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Abstract 

DNA sequence classification can be defined as a process that classifies 

unknown DNA sequences into labelled classes. DNA sequence classification 

methods are categorized in three-fold. The key steps in the first category, distance-

based methods, include defining distance functions to weigh the similarity between 

two DNA sequences, then applying present classification algorithms like k-nearest 

neighbor algorithm. For second group, feature-based methods, DNA sequences, 

firstly, are encoded into numerical feature vectors, then conventional algorithms like 

support vector machines are applied to classify DNA sequences. The last group are 

model-based methods. They are related to applying hidden Markov model or 

employing statistical models to address the problem of DNA sequence classification. 

 In order to solve this problem, there were several studies that used numerical 

features such as k-mer to classify DNA sequences. There were also researches using 

categorical features. However, the combination of numerical features and categorical 

features have not been studied. K-mer frequency, for example, is well-known 

numerical feature but position-independent. Sequences with different lengths are 

encoded into the same size of feature vectors, but positional information is ignored. 

In contrast, categorical feature such as subsequence at a position are position-specific. 

It provides positional information, but it loses quantitative information. Therefore, it 

can be expected that the combination of quantitative and positional information could 

help improve the classification performance. Moreover, it is not clear that whether or 

not a feature selection algorithm could be effective on the union of the numerical and 

categorical features of DNA sequences. By utilizing the combination of numerical 

features like k-mers and categorical features like subsequences starting at a specific 

position of given DNA sequence, in this research, we developed a simple but efficient 

model for improving the performance of fixed-length DNA sequence classification. 

 The proposed model was evaluated on six benchmark datasets. Promoter and 

Splice dataset were downloaded from UCI machine learning repository. Human, 

worm and fly datasets are benchmark datasets which were developed by Guo et al. in 

2014, and yeast dataset is the benchmark dataset developed by Chen et al. in 2015. 
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The performance results of our model were comparable or better than those of active 

algorithms. The most noticeable thing is that our method reached the accuracy of 

100% on two datasets: Promoter and yeast datasets. What more is that by performing 

feature selection on numerical and categorical features, we could also discover which 

group of features are more effective on which dataset.  

 

Keywords: Sequence classification, Numerical and categorical features, Feature 

selection 
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Chapter 1 : Introduction 

We begin in section 1.1 by introducing a research context of the thesis and 

various types of sequence classification methods. These include distance-based 

methods, feature-based methods and model-based classification. Objectives of the 

thesis are mentioned in section 1.2. We describe the contributions of the thesis in 

section 1.3. Lastly, in section 1.4 we show the organization of the thesis. 
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1.1. Research context 

In recent years, biological data have been generated at a tremendous rate. 

According to [1], the number of DNA sequences contained in GenBank repository 

increased dramatically from 116,461,672 to 181,336,445 between February 2010 and 

February 2015 (as shown in Figure 1.1). The sequences in UniProt doubled during 

the period of just one year, from 40.4 (June 2013) to 80.7 (August 2014) million [2]. 

Analysis and interpretation of these data are two of the most crucial tasks in 

bioinformatics, and classification and prediction methods are key techniques to 

address such tasks. 

 

Figure 1.1. The number of sequences in GenBank and WGS 

As summarized by Xing et al. [3], there were three main groups of the DNA 

sequence classification approaches. The first class includes methods that firstly define 

distance functions to compute the similarity between two sequences. After that, some 

of the current learning algorithms like k-nearest neighbor are applied. The second 

category is feature-based methods. Before employing conventional algorithms such 

as decision trees and artificial neural networks to classify DNA sequences, these 

sequences need to be encoded into feature vectors. So as to enhance the performance, 

feature selection plays a key role in this type of methods. The last type is a group of 

methods like Markov Models and statistical algorithms used to perform sequence 

classification.  
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With regard to the first category, in the research of by Borozan et al. [4] in 

2015, they exploited the complementarity of alignment-free and alignment-based 

similarity to classify biological sequences. They used five different sequence 

similarity measures: three out of five measures were alignment-free and the other two 

belonged to the second category of measures, which revealed that their model 

outperformed previous models. In 2014, Chen et al. [5] also tackled the problem of 

categorical data in a typical distance-based manner. They defined four weighted 

functions for categorical features, two of them named as simple matching coefficient 

measures with global weights (WSMCglobal) and the other two named as simple 

matching coefficient measures with local weights (WSMClocal), then applied these 

functions to formulate new nearest neighbor classification algorithms. The classifiers 

were evaluated by using real datasets and biological datasets. The results showed that 

their proposed classifiers outperformed the traditional methods.  

Moving to the second class, the application of feature selection technique and 

feature-based method to classify protein sequence data was carried out by Iqbal et al 

[6] in 2014. The experimental results of their research showed that their model 

significantly improved in terms of accuracy, sensitivity, specificity, F-measure, and 

other performance measure metrics. In the study of Weitschek et al. [7] in 2015, they 

used the combination of alignment-free approaches and rule-based classifiers so as to 

classify biological sequences. At first, the biological sequences were converted into 

numerical feature vectors with alignment-free techniques, then rule-based classifiers 

were applied in order to assign them to their taxa. 

The study about classifying occupancy, acetylation, and methylation of 

nucleosomes was carried out by Pham et al. [8]. Their method was also a kind of 

feature-based classification, which converted sequences into numerical feature 

vectors, then applied a conventional classification method. They adopted SVM with 

RBF kernel, and feature vectors were k-mer based vectors with a variety of window 

sizes (k =3, 4, 5, 6, etc.). Using ten datasets collected by Pokholok et al. [9], they 

gained a high prediction accuracy. To get better performance results, a technique 

termed feature selection was used by Higashihara et al. [10] to solve this problem. In 

this research, the importance of features was first measured by MeanDecreaseGini 
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value computed through training and prediction by random forest, then features were 

ranked as the order from the most to least importance. Exploiting feature selection 

along feature ranking, they achieved slight improvements in prediction accuracy. 

What is more, by searching neighbors of the best feature subset, accuracy of 

prediction improved further.  

Although the active researches on sequence classification above, numerical 

and categorical features were separately studied until now. Since the numerical 

features like k-mer are typically position-independent and categorical features like 

nucleotide at a position are position-specific, we can expect that these two types of 

features could contribute to the classification performance in a complementary 

manner. In addition, it is still unclear how effective a feature selection algorithm is 

against the union of numerical and categorical features of sequence. In this study, we 

propose an effective framework for improving fixed-length DNA sequence 

classification by using the combination of categorical features (i.e. subsequence at a 

position like “A”, “AG”, etc.) and numerical features (i.e. k-mer frequency). By 

conducting feature selection on this mixture of features, we could also find which 

type of features are more effective in each dataset.  

1.2. Objectives 

The major target of our thesis is that we develop an effective model to address 

the problem for classifying fixed-length DNA sequences. The specific objectives are 

as follows. 

Applying a proposed model to classify promoter sequences 

In genetics, gene expression is the series of biological actions which is related 

to using DNA of the gene to synthesize the functional product. These functional 

products are often proteins which have important roles in organisms, including 

catalyzing reactions, transporting molecules like oxygen, keeping organisms healthy 

and transmitting messages. The process of gene expression has two key stages: 

transcription and translation. The first stage of gene expression is transcription, which 

engages in copying information from a gene to produce an RNA molecule (especially 
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mRNA). This step is performed by enzymes called RNA polymerases, which use a 

DNA strand as a template to form an RNA. Translation is the second stage of gene 

expression. It is the process of translating the chain of a messenger RNA molecule to 

a chain of amino acids, polypeptide. The polypeptide then folds into an active proteins 

and fulfils its functions in the cell. The diagram in Figure 1.2 shows a process of gene 

expression in a eukaryote. 

 

Figure 1.2. The process of gene expression. (Source [11]). 

A promoter is the part of DNA sequence which are sited directly upstream of 

the start site of transcription. Figure 1.3 shows the position of the promoter on a DNA 

sequence.  
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Figure 1.3. Promoter position in DNA sequence 

The most important step in the process of transcription is to determine where 

is a gene or where is the transcription start site. Promoter identification can help locate 

the position of gene and then analyze the process of gene expression. Therefore, 

promoter prediction and promoter classification are two considering problems in the 

field of bioinformatics, and classifying promoter sequences is the first objective of 

our research. 

Applying a proposed model to classify splice sequences 

During transcription process, the pre-mRNA is stranscribed from a DNA of 

gene. This pre-mRNA must be processed in order to become a mature messenger 

RNA (mRNA) that can be translate into a protein. The step of processing the pre-

mRNA to become mature mRNA is called as RNA splicing, and it is carried out by 

spliceosome. Since pre-mRNAs include introns and exons, hence introns must be 

removed by the process of splicing to form mature mRNAs. After the process of RNA 

splicing, mature mRNAs are translated into proteins. Two types of splice junctions 

are exon-intron (EI) and intron-exon (IE) junctions. The first one is called a donor 

site that usually contains dinucleotides GT. However, the later is named as an 

acceptor site which often includes dinucleotides AG [12]. Figure 1.4 illustrates the 

positions of them in the DNA sequence. 

 

Figure 1.4. Two types of splice junctions in a DNA sequence. 
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In eukaryotes, the first important works for predicting gene is to predict splice 

junctions. Therefore, developing an effective model for accurately predicting splice 

junctions is an attractive work, and it is also the second goal of our research. 

Applying a proposed model to classify nucleosomal sequences 

In eukaryotes, one of the fundamental parts forming chromatin includes 

nucleosome. Every nucleosome is composed of a segment of roughly 147 base pairs 

(bp) which is called a nucleosome core particle being covered stiffly around a histone 

octamer [13]. In order to form the histone octamer, eight histone proteins are used. 

They include two H2As, two H2Bs, two H3s and two H4s as shown in Figure 1.5. 

Two nucleosome core particles are connected each other by a linker DNA sequence. 

Several researches indicated that nucleosome core particle played crucial roles in 

biological processes like DNA replication and DNA repair [14], [15], [16], [17], [18]. 

Therefore, predicting nucleosome positioning sequences (or nucleosomal sequences) 

is fundamentally important in bioinformatics. This problem is also thirdly addressed 

in our research.  

 

Figure 1.5. The structure of nucleosome. (Source [13]) 
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1.3. Contributions 

In order to classify DNA sequences, k-mer frequency, quantitative 

information, is commonly used since it can convert sequences with different lengths 

into the same size of feature vectors. However, positional information is lost in k-

mer. For fixed-length sequence, it is possible to use subsequence itself as categorical 

value. It keeps positional information, however, quantitative information is not 

available. The primary goal of our dissertation is to provide a framework for 

classifying fixed-length DNA sequences by using both positional and quantitative 

information. The key contributions of present thesis can be summarized as follows. 

An effective framework for improving fixed-length DNA sequence classification 

There were researches that employed numerical features for DNA sequence 

classification. There were also studies using categorical features. However, until now 

there is no research that utilized the combination of categorical features and numerical 

feature in one model. Therefore, we developed a simple but effective model for 

classifying fixed-length DNA sequences by combining numerical features 

(quantitative information) with categorical features (positional information) in one 

model. Feature selection was also used so as to improve the prediction accuracy. 

Applications to various biological datasets 

Our framework was applied to three different types of DNA sequence datasets: 

a splice junction sequence dataset, a promoter sequence dataset and four nucleosome 

positioning datasets. Through the performance evaluation on six datasets of fixed-

length DNA sequences, our algorithm based on the above idea achieved comparable 

or higher results than other advanced algorithms. 

Discovery of effective features 

By conducting feature selection on the combination of numerical and 

categorical features, we could also find which type of features are more effective in 

each dataset. For Promoter and Splice datasets, categorical features, especially 2CAT 

features, are more effective than other numerical features. Whereas several numerical 
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features in k-mers are so important than categorical features on nucleosome 

positioning datasets. 

1.4. Organization 

This thesis is divided into five chapters. It is organized as follows. 

The current one is Chapter 1 that introduces the research context, objectives, 

contributions and the organization of this thesis. 

Chapter 2 talks about related works. At first, we review some models for 

predicting promoter, splice site and nucleosome positioning sequences. Next, we 

highlight some well-known algorithms as well as evaluation measures that have been 

used in bioinformatics. 

Chapter 3 describes our model in detail. We, firstly, provide a brief description 

of promoter, splice site and nucleosome positioning datasets. Then, we explain the 

general model, algorithms and evaluation measures. 

Chapter 4 focuses on analyzing and discussing experimental Results. We also 

conduct evaluation and make further comparisons with state-of-the-art models. 

Chapter 5 summarizes the thesis, highlights the achievements of our work and 

suggests some future works.   



 

10 
 

 

 

 

 

 

 

 

Chapter 2 : Related Works 

 

In this chapter, we, firstly, review models related to our research. Splice site 

prediction review is done section 2.1. Then, we do promoter prediction review in 

section 2.2 and nucleosome positioning prediction in the next section. Several 

popular learning machine algorithms used in bioinformatics are shown in section 

2.4. Next, we summarize some feature selection methods in section 2.5. Lastly, we 

describe well-accepted classification evaluations in section 2.6. 
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2.1. Splice site prediction review 

There are many important algorithms like Artificial neural networks, Bayesian 

classifiers and SVMs that have been employed to solve splice site prediction 

problems [19], [20], [21], [22]. Zhang et al. [23] summarized some well-known 

models used in prediction of splice site in the period of between 1997 and 2003 as 

shown Table 2.1. 

Table 2.1. Several popular models for detecting splice sites from 1997 to 2003 [23]. 

Models References 

Statistical Models:  

 Logit linear algorithm Brendel and Kleffe, 1998 [24] 

 Quadratic discriminant analysis Zhang and Luo, 2003 [25] 

 Naïve Bayes classifier Degroeve et al., 2002 [26] 

Decision trees:  

 Maximal dependence decomposition  Burge et al., 1997 [27] 

 MDD with Markov model Pertea et al., 2001 [28] 

 C 4.5 induction tree Patterson et al., 2002 [29] 

Artificial neural networks:  

 Percepton Weber, 2001 [30] 

 Multi-layer Backpropagation Reese et al., 1997 [31]; Sonnenburg et 

al., 2002 [32] 

SVMs:  

 Linear kernels Degroeve et al., 2002 [26] 

 Polynomial kernels Patterson et al., 2002 [29] 

Apart from these researches, there have been a number of other studies on the 

prediction of splice sites as well. The study of using support vector machine for 

accurately predicting splice sites was introduced by Sonnenburg et al. [33] in 2007. 

They applied the so-called weighted degree kernel to solve the problem of splice sites 

recognition, which turned out well suitable for their work. They conducted several 

experiments on splice site genomes: Arabidopsis thaliana, Danio rerio, 
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Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. The results 

revealed that their model accurately identified splice sites in these genomes. Their 

method achieved higher performance than past methods consisting of GeneSplicer 

[28] and SpliceMachine [34]. The splice site prediction tool using their method was 

also provided.  

In 2008, Baten et al. [35] introduced the research on identification of splice 

site by exploiting informative features and employing attribute selection. They 

developed the algorithm using the combination of informative features with support 

vector machine. They also applied a feature selection method to eliminate 

unimportant features. They carried out the experiments on NN269 dataset. The results 

showed that their method outperformed the previous methods not only prediction 

accuracy but also training time. 

By using short sequence motifs, Meher et al. [36] in 2014 released the 

statistical method for predicting donor splice sites. Their approach was used to 

predicted these splice sites but their sequences were not converted into numerical 

features. The main idea of the approach exploited dinucleotide association. The 

method was applied to predict human genome and the performance was compared 

with the common methods used in researches [27], [37], [38]. Their model achieved 

equal or higher accuracy than active methods. They also provided a user friendly 

website using this model. 

Two years later, Meher et al. [39] also proposed another algorithm for solving 

the above problem. In their research, splice site DNA sequences, firstly, were 

converted into numerical features based on not only neighboring but also non-

neighboring dinucleotide dependencies. Then, they employed three different learning 

machine algorithms to predict this type of DNA sequences. The model was tested on 

H3SD, NN269 datasets, and was further evaluated on the independent dataset. By 

using the independent dataset, their model obtained better accuracies compared to the 

previous methods such as NNsplice, MEM, MDD, WMM, MM1, FSPLICE 

(accessible at http://www.softberry.com ), GeneID [31] and ASSP [40]. An online 

donor splice site prediction server (named as PreDOSS) was also provided. 

http://www.softberry.com/
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 At the same year (2016), Meher et al. [41] introduced another approach for 

predicting donor splice sites. Firstly, each sequence was encoded into three distinct 

groups of variables. They were positional, compositional and dependency variables. 

The positional variables and the scores of WMM were similar. The dependency 

variables and the scores WAM were similar. The compositional variables were the 

union of 2-mer, 3-mer and 4-mer frequency. Therefore, there were 344 variables for 

each sequence. Then, they conducted feature selection by using F-score, and just 49 

out of 344 features survived from this step. Finally, these 49 variables were used as 

input to support vector machine for prediction. By using human, cattle, fish, worm 

and NN269 datasets, results showed that their method was comparable to present 

methods. They also developed a website HSplice for predicting this kind of genomes. 

2.2. Promoter prediction review 

There have been several machine learning models for predicting biological 

signals like promoters that carry out the transcription process. The prediction of 

promoters has been attracting many researchers in [42], [43], [44], [45], [46], [47], 

[48], [49], [50], therefore we review some notable methods to address this problem. 

In the year of 1990, Towell et al. [42] proposed a hybrid learning system named as 

KBANN (Knowledge-Based Artificial Neural Networks) that combined explanation-

based learning and empirical learning systems. The dataset of E. coli-2 DNA 

sequences was also developed to help test the KBANN model. This dataset consists 

of 106 sequences. Half of them contains promoters known as positive samples, while 

another half of sequences do not contain promoters assigned as negative samples, and 

each of sequences has length of 57. The experimental results on this dataset showed 

that the KBANN outperformed the other four methods. 

Czibula et al. in 2012 [43] proposed the method for predicting promoter using 

relational association rules named as “PCRAR”. These rules are a specific class of 

association rules. They can characterize the relationships between variables in a 

dataset. The PCRAR model did not depend on any specific biological mechanisms. 

The strong point of PCRAR was that it could learn the distinctions between promoter 

sequences and non-promoter sequences without using further biological information. 
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They evaluated their proposed classifier and made comparison with existing methods. 

Their experimental results showed that their algorithm outperformed the existing 

models for identification of promoter sequences, which confirmed that their approach 

was a potential model for predicting promoter sequences.  

The combination of expectation maximization clustering and support vector 

machine (EMSVM) for solving the above issue in bacterial DNA sequences was 

presented by Maleki el at. in 2015 [45]. There were two phases in the EMSVM 

algorithm. In the first stage, expectation maximization algorithm enabled to identify 

groups of bacterial DNA sequences that showed similar characteristics. Each of 

bacterial DNA sequence was clustered to different clusters with different 

probabilities. Then, in the second stage, the support vector machine was applied. The 

EMSVM model is shown in Figure 2.1. 

 

Figure 2.1. The EMSVM model proposed by Maleki et al. [45] 

To evaluate the EMSVM method, they used the four promoter datasets of E. 

coli DNA sequences: 24, 32, 38 and 70. These datasets consist of sequences 

with length of 81 bases. The 24, 32, 38 and 70 contain 520, 309, 217 and 1907 

promoter sequences (positive samples), respectively. Each of these datasets also 

Sequence1 ATCGTCDAGGT 

Sequence2 GTTACAATGCA 
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includes 2000 non-promoter sequences (negative samples). Moreover, they evaluated 

their proposed algorithm on the E. coli-2 dataset as well. Four distinct evaluation 

metrics were used to evaluated this method. Their results demonstrated that EMSVM 

achieved higher performance than other methods.  

Lin et al. [44] proposed another model, named as “iPro54-PseKNC”, in 2014. 

In this model, firstly, promoter and non-promoter sequences were encoded into 

feature vectors, named as “pseudo k-tuple nucleotide composition”. Next, these 

feature vectors were used as the inputs to support vector machine. To evaluate iPro54-

PseKNC predictor, they used sigma 54 dataset and four evaluation metrics: Accuracy, 

specificity, sensitivity and Matthews correlation coefficient. The web server named 

iPro54-PseKNC was also developed.  

2.3. Nucleosome positioning prediction review 

A number of studies have been attempted to developed models for predicting 

nucleosome positioning. Herein, we summarized some methods for nucleosome 

positioning released recently. In 2010, Yi et al. [51] introduced a model for solving 

this problem by using transcription factor binding sites (TFBSs) and the nearest 

neighbor algorithm. In this research, by using an online server of MatInspector [52], 

both nucleosome-forming and nucleosome-inhibiting sequences were converted into 

feature vectors with the length of 35 transcription factor binding sites (TFBSs). Next, 

they conducted feature selections by using two distinct approaches to reduce the size 

of feature vectors. Nine important features (families of TFBSs) were identified, then 

nearest neighbor algorithm was applied to predict around 53000 nucleosome-forming 

and about 50000 nucleosome-inhibiting sequences in yeast genome. With the 

jackknife cross-validation test, the prediction accuracy reached 87.4%. 

In the research of Guo et al. [13] in 2014, they proposed a predictor named as 

‘iNuc-PseKNC’ that was applied to predict nucleosomal sequences in human, worm 

and fly genomes. First of all, DNA sequences in datasets were transformed to feature 

vectors by employing a novel formula named as “pseudo k-tuple nucleotide 

composition”. Then, support vector machine algorithm was applied to classify DNA 

sequences into 2 classes: nucleosome-forming and nucleosome-inhibiting classes. 
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Jackknife test was also conducted to assess their method performance. They released 

an online server for predicting these three kinds of genomes as well. 

In 2016, Tahir and Hayat [53] introduced a predictor (called “iNuc-STNC”) 

for prediction of nucleosome positioning in three above genomes. Nucleosome 

sequences were encoded into three different groups of features like 2-mer, 3-mer and 

split 3-mer composition. By applying support vector machine, the performance 

results on three benchmark datasets (human, worm and yeast) demonstrated that their 

model was effective on identifying nucleosome positioning sequences.  

To address this problem, in early 2017 Awazu [54] developed two novel 

nucleosome positioning prediction models based on the combination of three kinds 

of features with different segment length scales. Models employed linear regression 

algorithm to predict nucleosomal sequences, and they were named as 3LS (three 

length scales) and TNS (Tri-nucleosome sequence). 3LS model achieved better 

results than the past methods on Homo sapiens and Drosophila melanogaster 

genomes, and TNS reached 100% accuracy on Saccharomyces cerevisiae genome. 

2.4. Learning Machine Algorithms 

There are many well-know learning algorithms used in bioinformatics. 

However, in this thesis, we just concentrate on several algorithms that are commonly 

used in splice site, promoter and nucleosome positioning prediction.  

2.4.1. Artificial Neural Networks (ANNs) 

ANNs are computational methods which were firstly invented in 1943 by 

Warren McCulloch and Walter Pitts. The key idea of an artificial neural network is 

simulating the human brain [55]. In the years of 1950s, with the development of the 

perceptron network and associated learning rule by Frank Rosenblatt, ANNs were 

firstly applied in the field of pattern recognition. However, now ANNs have been 

applied in various disciplines. In general, an artificial neural network contains three 

parts, known as layers. An example of an artificial neural network is shown in Figure 

2.2. 
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The input layer has responsibility for collecting information data, signals, 

features from the outside environment.  

The hidden layers are made of neurons which are in charge of the 

performance of the internal processing from a network. 

The output layer includes neurons which are responsible for yielding and 

presenting the final network outputs. 

 

 

Figure 2.2. The general model of an ANN. 

 

ANNs are constructed from layers of connected neurons. Therefore, each 

neuron at hidden layers and output layer receives inputs from neurons at the preceding 

layer and passes the output to neurons at the succeeding layer. These neurons operate 

in Figure 2.3 [56], [57]. 

 I1, I2, …, In are the inputs for the neurons. 
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Figure 2.3. The operation of a neuron. 

2.4.2. Convolutional Neural Networks (CNNs) 

CNNs are one specific class of Artificial Neural Networks. They have been 

successfully adopted in different fields of researches like image recognition. These 

days, convolutional neural networks play crucial roles in the field of machine 

learning.  

The early convolutional neural network was the LeNet Architecture (LeNet5) 

developed by Yamm LeCun in 1990s [58]. Figure 2.4 is the architecture of LeNet5 

for recognizing characters like reading zip codes and digits, and so forth. 

 

Figure 2.4. LeNet5 Architecture. (Source [59]) 

Figure 2.5 is the structure of a CNN that has the similar architecture of the 

LeNet5 [58]. However, this model was used for classifying images. There are four 

leading operations in the convolutional neural network (shown in Figure 2.5). 
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Figure 2.5. A simple structure of CNN for recognizing image. 

 

From the first convolutional neural networks, LeNet, was invented in early 

1990s. Some other convolutional neural networks have been evolved, and they are 

listed as follows [58].  

In 2012, AlexNet was presented by Alex Kirzhevsky et al. This convolutional 

neural network had more neurons and layers than the LeNet. It was a winner in 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) at that time.  

In 2013, the winner in ILSVRC was ZF Net (stand for Zeiler and Fergus Net) 

which was developed by Matthew Zeiler and Rob Fergus.  

In 2014, GoogLeNet was a winner in ILSVRC. This convolutional neural 

network was introduced by Szegedy et al. from Google.  

In 2015, The winner in ILSVRC was Residual Network (ResNets) that was 

developed by Kaiming He et al. 

Recently, August 2016, Huang et al. introduced the Densely Connected 

Convolutional Network (DenseNet). The DenseNet outperformed previous network 

architectures on five object recognition benchmark datasets. 

2.4.3. Support Vector Machines (SVMs) 

In machine learning, SVMs have been used for classification as well as 

regression. They can conduct not only on linear data but also on nonlinear data. 

Support vector machines were invented in mid – 1960s by Vapnik et al. However, 

until 1992, the journal article about support vector machines was firstly published, 

IMAGE 

Convolution 

+ ReLU 
Convolution 

+ ReLU 

Pooling Pooling 

Fully 

Connected 

Output 



 

20 
 

and the authors of the paper were Vapnik and his colleagues [60]. The overview of 

its algorithm works as following. Support vector machine, firstly, uses a special 

mapping to convert the lower dimension data into a higher dimension data. Then, it 

finds a linear optimal hyperplane that divides tuples of one group from another group. 

Support vector machine searches for this hyperplane based on support vectors (the 

samples that are essential to detect classes) and margins. Support vector machines 

have been applied to various areas, consisting of digit recognition [61], image 

recognition [62], text classification [63], sequence classifications [64] and so forth. 

Some main advantages and disadvantages of support vector machine can be 

summarized as follows [65]: 

Advantages: 

- Support vector machine can work effectively in high dimensional spaces. 

- Support vector machine performs much better when there is a clear margin of 

separation. 

- Support vector machine is memory saving algorithm since it uses a subgroup 

of training instances called support vectors to formulate a decision function. 

Only these support vectors must be stored in memory in order to make 

decisions. 

Disadvantages: 

 - Support vector machine does not work very well on datasets with more noise. 

 - Support vector machine does not directly yield probabilistic estimates for 

group membership. 

2.4.4. Random Forests 

Random Forests were invented by Breiman et al. in 2001 [66]. They are 

ensemble learning methods that can be used for classification as well as regression 

[60], [67]. At the training phase, random forests build a lot of decision tree classifiers 

so that the collection of these individual classifiers forms random forests. During 

classification, output class of random forests is the voting of the output classes 

produced by individual classifiers [60]. Figure 2.6 is an example of random forest.  
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Figure 2.6. An example of random forest. 

Random forests are the popular algorithms for not only classification but also 

regression. However, random forests have been more widely used for classification 

models than for regression models. Some features of Random Forests can be listed as 

following [68]. 

- In the terms of accuracy, it is not the best one among latest algorithms. 

However, it can work efficiently on the big datasets. Moreover, random forest 

has ability to handle data with a high dimension, thousands of input features.  

- Random forest has a good algorithm for estimating missing data so that it can 

work well on the data with a large proportion of missing.  

- When random forest has been generated, it can be saved for later use. 

- Random forest can measure the importance of features in the classification. 

- Random forest provides an effective algorithm for detection of feature 

interactions. 
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2.4.5. k-Nearest Neighbor Algorithms 

In the early 1950s, the k-nearest neighbor algorithm was introduced but it was 

not popular. Until the 1960s, the k-nearest neighbor algorithm was commonly used 

since there was a significant increase in computing power [60]. The general flowchart 

of k-nearest neighbor algorithm (KNN) is illustrated in Figure 2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Flowchart of KNN algorithm. 

There are several popular distance functions that have been applied to compute 

the distance of two points pp and qq in a feature space. Given pp = (pp1, pp2, …, ppn) 

and qq = (qq1, qq2, …, qqn) are two points in an n-dimension feature space.  
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Euclidean distance: 

      𝑑(𝑝𝑝, 𝑞𝑞) =  √∑ (𝑝𝑝𝑖 − 𝑞𝑞𝑖)
2𝑛

𝑖=1  

Squared Euclidean distance: 

    𝑑(𝑝𝑝, 𝑞𝑞) = ∑ (𝑝𝑝𝑖 − 𝑞𝑞𝑖)
2𝑛

𝑖=1  

Manhattan distance:  

𝑑(𝑝𝑝, 𝑞𝑞) =  ∑ |𝑝𝑝𝑖 − 𝑞𝑞𝑖|
𝑛
𝑖=1   

Minkowski Distance: 

𝑑(𝑝𝑝, 𝑞𝑞) =  (∑(𝑝𝑝𝑖 − 𝑞𝑞𝑖)
𝜆

𝑛

𝑖=1

)
1
𝜆 

Cosine similarity: 

    cos(𝑝𝑝, 𝑞𝑞) =  
∑ 𝑝𝑝𝑖  .  𝑞𝑞𝑖
𝑛
𝑖=1

√∑ 𝑝𝑝𝑖
2𝑛

𝑖=1 √∑ 𝑞𝑞𝑖
2𝑛

𝑖=1

 

2.5. Feature Selection 

In recent decades, dataset size, the number of instances as well as of attributes, 

have been exploding at the great considering levels. Consequently, storing and 

processing these data have been becoming more challenging, and machine learning 

methods also have difficulties in coping with the big data. In order to implement 

machine learning methods more effectively, pre-processing of the data is needed. 

Dimensionality reduction is one of the most popular and important techniques to 

remove noisy and redundant features, and has become an absolutely essential step 

machine learning process. The general model for dimensionality reduction is shown 

in Figure 2.8 [69]. This step enables to speed up data mining algorithms, improve 

prediction accuracy. The first class of dimensionality reduction is feature extraction, 

and the second one is feature selection. 
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Figure 2.8. The general process of dimensionality reduction. 

Feature extraction can be defined as the process of projecting the input data 

with a higher dimensionality into a new space with lower dimensionality.  

Feature selection, however, can be defined as the process of detecting relevant 

features and eliminating irrelevant, redundant features. The main objectives of feature 

selection are threefold [70], [71], [72]: reducing computational time, improving 

prediction performance and understanding data deeply. There are three major 

categories of feature selection methods. 

2.5.1. Filter Methods 

Filter feature selection methods are mainly based on a number of statistical 

measures such as Pearson Correlation and Mutual Information, to assign different 

features with different scores [73]. The features with the best scores are used in 

building the model while others are not used for analysis. These methods are not 

dependent on any particular classifiers, as shown in Figure 2.9. 
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Figure 2.9. A general framework for filter methods 

2.5.2. Wrapper Methods  

However, wrapper methods utilize the predefined classifier to measure the 

quality of the currently selected subset of features. Here, the predefined classifier 

works as a black box. These methods are simple but powerful approaches to tackle 

the problem of feature selection (shown in Figure 2.10). However, they are usually 

time-consuming methods. So as to reduce computational time, some common feature 

search techniques are used like forward selection, backward elimination [73]. 

Forward selection begins with one feature, then at each iteration, it adds one 

feature if when adding this feature, it will improve performance of the classifier. This 

process repeats until all of features are checked. In backward elimination, it begins 

with all the features. In each iteration, it removes one feature if when removing this 

feature from feature set, it will enhance the performance of the classifier. This process 

repeats until there is no improvement in performance. Boruta package in R is one of 

the best example algorithms that applies the wrapper methods. Its algorithm is based 

a random forest classifier, and it uses Mean Decrease Accuracy to measure the 

important value for each feature. The feature with higher Mean Decrease Accuracy 

value is more important. At iteration, the feature with higher importance is checked 

firstly, then followed by features with lower important values. 
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Figure 2.10. A general framework for wrapper methods 

2.5.3. Embedded Methods 

Embedded methods take the advantages of both wrapper methods and filter 

methods, their general framework shown in Figure 2.11.  

 

 

Figure 2.11. A general framework for embedded methods 

2.6. Classification Evaluation 

2.6.1. Classification Evaluation Metrics 

Confusion matrix  

In learning machine, the confusion matrix is a useful table that can help 

visualize the performance of a model (shown in Table 2.2). The six key terms are 

used in the confusion matrix and also used to calculate classification evaluation 

metrics. 
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Positives (P) is the number of positive samples. Negatives (N) is the number 

of negative samples. True positives (TP) is the number of the positive samples that 

were correctly classified by the classifier. True negatives (TN) is the number of the 

negative samples that were correctly classified by the classifier. False positives (FP) 

is the number of the negative samples that were incorrectly classified as positive. 

False negatives (FN) is the number of the positive samples that are misclassified as 

negative.  

Table 2.2. Confusion matrix for a binary classifier 

 

Evaluation Metrics 

During classification training, to obtain the optimal classifier, evaluation 

metrics are so important, and a choice of right evaluation metrics for evaluating a 

classifier plays a crucial role as well [74]. Each evaluation metrics measures each 

characteristics of classification performance. Here, we describe some popular metrics 

used to evaluate a classifier. 

Accuracy measures the ratio of samples which are correctly classified by the 

classifier. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

Error rate is also called misclassification rate that measures the percentage of 

samples that are misclassified by the classifier. 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 (𝐸𝑟𝑟) =  
𝐹𝑃 + 𝐹𝑁

𝑃 + 𝑁
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Sensitivity is also named as true positive rate, recall (p) that measures the 

percentage of positive samples being classified as positive. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑛) =  
𝑇𝑃

𝑃
 

Specificity is also named as true negative rate which evaluates the ratio of 

negative samples being classified as negative. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) =  
𝑇𝑁

𝑁
 

Precision is used to measure the positive samples being classified as positive 

from the total classified samples in a positive label. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑝) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

F measure (also called F1, F-score) weighs a harmonic mean of precision and 

recall. 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 
2 ∗ 𝑝 ∗ 𝑟

𝑝 + 𝑟
 

F measure is computed as a below equation, where  is a weight and non-

negative real number. 

𝐹𝛽 =
(1 + 𝛽2) ∗ 𝑝 ∗ 𝑟

𝛽2 ∗ 𝑝 ∗ 𝑟
 

Matthews correlation coefficient (MCC) takes the values in [-1, 1].  

 

2.6.2. Cross-Validation 

k-fold cross-validation has been widely adopted to measure the performance 

of models. In this cross-valuation procedure, firstly, input data are randomly divided 

into k non-overlapping folds, Fd1, Fd2, …, Fdk and each of them has nearly the same 

size. Then, we conduct learning and predicting k times. In the iteration i, the Fdi is 



 

29 
 

used for predicting and the rest folds are used for learning [60]. Figure 2.12 is an 

example of 10-fold cross-validation procedure. 

 

 

 

Iteration Fd1 Fd2 Fd3 Fd4 Fd5 Fd6 Fd7 Fd8 Fd9 Fd10  

1            

            

2            

            

3            

 … … … … … … … … … …  

            

9            

            

10            

 

Figure 2.12. A procedure of 10-fold cross-validation. 

The overall prediction accuracy can be calculated as a below equation. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑦 =
1

10
∑𝐴𝑐𝑐𝑖

10

𝑖=1

 

Where Acci is the prediction accuracy at the ith iteration. 

 

2.6.3. Leave-one-out cross-validation (LOOCV) 

LOOCV is a specific type of k-fold cross-validation, in this case, k = n [60]. 

Figure 2.13 shows the procedure of leave-one-out cross-validation. 

Test fold 

Training folds 
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Figure 2.13. A procedure of leave-one out cross-validation 

2.6.4. Bootstrap 

The bootstrap is the procedure of sampling with replacement. There are 

different types of bootstrap method samplings, but one of the most well-known 

methods is 0.632 bootstrap method [60], [75] and works as follows. Suppose there is 

a dataset that has n samples, we sample the dataset n times with replacement. Then 

we produce another dataset of n samples called a bootstrap sampling or training 

dataset. Since some samples in the training dataset will repeat, there must be some 

original samples not contained in the training dataset. These samples are used to form 

a test dataset. If we try this out some times, consequently, on average, training dataset 

will include about 63.2% of original samples (the reason why it is called 0.632 

bootstrap) and test dataset will include about 36.8% of original samples. 

If we iterate the bootstrap sampling k times, in each iteration, we use a present 

training dataset to train the model and use a present test dataset to test model. The 

overall accuracy will be: 

i = 1 

𝐴𝑐𝑐𝑢𝑟𝑎𝑦𝑐 (𝐴𝑐𝑐) =
1

𝑛
∑𝐴𝑐𝑐𝑖

𝑛

𝑖=1

 

Test data = di 

Training data Dt = D - di 

Data D = {d1, d2, …, dn}, 

 n samples 

Training model M on Dt 

Acci = testing model M 

by sample di 

i = i + 1 

Until i = n 
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𝐴𝑐𝑐(𝑀𝑜𝑑𝑒𝑙) =
1

𝑘
∑(0.632 × 𝐴𝑐𝑐𝑖(𝑀𝑜𝑑𝑒𝑙)𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎

𝑘

𝑖=1

+ 0.368 × 𝐴𝑐𝑐𝑖(𝑀𝑜𝑑𝑒𝑙)𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎) 

Where 𝐴𝑐𝑐𝑖(𝑀𝑜𝑑𝑒𝑙)𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 is the prediction accuracy at the ith iteration when 

the model is evaluated on test dataset i. Where 𝐴𝑐𝑐𝑖(𝑀𝑜𝑑𝑒𝑙)𝑡𝑟𝑎𝑖𝑛_𝑑𝑎𝑡𝑎 is the 

prediction accuracy at the ith iteration when the model is evaluated on the training 

dataset i.  
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Chapter 3 : Materials and Methods 

We start off by describing datasets used in our study in Section 3.1. These 

consist of splice dataset, promoter dataset and nucleosome positioning datasets. In 

section 3.2, we talk about the method converting biological sequences into numerical 

and categorical features. Our algorithm and a two-step feature selection technique 

are presented in the last two sections.  
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3.1. Datasets 

To demonstrate the validity of our method in dealing with genetic sequence 

classification problem, we evaluated our approach on six datasets. The Table 3.1 

shows the datasets in detail. 

Table 3.1. Description of datasets 

No Dataset Description 

Number 

of 

Classes 

Number of 

Sample 

Sequenc 

e length 

(base) 

1 Splice 
Primate splice-junction 

sequences. 
3 

3175  

(762+765+1648) 
60 

2 Promoter 
E. coli promoter 

sequences 
2 

106  

(53 + 53) 
57 

3 Human 
H. sapiens nucleosomal 

and linker sequences 
2 

4573  

(2273 + 2300) 
147 

4 Worm 
C. elegans nucleosomal 

and linker sequences 
2 

5175  

(2567 + 2608) 
147 

5 Fly 

D. melanogaster 

nucleosomal and linker 

sequences 

2 
5750  

(2900 + 2850) 
147 

6 Yeast 
S.cerevisiae nucleosomal 

and linker sequences 
2 

3620  

(1880 + 1740) 
150 

3.1.1. Promoter and Splice datasets 

The two benchmark datasets from UCI, Splice and Promoter datasets, were 

firstly chosen for evaluation of our model. These datasets were also used in research 

[76]. The Splice dataset includes the splice-junction sequences. There are two types 

of splice junctions. The exon-intron “EI” is the part of DNA sequence ranging from 

the ending of an exon and the starting of an intron while intron-exon “IE” is a region 

of DNA between the ending of an intron and beginning of exon (as shown in Figure 

3.1). The part of sequence which does not belong to “IE” and “EI” is called no 

junction “N”. This dataset is composed of 3,175 labeled samples and each sample has 

the length of 60 base pair. 
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Figure 3.1. Splice-junction gene sequence 

During RNA transcription process, transcription factors such as RNA 

polymerase and accessory proteins attach to the promoter, then carry out the initiation 

of transcription. Promoter parts are DNA sequences located adjacent to the initial 

sites of transcription. Promoter dataset consists of 106 labeled promoter sequences 

(positive and negative), with length of 57 base pair. Positive samples are promoter 

sequences whereas negative sequences are non-promoter sequences (see Figure 3.2). 

 

 

 

 

 

Figure 3.2. Promoter sequence in DNA sequence. 

3.1.2. Nucleosome benchmark datasets 

The other four datasets are about nucleosome forming and inhibiting 

sequences in four species: Human, worm, fly and yeast. The first three datasets were 

collected by Guo et al. [13]. They were downloaded from their website. These 

datasets were previously used in the research [13], [53], [54]. Positive samples are 

nucleosome-forming sequences. Negative samples are nucleosome-inhibiting 

sequences. Human, worm and fly consist of 4573, 5175 and 5750 samples, 

respectively. The number of positive and negative samples is shown in Table 3.1. All 

sequences in these three datasets have the same length of 147 base pair. In addition, 

Yeast (Saccharomyces cerevisiae) dataset consists of 1880 positive samples and 1740 

negative samples. Each of these sequences has the length of 150 base pair, and this 

dataset was also used in [54], [77], [78]. 
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Nucleosome forming sequence (nucleosome DNA) and inhibiting sequence 

(linker DNA) in a chromatin are shown in Figure 3.3. 

 

Figure 3.3. The overview of the basic entities forming chromatin. (Source [79]) 

3.2. Features 

Data transformation is defined as a process that converts data from the original 

format to the target format. In order to apply the proposed model, the DNA sequence 

datasets need to be transformed into required formats. The Block A in Figure 3.4 

converts each DNA sequence from DNA datasets into a combination vector.  

In this research, we used the combination of the five different vectors named 

as 1-categorical vector (1CAT), 2-categorical vector (2CAT), 2-mer vector (2MER), 

3-mer vector (3MER), and 4-mer vector (4MER). Given a biological sequence s of 

length n, S1S2…Sn, where Si  {A, C, G, T}. These vectors can be defined as follows: 

Linker 

(DNA): 

Chromatin 

Nucleosome Core Particle 

(DNA + Histone Octamer): 

Linker 

(DNA): 

DNA Histone Octamer 
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1-categorical vector (1CAT) 

1CAT = (A1, A2, …, An), where Ai is a nucleotide at ith position, i = 1, 2, …, 

n. For example, s = AGGTCCTACT, 1CAT will be: 

 

2-categorical vector (2CAT) 

2CAT = (B1, B2, …, Bn-1), where Bi is two consecutive nucleotides at ith and 

(i+1) th positions, i = 1, 2, …, n-1. Following is an example of 2CAT vector for above 

s sequence. 

 

2-mer vector (2MER), 3-mer vector (3MER), and 4-mer vector (4MER) 

In terms of biological sequence, k-mers can be defined as all possible 

subsequences of length k within a sequence. A k-mer is a string of k successive 

nucleotides contained the genetic sequence and there are 4k possible k-mers: 𝑠1,  

𝑠2, …, 𝑠4𝑘 . The k-mer vector denoted as kMER is defined by kMER = (𝑐[𝑠1], 

𝑐[𝑠2], …, 𝑐[𝑠4𝑘]), where 𝑐[𝑠𝑖] is a number of times that 𝑠𝑖 occurs in s, i = 1, 2, …, 4k. 

Therefore, using sequence s above, 2MER will be: 
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and 3MER will be: 

 

3.3. Algorithm 

The proposed algorithm consists of four main steps. The flowchart of our 

algorithm is shown in Figure 3.4, and works as below: 

1) Block A in Figure 3.4 is in charge of converting DNA sequences into feature 

vectors. Each DNA sequence is encoded into a combination vector that contains five 

different groups of features: 1CAT, 2CAT, 2MER, 3MER, and 4MER. 

2) At Block B in Figure 3.4, feature ranking is conducted by the randomForest function 

for R [80]. 
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Figure 3.4. The flowchart of the proposed algorithm. 

  

AGGTCCTACTTGCCTACATT 
DNA sequence  

length of n: 

1CAT 

(n) 
 

2CAT 

(n-1) 
 

2MER 

(16) 
 

3MER 

(64) 
 

4MER 

(256) 
 

Block A 

Feature vector 

Feature ranking 

F= (f1, f2, f3, …, fm) 

Fs = (f1, f2, f3, …, fk) 

Feature selection 

Prediction  

Result 

Block B 

Block C 

Block D 

F = {f1, …, fm} was 

ranked in descending 

order of 

MeanDecreaseAccuracy. 

 

Fs = {f1, …, fk}is 

the best feature 

subset.  
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3) Block C in Figure 3.4 is responsible for feature selection by performing learning 

and predicting with the ksvm function for R in kernlab package [81]. Each feature 

subset is evaluated by the average of prediction accuracies of 10-fold cross-validation. 

4) Block D in Figure 3.4 is in charge of predicting by using the best feature subset  

{f1, …, fk} obtained in the previous step. We also evaluate the model by 10-fold cross-

validation ten times. Herein, the best feature subset is the feature subset with the best 

accuracy. 

3.4. Feature Selection 

Nowadays, there has been a remarkable increase in the number of researches 

exploiting feature selection techniques. They have been used in supervised learning as 

well as unsupervised learning. Their aims are threefold. The first goal is to avoid 

overfitting and enhance performance. The second advantage is to reduce 

computational time and space required to execute models, and the final goal is to 

identify which features are relevant to a problem and to gain a deeper insight into the 

data.  

The feature selection approach used in our research is a kind of greedy 

algorithm, and works as two following steps: 

Step 1: With pre-calculated feature set F = {f1, f2, …, fm} being ranked in 

descending order of MeanDecreaseAccuracy, we evaluate a feature subset {f1, f2, …, 

f10}, a feature subset {f1, f2, …, f20}, and so forth, until a feature subset {f1, f2, …, fm} 

by conducting training and predicting with ksvm function [81] (shown in Figure 

3.5). 

Step 2: Neighbors of the feature subset with the best accuracy of prediction in 

the preceding step are tested. 
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Figure 3.5. Step 1 of the feature selection algorithm. 

 

 

 

  

Evaluation on 

Feature Subset G 

Feature Set 

Feature ranking 

F = {f1, f2, …, fm} 

G = {f1, f2, …, f10} 

G = G + 10 features 

Best feature subset 

 in step 1 

G = {f1, f2, …, fk} 

F 
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Chapter 4 : Experimental Results and Discussion  

Firstly, feature ranking and list top 10 of important features in each dataset 

are shown in the section 4.1. Then, we present the prediction accuracies in the first 

step of the two-step algorithm in section 4.2. The prediction accuracies in the second 

step of the two-step algorithm are demonstrated in section 4.3. Four evaluation 

metrics and evaluation methods used in our research are introduced in section 4.4. 

Next, we summarize the state-of-the-art models which were used to compare with our 

model in section 4.5. We also perform the comparison of our results with results of 

previous model in this section. Finally, discussion and conclusion are given in the 

section 4.6. 
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4.1. Feature Ranking by Random Forest 

Random forests are well-known ensemble learning method which can 

conduct both classification and regression. Apart from these tasks, the 

randomForest function for R in randomForest package [80] can measure the 

importance of all features by MeanDecreaseAccuracy or MeanDecreaseGini 

values. In this research we adopted the MeanDecreaseAccuracy value as the 

importance of features. The relationship between rank and MeanDecreaseAccuracy 

normalized into the range of [0, 1] in each dataset is shown in the Figure 4.1.  

 

Figure 4.1. MeanDecreaseAccuracy along feature ranking from top 1~ 60. 

In general, there is a sharp decrease in the importance of features in 

Promoter and human datasets in the areas of top 1~5. This is then followed by a 

steady decline trend in the rest region. With Splice, worm and fly datasets, the 

importance of features fall slowly in the region of from top 1 to 16. The importance 

in the remainder declines gradually.  

Features with high importance in validation datasets are listed in Table 4.1. 

From this table it is clear that human, worm, and fly datasets have features with 

high importance containing mainly “A” (adenine) and “T” (thymine). However, 

the percentage of “C” (cytosine) and “G” (guanine) increases slightly in the fly 

dataset. More observations are that TTT, TTTT, AA, AAA, AAAA, AAAT, ATTT 
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features are highly important in human and worm datasets. It is similar to the case 

of fly dataset where TTT, TT, TTTT, ATA, AAAA, TAT are so important. AAAA, 

TTTT, TA, AAA, TTT, TAT, ATA are highly important for yeast dataset. This 

coincides with the results in the research of Higashihara et al. [10] for classification 

of nucleosome datasets. The research showed that T and A were both highly 

important. Additionally, in Table 4.1, it was partially demonstrated that the 

combination of numerical and categorical might be effective. In case of worm 

dataset, the first and the fourth important features are categorical (B1 and A1), and 

others are numerical.  

Table 4.1. List of important features. 

 

For Splice and Promoter datasets, however, features in 2CAT vectors are so 

important. B30, B29, B31, B28 features are highly important in Splice dataset, which 

means that the nucleotides around the center of splice sequences play a vital role 

in prediction. This finding agrees with the structure of splice site sequences where 

splice-junctions are at the middle of sequences. B17, B16, B15, B14 are highly 

important in Promoter dataset. Figure 4.2 demonstrates the relationship between 

features in 2CAT vectors of Splice and Promoter datasets and 

MeanDecreaseAccuracy normalized into the interval of [0, 1]. The figure illustrates 

that the highly important features in 2CAT vector of Splice dataset are located at 

the region of from 25 to 35. While those of Promoter dataset settled at the area of 

between 12 to 18. 

No Dataset 
List of top 10 features with high importance sorted by 

descending order of rank 

1 Splice B30, B29, B31, B28, A29, A30, B32, A32, B34, A31 

2 Promoter B17, B16, B15, B14, A15, B39, A17, B18, A16, B38 

3 Human TTTT, AAA, TTT, AAAA, TT, AA, AAAT, ATTT, TG, TAAA 

4 Worm B1, AAA, AA, A1, TTT, AAAA, AAAT, TTTT, ATTT, AATT 

5 Fly TA, GC, CG, TTT, TT, TTTT, ATA, CA, AAAA, TAT 

6 yeast AAAA, TTTT, TA, AAA, TTT, TAT, ATA, CGCG, CA, TT 
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Figure 4.2. MeanDecreaseAccuracy of features in 2CAT vector on (a) Splice and 

(b) Promoter datasets. 

4.2. Prediction Accuracy of Feature Subsets along Ranking 

As described in step 1 in section 3.4 of Chapter 3, feature subsets along the 

ranking were assessed by support vector machine. With human, worm and fly 

datasets, there are 63 different feature subsets at intervals of 10: {f1, f2, …, f10}, {f1, 

f2, …, f20}, {f1, f2, …, f30}, …, {f1, f2, …, fm} being tested. The prediction accuracy 

is based on the average accuracy of 10-fold cross-validation. However, there are 

around 45 feature subsets for Promoter dataset and Splice dataset. Table 4.2. 

demonstrates the results of prediction. 

  

(a) 

(b) 
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Table 4.2. Prediction accuracies obtained by using either the whole set of features 

and the best feature subset in step 1. 

No Dataset 

The whole set  

of features 

The best feature subset 

in step 1 
Improvement 

(%) 
# Feature Acc (%) # Feature Acc (%) 

1 Splice 455 94.55 40 96.77 2.22 

2 Promoter 449 94.34 90 100 5.66 

3 Human 629 85.94 420 86.35 0.41 

4 Worm 629 89.06 180 89.28 0.22 

5 Fly 629 80.16 140 81.79 1.63 

6 Yeast 635 100 30 100 0.00 

4.3. Prediction accuracy of neighbors around the best feature subset 

With best feature subset obtained at step 1 in section 3.4 of Chapter 3, we 

conducted step 2. Table 4.3 illustrates results and the number of features in this step.  

Table 4.3. Prediction accuracies in step 2 compared with those in step 1. 

 

  

No Dataset 

The best feature subset 

in step 1 

The best feature subset  

in step 2 

Improvement 

(%) 

# Feature Acc(%) # Feature Accuracy (%)  

1 Splice 40 96.77 48 96.93 0.16 

2 Promoter 90 100 90 100 0 

3 Human 420 86.35 428 86.49 0.14 

4 Worm 180 89.28 177 89.53 0.25 

5 Fly 140 81.79 148 81.93 0.14 

6 Yeast 30 100 22 100 0.00 
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Figure 4.3 illustrates the proportion of feature groups in the best feature subsets of 

four datasets: Splice, Promoter, human and worm. 

 

 

Figure 4.3. The percentage of feature groups in the best feature subsets. 
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4.4. Evaluation 

4.4.1. Evaluation Metrics 

To evaluate the quality of our method, four following metrics were used.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝) =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶)

=  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

4.4.2. Performance Evaluation of the Method 

Using the best feature subsets achieved at the step 2 of the two-step feature 

selection approach (in section 3.4, Chapter 3), we applied our model to classify the 

DNA sequences in the validation datasets and compared its performance with the 

previous researches. For evaluation, we mainly carried out 10-fold cross-validation 

ten times, and then computed average prediction results. With Promoter data, 

however, we employed leave one out ten times due to the fact that the number of 

its samples is small, 106 samples.  

4.5. Comparison with other methods 

4.5.1. Summary of existing models  

For Splice and Promoter datasets, we made the comparison our model with 

the previous model conducted by Nguyen et al. [76]. The results from this research 

are known as the best performance prior to our research. The motivation behind 

this model was the desire to apply a deep learning model for text classification to 

DNA sequence classification. At first, the researchers translated DNA sequence 

into sequence of words as a text sentence, then applied the representation technique 

for text to this produced sequence. Lastly, two-dimensional matrices representing 



 

48 
 

DNA sequences using one hot vectors were directly used as input to the CNN 

algorithm (see Figure 4.4). 

 

Figure 4.4. The structure of convolutional neural network. (source [76]) 

However, for the first three nucleosome positioning datasets (human, worm, 

fly), we compared our results with the results taken from researches [13], [53], 

[54]. These models are summarized as below: 

 iNuc-PseKNC predictor was proposed by Guo et al. in 2014 [13]. It included 

of following steps. 

 DNA sequences, firstly, were encoded into pseudo k-tuple 

nucleosome composition features. 

 Then, support vector machine was applied to classify DNA 

nucleosome sequences. 

 iNuc-PseSTNC in 2016 [53] was introduced by Tahir and Hayat: 

 DNA sequences were converted into three types of features: 2-mer 

composition, 3-mer composition and split 3-mer composition. 

 Next, support vector machine was applied 
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 3LS and TNS models were presented by Awazu [54]: 

 DNA sequences are converted into: Three different groups of 

numerical features. 

 Based on the linear regression model, the author developed the 

models to classify DNA nucleosome sequences. 

For yeast dataset, we compared our results with those taken from [54], [77], 

[78]. In 2015, Chen et al. [77] developed the model by using DNA deformation 

energy. Yi et al. [78] in 2012 introduced the model which applied the nearest 

neighbor algorithm. 

4.5.2. Comparison on Promoter and Splice datasets 

Table 4.4 shows that there were significant improvements in the prediction 

accuracy of our method for both datasets. In particular, the prediction accuracy of 

the proposed model increased by 0.94% and reached the peak of 100% on Promoter 

dataset. This means that all samples in this dataset were correctly predicted by our 

proposed model. This result has not obtained by any previous methods. Our method 

also achieved the high prediction accuracy for Splice dataset with 96.81%. 

Table 4.4. Accuracies of the proposed model compared to those in [76]. 

 

For Promoter dataset, we performed a further comprehensive comparison 

with other reported studies in terms of TP, FN, FP, TN, Acc and (MCC). Table 4.5 

illustrates results in detail. 
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Table 4.5. Comparison our method with other reported methods. 

Prediction method Reference TP FN FP TN Acc(%) MCC 

Our method This paper 53 0 0 53 100 1.00 

Expectation Maximization and 

Support Vector 

Machine(EMSVM) 

Maleki et al. 

[45] 

52 1 

 

0 53 99.05 0.98 

Hidden Markov Model(HMM) 

Tavares et al. 

[82] 

50 3 5 48 92.45 0.850 

Complement Class Naive 

Bayes (CNB) 

49 4 3 50 93.40 0.868 

Multilayer Perceptron Neural 

Network (MLP) 

49 4 3 50 93.40 0.868 

Support Vector Machine(SVM) 49 4 3 50 92.45 0.849 

LogitBoost 47 6 5 48 89.62 0.793 

NBTree 47 6 5 48 89.62 0.793 

Lazy Bayesian Rules 

Classifier(LBR) 

48 5 3 50 92.45 0.850 

PART 44 9 11 42 81.13 0.623 

 

Figure 4.5 shows ROC space including our method and reported methods. 

In the ROC space, the x axe is FP rate, 1- specificity. The y axe is the TP rate, 

sensitivity. The point (0, 1) in a ROC space shows the excellent classification 

algorithm, which means that the classification reaches the sensitivity of 100% and 

specificity of 100%. Our method is represented by the point (0, 1) that is the best 

point in ROC space compared with previous methods.  
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Figure 4.5. Our method and reported methods in ROC space. 

4.5.3. Comparison on nucleosome positioning datasets 

With human, worm and fly datasets, we compared our models to methods in 

[13], [53], [54] on four metrics: Accuracy, sensitivity, specificity and Matthews 

correlation coefficient. Table 4.6 indicates the results of all methods in detail.  

From this table, the first noticeable thing is that for yeast dataset, our method 

and TNS completely outperformed the previous methods. Our model achieved the 

Acc of 100%, Sen of 100%, Sp of 100% and MCC of 1.0. The second result is 

worth pointing out that our method outperformed all of competing methods on 

worm dataset with Acc of 89.35%, Sen of 92.45% and MCC of 0.79. The third 

thing to note is that on the fly dataset our model also achieved better results than 

those of the other previous models with Acc of 81.75%, Sen of 79.14%, Sp of 

84.40% and MCC of 0.64 except 3LS. Moreover, on human dataset, the prediction 

Acc of the proposed method (86.33%) was higher than that of iNuc-PseKNC, TNS 

but lower than iNuc-PseSTNC and 3LS. 

Our method 

EMSVM 

CNB, HMM, SVM 

MLP 

LBR 

PART 

LogitBoost, NBTree 
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Table 4.6. Performance comparison of our model and previous models. 

Dataset Method Acc (%) Sen (%) Sp(%) MCC 

Human Our method 86.33 89.77 82.93 0.73 

iNuc-PseKNC [13] 86.27 87.86 84.70 0.73 

iNuc-PseSTNC [53] 87.60 89.31 85.91 0.75 

3LS [54] 90.01 91.69 88.35 0.80 

TNS [54] 81.67 - - - 

Worm Our method 89.35 92.45 86.30 0.79 

iNuc-PseKNC [13] 86.90 90.30 83.55 0.74 

iNuc-PseSTNC [53] 88.62 91.62 86.66 0.77 

3LS [54] 87.86 86.54 89.21 0.76 

TNS [54] 83.94 - - - 

Fly Our method 81.75 79.14 84.40 0.64 

iNuc-PseKNC [13] 79.97 78.31 81.65 0.60 

iNuc-PseSTNC [53] 81.67 79.76 83.61 0.63 

3LS [54] 83.41 84.07 82.74 0.67 

TNS [54] 70.82 - - - 

Yeast Our method 100 100 100 1.00 

TNS [54] 100 - - - 

Chen et al. [77] 98.10 98.20 98.00 0.96 

Yi et al. [78] 99.06 - - - 
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Although iNuc-PseKNC model achieved the same MCC (0.73) with our 

model, Acc and Sen of our method were better than those of iNuc-PseKNC except 

for Sp.  

As a whole, in the terms of accuracy and Mathews correlation coefficient, 

our method performed better than all of active methods on yeast and worm datasets. 

4.6. Discussion and Conclusion 

The combination vector can reflect not only the positional information 

(categorical features) of DNA sequence, but also the quantitative information (k-

mer features) of sequence. It can characterize a genetic sequence. Moreover, we 

utilized the ability of executing categorical data and numerical data of random 

forests and SVM to solve our problem. We also made use of the advantages of 

random forest in automatically producing variable importance to rank features, 

then applied the feature ranking to conduct feature selection. The used feature 

selection technique is a greedy technique which does not learning and predicting 

on all possible feature subsets. This can reduce dramatically computational cost. 

However, one limitation of this model is that all DNA sequences in one dataset 

need to be the same length.  

In this research, we proposed a simple but powerful model for solving DNA 

sequence classification problems. The model was tested on six different datasets: 

Splice, Promoter, human, worm, fly, and yeast datasets. On Splice and Promoter 

datasets, the experimental results show that there was a significant increase in the 

performance of our model. Especially, the proposed model reached the accuracy of 

100% on Promoter and yeast datasets.  

We also compared our model with the other four models: iNuc-PseKNC 

[13], iNuc-PseSTNC [14], TNS and 3LS [15]. In terms of accuracy, sensitivity and 

MCC, our method achieved better performance than any other competing method 

for predicting nucleosome positioning in worm genome. For fly genome, the 

proposed method also outperformed the other methods except 3LS model. For 

predicting nucleosome positioning in human genome, our method performance was 
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higher than iNuc-PseKNC and TNS, but lower than the other two models. 

Therefore, it can be concluded that our model is effective for fixed-length DNA 

sequence classification.   
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Chapter 5 : Summary and Future Research 

The research context, objectives, materials, methods and experimental results 

of the proposed model were introduced and shown in the previous chapters. In this 

chapter, we would like to summarize this thesis and propose some directions we will 

fulfil in the future. 
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5.1. Dissertation summary 

Research context, objectives and contributions 

In the past decades, there has been an ever-increasing number of methods for 

classification of DNA sequences. There have been researches that used numerical 

features or categorical features for classifying DNA sequences, however, until now 

numerical and categorical features were separately studied. Therefore, the 

combination of these two types of features was considered in our thesis. The target 

of our research is to combine five feature vectors (such as 1-categorical vector, 1-

categorical vector, 2-mer vector, 3-mer vector, and 4-mer vector) to address the 

problem for classifying fixed-length DNA sequences. The specific objectives and 

contributions of present thesis are: 

 To develop an effective framework for classification of DNA sequence on 

three types of datasets: splice site, promoter and nucleosome positioning 

datasets. 

 To enhance performance by conducting the greedy feature selection algorithm. 

 To find which group of features are more effective in each dataset.  

Materials and Methods 

To obtain the above stated objectives, this thesis developed a model to classify 

DNA sequences by combining five groups of features, two of them are categorical 

features and the other three are numerical features. So as to achieve better the 

performance, the two-step feature selection algorithm was also utilized.  

The proposed model in present thesis was evaluated on six benchmark 

datasets. The first one is Splice dataset being about primate splice-junction sequences. 

The second dataset is promoter dataset being about E. coli promoter sequences. Other 

four datasets are nucleosome positioning datasets of four species (human, worm, fly 

and yeast) containing nucleosome forming and inhibiting sequences. 

Experimental Results 

By conducting feature selection on the mixture of five feature vectors, we 

could also find which type of features are more effective in each dataset. The findings 
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of this study are consistent with the previous research. Moreover, the results also 

showed that some parts of DNA sequences are so important for improving the 

accuracies on some datasets. 

Four evaluation metrics (accuracy, sensitivity, specificity and Mathews 

correlation coefficient), 10-fold cross-validation were used to weigh our model. 

Through the performance evaluation on six benchmark datasets of fixed-length DNA 

sequences, our algorithm achieved comparable or higher performance than other 

advanced algorithms. The most thing to note is that our model reaches the accuracy 

of 100 % on two datasets, promoter and yeast. 

5.2. Future Research 

In this thesis, we proposed the simple but powerful framework for 

classification of fixed-length DNA. Therefore, we are going to apply this model to 

other areas of sequence recognition like protein classification or combine categorical 

features used in the present thesis with other numerical feature vectors to improve the 

performance of fixed-length DNA sequence classification. 

Application of the proposed model to protein prediction.  

For predicting beta-turns and beta-turn types, the combination of categorical 

features with the below numerical features will be considered. These features are 

Position Specific Scoring Matrices (PSSMs), predicted shape strings, and predicted 

protein blocks. 

For phosphorylation site prediction, we will combine categorical features with 

other numerical features used in the research of Ismail et al. [83]. 

Improving the performance of DNA sequence classification. 

We will incorporate other numerical features used by previous studies into our 

model. These features consist of: 

PseKNC ( stand for “Pseudo k-tuple nucleotide composition”) [13] 

Given a biological sequence S = R1R2R3 …Rn length of n, Ri  {A, C, G, T}.  
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PseKNC features of S is:  

𝐷 = {𝑑1, 𝑑2, … , 𝑑4𝑘 , 𝑑4𝑘+1, … , 𝑑4𝑘+𝜆} 

where du is calculated as following: 

𝑑𝑢 =

{
 
 

 
 

𝑓𝑢

∑ 𝑓𝑖  +   𝑤 ∑ 𝜃𝑗
𝜆
𝑗=1

4𝑘
𝑖=1

     (1 ≤ 𝑢 ≤  4𝑘)

𝑤𝜃𝑢− 4𝑘

∑ 𝑓𝑖
4𝑘
𝑖=1 +𝑤 ∑ 𝜃𝑗

𝜆
𝑗=1

  (4𝑘 ≤ 𝑢  ≤ 4𝑘 +  𝜆)

 

where fu (u = 1, 2, …, 4k) is k-mer frequency being normalized to ∑ 𝑓𝑖 = 14𝑘

𝑖=1  and  

is an integer, the number of the total counted tiers and w is a weight ranging in the 

interval of [0, 1] and j computed as below equation: 

𝜃𝑗 = 
1

𝑛 − 𝑗 − 1
∑ Θ(𝑅𝑖𝑅𝑖+1, 𝑅𝑖+𝑗𝑅𝑖+𝑗+1)  (𝑗 = 1, 2,… , 𝜆;  𝜆 < 𝑛)

𝑛−𝑗−1

𝑖=1

 

Where: 

Θ(𝑅𝑖𝑅𝑖+1, 𝑅𝑖+𝑗𝑅𝑖+𝑗+1) =  
1

𝜇
∑ [𝑃𝑣(𝑅𝑖𝑅𝑖+1) − 𝑃𝑣(𝑅𝑖+𝑗𝑅𝑖+𝑗+1)]

2
𝜇

𝑣=1
 

where  is the number of physicochemical indices in [13]. Pv(RiRi+1) and Pv(Ri+jRi+j+1) 

are the numerical value of vth physicochemical index for the dinucleotides RiRi+1 and 

Ri+jRi+j+1 at position i and position (i+j), respectively. 

SC-PseTNC-General ( stand for “General series correlation pseudo trinucleotide 

composition”) [84] 

Given a biological sequence S = R1R2R3 …Rn length of n, Ri  {A, C, G, T}. 

SC-PseTNC-General feature vector of sequence S is defined: 

𝐷 = {𝑑1, 𝑑2, … , 𝑑64, 𝑑64+1, … , 𝑑64+𝜆, 𝑑64+𝜆+1, … , 𝑑64+𝜆Λ } 

 where du is calculated as following:  
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𝑑𝑢 =

{
 
 

 
 

𝑓𝑢

∑ 𝑓𝑖  +   𝑤 ∑ 𝜃𝑗
𝜆Λ
𝑗=1

64
𝑖=1

     (1 ≤ 𝑢 ≤  64)

𝑤𝜃𝑢− 64

∑ 𝑓𝑖
64
𝑖=1 +𝑤 ∑ 𝜃𝑗

𝜆Λ
𝑗=1

  (64 + 1 ≤ 𝑢 ≤ 64 +  𝜆Λ)

 

where fu (u = 1, 2, …, 64) is 3-mer frequency being normalized to ∑ 𝑓𝑖 = 164
𝑖=1 ;  is 

an integer, the number of the total counted tiers; w is a value in the range of [0, 1]; 

 is a the number of physicochemical indices; and j computed as below equation: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝜃1 =

1

𝑛 − 4
∑ 𝐽𝑖,𝑖+1

1

𝑛−4

𝑖=1

𝜃2 =
1

𝑛 − 4
∑ 𝐽𝑖,𝑖+1

2

𝑛−4

𝑖=1………………

𝜃Λ =
1

𝑛 − 4
∑ 𝐽𝑖,𝑖+1

Λ

𝑛−4

𝑖=1………………

𝜃𝜆Λ−1 =
1

𝑛 − 𝜆 − 3
∑ 𝐽𝑖,𝑖+1

Λ−1

𝑛−𝜆−3

𝑖=1

𝜃𝜆Λ =
1

𝑛 − 𝜆 − 3
∑ 𝐽𝑖,𝑖+𝜆

Λ

𝑛−𝜆−3

𝑖=1

 

The correlation function is defined: 

{
𝐽𝑖,𝑖+𝑚
𝑣 = 𝑃𝑣(𝑅𝑖𝑅𝑖+1𝑅𝑖+2) . 𝑃𝑣(𝑅𝑖+𝑚𝑅𝑖+𝑚+1𝑅𝑖+𝑚+2)

 
𝑣 = 1, 2,… , Λ; 𝑖 = 1, 2,… , 𝑛 − 𝑚 − 2                 

 

where Pv(RiRi+1Ri+2) represents the numerical value of vth (v = 1, 2, …, ) 

physiochemical index for the trinucleotide RiRi+1Ri+2 at position i; and 

Pv(Ri+mRi+m+1Ri+m+2) represents the numerical value of vth (v = 1, 2, …, ) 

physiochemical index for the trinucleotide Ri+mRi+m+1Ri+m+2 at position i + m. 
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