (the dotted line)

Fig. 6.7: Cascade control system outputs with optimal parameters y(ρ∗) (the solid

line), the reference signal r (the dot-dash line), and the desired output yd (the dotted

line)

We apply the proposed algorithm with FRIT, in which the minimization problem

of the performance index JFcas(ρ) is solved by using the covariance matrix adapta-

tion evolution strategy CMA-ES algorithm [21].
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In this study, I programmed the CMA-ES algorithm in MATLAB and ran it on

a calculator with a 3.6 GHz Core i7-4790 CPU, 8GB RAM, and the iterative step

N = 3000.

This yielded optimal parameter vectors as

ρ∗C = [1.1701 1.4631 0.6384 0.0321 0.9124 1.4983 2.6627 0.9982 4.3120 0.4989]T

and ρ∗n = [1.0053 2.0185]T .

I then conduct again the experiment by using the optimal parameter vectors ρ∗C

and ρ∗n. The obtained results are shown in Fig. 6.7, in this figure the actual output

of cascade control system with the optimal parameter vectors y(ρ∗), the reference

signal r, and the desired output yd are drawn by the solid line, the dot-dash line, and

the dotted line, respectively.

Besides, the input with the optimal parameters u(ρ∗) is shown in the Fig. 6.8,

and the output of the inner loop with the optimal parameters y1(ρ∗) is also drawn in

the Fig. 6.9.

Fig. 6.8: Input with the optimal parameters u(ρ∗)

From the result shown in Fig. 6.7, we see that the actual output y(ρ∗) and the

desired output yd of the cascade control systems are almost the same, which implies

that we can achieve the desired output of the cascade control systems in the case

non-minimum phase plants by using the optimal parameter vectors ρ∗.
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Fig. 6.9: Inner loop output with the optimal parameters y1(ρ∗)

Also, we consider the case in which the output of the cascade systems is affected

by measurement noise. The results are given in Fig. 6.10, we see that the output of

the cascade control systems using optimal parameters still can approximate well

with desired output in measurement noise case.

Fig. 6.10: Cascade control system outputs with optimal parameters y(ρ∗) affected

by measurement noise (the solid line), the reference signal r (the dot-dash line), and

the desired output yd (the dotted line)
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6.4 Summary

In this chapter, I have developed FRIT method to the cascade control systems in the

case the plants are non-minimum phases. This method allows us to obtain the opti-

mal parameters for both the inner and outer controllers. These optimal controllers

ensures that the output of cascade control systems is almost the same with the de-

sired output. In addition, we can achieve the unstable zeros of the unknown plants

in the cascade control systems.

I also analyzed the meaning of the cost function in my proposed method theo-

retically. It has also been shown that FRIT is an effective method to simultaneously

obtain both optimal controllers in the cascade systems.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

In this dissertation, I presented two methods ( FRIT and VRFT ) of data-driven

approaches to cascade control system. Through out my studies, the mathematical

models of the plants are not required, the only thing we need to achieve the opti-

mal parameters for both inner and outer controllers is a set of initial data directly

collected from a closed cascade control system loop by one-shot experiment.

In chapter 2, I have presented VRFT method for the class of minimum phase

plants of cascade control systems. Also I constructed the original cost function for

VRFT method to cascade systems and show that VRFT method simultaneously

yields both optimal controllers in the cascade systems. In addition, I analyzed

clearly the meaning of the cost function in two cases to show the strong effectiveness

of my proposed method.

Moreover, I derived original prefilters of VRFT and FRIT methods for cascade

control systems, using these original prefilters not only avoids the problem of non-

properness appearing in the cost function of VRFT case but also obtains the match-

ing between optimal parameters achieved from model reference criteria and one

yielded from original cost functions . It also ensures the optimality of the cost func-

tions in two methods. These original prefilters are remarkable additions to literature

of data-driven approach. Also, these are very important different points when com-

paring with previous study of authors in reference [5]. Deriving original prefilters
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for cascade control systems in case the controllers are linearly parameterized en-

ables us to have a new strategy in applying VRFT and FRIT methods to cascade

control systems. These works are done in chapters 3 and 4.

In chapters 5 and 6, I have extended VRFT and FRIT methods to the cascade

control systems in the case the plants are non-minimum phases systems. The results

show that these methods yield the optimal parameters for both the inner and outer

controller of cascade control systems. The optimal controllers guarantee that the

output of cascade system is matching the desired output.

Consequently, the above achieved results convince that data-driven approach is

a very effective method to design optimal controllers for not only cascade control

systems but also other kind of control systems.

7.2 Future Works

In future works, I plan to expand data-driven of cascade control systems to unstable

plants. Analysis of the effect of disturbance and giving the solution for eliminating

disturbance are also important problems for consideration. In addition, I would like

to apply data-driven approach to various practical cascade control systems.
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