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Abstract 

 

Post-translational modification is one way of expanding genetic coding capacity to generate 

diversity in the corresponding proteomes. One of the most common post-translational modifications 

is phosphorylation. It is the process of adding a phosphate group to a target residue, which are Serine, 

Threonine, or Tyrosine. 

Phosphorylation plays an important role in eukaryotic cell activities, such as cell cycle, 

signaling cell growth, and intracellular signal transduction. Research in the past has commonly 

conducted phosphorylation site identification using an experimental approach. One common 

experimental approach for identifying phosphorylation sites is by using mass spectrometry. By 

recording and measuring the mass of the ion sample, we can accurately identify phosphorylation sites. 

However, there are disadvantages in implementing mass spectrometry. (i) It requires an expensive 

machine. (ii) It also requires supporting tools and materials to conduct the experiment. (iii) Preparing 

the sample and analyzing it are both time consuming and labor intensive. (iv) Adequate skills are 

required to operate the machinery and analyze the results.  

Another way to identify phosphorylation sites is the computational approach. A lot of 

researches implement this approach because of improvements in computer technology and machine 

learning. In general, there are two different methods of the computational approach. The first method 

is kinase-specific phosphorylation site prediction. It requires information about the protein kinase, 

which catalyzes the process, as well as information about phosphorylated protein sites. However, 

information about kinase proteins for phosphorylation is often not available publicly. The second 

method is the non-kinase-specific phosphorylation site prediction. This method only requires the 

information of the phosphorylated protein to conduct a prediction. 

In this research, we conducted a non-kinase-specific phosphorylation site prediction by 

proposing new combinations of features. Feature selection was implemented to improve the 

classification result. There are two types of data sets we used to implement the method. The first data 

set is the P.ELM data set, which contains human and several animal phosphorylation sites. The 

second one is the PPA data set, which we used as an independent data set. This data set contains 

phosphorylation site information from plants. For each data set, we classified the phosphorylation in 

three different residues, Serine, Threonine, and Tyrosine. We implemented grid search to search the 

best number of features to achieve the highest classification performance.  

Based on our experiment, creating new combinations of new features with features from 

previous research, and implementing feature selection can improve classification performance. 
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Comparing our results with the results of previous research, we can see an improvement of 

performance in phosphorylation site classification for Serine and Threonine residue. 

Keyword: phosphorylation site, feature selection, grid search, classification 
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Chapter 1 Introduction 

This chapter will explain several topics. First, it will introduce the background of this research, 

which includes protein translation and post-translational modification. It will also discuss about the 

process of protein phosphorylation in more detail. Then, it will explain the main objective and 

contribution of this research. Finally, it will explain how this thesis is organized. 
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1.1 Background 

1.1.1 Protein translation. 

Protein translation is the process by which a ribosome synthesizes a polypeptide string using 

the information from mRNA. Every three nucleotides (also known as a codon) in the mRNA is 

translated by tRNA into one amino acid. Figure 1.1 shows the process of protein synthesis in the 

cytoplasm cell. The ribosome attaches itself to the mRNA string and reads the nucleotide in the string. 

A tRNA containing three nucleotides (an anti-codon) that complement the codon of the mRNA will 

attach to the mRNA and then release the amino acid to the polypeptide string. 

 

Figure 1.1 Diagram of protein translation from mRNA by ribosome 

A polypeptide is a long string of 20 different types of amino acid attached together. This long 

string of amino acids is also known as the primary structure of the protein. As we can see in Figure 

1.2, every amino acid consists of the same basic parts, which are an amino group, carboxyl, and a 

hydrogen atom. Only the side chain (R) is different in each amino acid. 
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Figure 1.2 Structure of amino acid 

The connection between one amino acid and another amino acid during the translation process 

is commonly known as a peptide bond. Figure 1.3 shows that the Amino acid (1) releases OH in the 

carboxyl part while attaching to the amino part of Amino acid (2), which releases a hydrogen atom. 

Since it creates a water molecule as a byproduct, this process is called the condensation process. 

 

Figure 1.3 Diagram of peptide bond 
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Each amino acid in the polypeptide has different physicochemical properties based on the side 

chain; for example, Serine is hydrophilic and Valine is hydrophobic. The polypeptide string (also 

known as a backbone) will fold and twist, creating two common shapes, which are α-helix and β-

sheet. These shapes are defined as a secondary structure. Figure 1.4 shows an output example of 

secondary structure prediction using Phyre2 [1]. It shows two forms, the amino acid string ‘MIVRL’ 

creates the β-sheet form, and the string ‘GSKQAVDAAHKLM’ creates the α-helix form. 

 

Figure 1.4 Secondary structure of protein prediction using Phyre2 

 

Because of the physicochemical properties of the backbone, the protein will twist, bend, or 

fold, creating a more complex shape. This complex 3D structure is called the tertiary structure. Figure 

1.5 shows an example of a protein’s tertiary structure (source: http://brussels-scientific.com/wp-

content/uploads/2016/08/RNase_A.png). 

 

Figure 1.5 Example of protein tertiary structure (source: Gerard T., 2106) 

 

1.1.2 Post-translational modification 

Many proteins are modified after protein translation completed, which is known as Post-

translational modification (PTM). PTM occurs when the protein interacts with a specific enzyme-

catalyzed modification on the backbone or side chain. Commonly, this process happens in several 

places in the cell, for example in the cytosol, endoplasmic reticulum, or Golgi apparatus.  
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PTM is one way of expanding the genetic coding capacity to generate diversity in the 

corresponding proteomes, as is shown in Figure 1.6 [2]. PTM cellular regulation is complex and 

plays a very important role in biological regulation. It helps the cell regulate localization, cellular 

activities, and interaction with other cellular molecules.  

 

Figure 1.6 Comparison of complexity from genome to proteome (source: Thermofisher Scientific) 

There are different types of PTM. These are the common ones: 

 Methylation. Methylation is the process of transferring one carbon methyl group to amino acid 

side chains by methyltransferases using S-adenosylmethionine (SAM) as the primary methyl 

donor. This can neutralize a negative amino acid charge when bound to carboxylic acids, and 

leads to an increased hydrophobicity in the protein. A well-known purpose of methylation is 

epigenetic regulation of transcription.  

 Acetylation. Acetylation, specifically to nitrogen atoms on a protein (N-acylation). This occurs 

as the nascent protein is being translated. The N-terminal methionine on the growing 

polypeptide chain is cleaved by the methionine amino acid peptidase and then released by an 

acetyl group donated by acetyl CoA via enzyme N-acetyltransferase. Around 90% of eukaryotic 

cells are acetylated using this process.  

 Glycosylation. Glycosylation involves the addition of various types of sugar moieties. It ranges 

from a simple monosaccharide modification of transcription factors, to highly complex 

branched polysaccharide modification of cell surface receptors. These carbohydrates can be 

added to the nitrogen atom in the side chain of asparagine residues, which are called N-linked. 

Another type of Glycosylation is the addition of oxygen atoms in the side chain in Serine or 

Threonine residues, which are called O-linked. These types of glycosylation changes create the 

structural component of cell surface and secreted proteins. 
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 Lipidation. Lipidation is a PTM which often occurs in particular membrane-bound organelles, 

such as the endoplasmic reticulum, Golgi apparatus, or mitochondria. It is also used to target 

proteins to endosomes, lysosomes, and the plasma membrane. There are two types PTK 

lipidation, GPI anchors, and S-palmitoylation. C-terminal glycosylphosphatidylinositol (GPI 

anchor) helps to tether proteins bound to the plasma membrane of the cell surface. These 

hydrophobic moieties are prepared in the endoplasmic reticulum, where they are added to 

nascent proteins and used to localize cell surface proteins to cholesterol, or sphingolipid-rich 

areas in the plasma membrane. S-palmitoylation involves the addition of 16 carbon long 

paimitoyl groups to dilate side chains of cysteine residues. This modification adds a long 

hydrophobic chain that can be used in a similar manner as a GPI anchor. It helps to anchor 

proteins in the hydrophobic cell membrane.  

 Ubiquitination. Ubiquitination is a PTM used to target proteins for degradation. Ubiquitin is a 

polypeptide consisting of 76 amino acids, which attaches to lysine residues of target proteins 

via the C-terminal glycine of ubiquitin. Polyubiquinated proteins are recognized by the 26th 

proteasome, which is an enzyme that catalyzes the degradation of the protein and the recycling 

of the ubiquitin. 

 Proteolysis. Proteolysis is a PTM which uses proteases to remove amino acids from the amino 

end of the protein, or to cut the peptide chain in the middle. One example of proteolysis is the 

peptide hormone insulin, which is cut twice after disulphide bonds are formed. Furthermore, a 

pro-peptide is removed from the middle of the chain. The resulting protein consists of two 

polypeptide chains connected by disulphide bonds. Proteases also plays a role in cell signaling, 

antigen processing, and adaptosis.  

Among all the PTMs that occur in eukaryotic cell, one of the most common is phosphorylation. 

1.1.3 Phosphorylation 

Protein phosphorylation is a reversible modification of adding a phosphate group to certain 

residues, which are Serine, Threonine or Tyrosine [3]. It is used to regulate proteins in various 

cellular processes, including signal transduction pathways, the cell cycle, and apoptosis. Protein 

kinases are the enzymes that help facilitate the phosphate group transfer and phosphorylases help to 

remove them.  

As shown in Figure 1.7, this process includes the transfer of a phosphate group from Adenosine 

Triphosphate (ATP) to the target residue (Serine, Threonine, or Tyrosine), thereby creating 

Adenosine Diphosphate (ADP) as the byproduct. This PTM event normally occurs in the cytosol or 

the cell nucleus. The kinase protein helps the phosphorylation process, which has an important role 

in regulating cellular activities, such as metabolism, proliferation, differentiation and apoptosis. Most 
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families of the kinase enzymes have the same homologous catalytic domains and the mechanism of 

substrate recognition may be similar despite the wide scope of variation in sequence. 

 

Figure 1.7 Process of protein phosphorylation 

1.2 Objective 

Protein phosphorylation has an important role in eukaryotic cell activities, which include the 

life cycle of the cell, signaling for cell growth, and intracellular signal transduction. This is a big 

reason why a lot of researches are conducted to analyze and predict phosphorylation sites. The main 

objective of this research is to find new combinations of features and selecting important features to 

improve the performance of phosphorylation site classification using the computational approach. 

1.3 Contribution  

Protein phosphorylation is one of the most common types of post-translational modification, 

and it is important for the cell. Studies related to phosphorylation site prediction using different 

methods have been explored intensively by researchers.  

This research may contribute in the following matters: 

Purposing new features for phosphorylation site prediction. We propose several new 

features, which have not been used to conduct classification previously. We generated these features 

with several state-of-the-art protein analysis tools. 

Finding combinations of new features with features that have been used for the 

classification method. We combine new features with features that have been used from previous 

methods to achieve a better classification performance.  

Implementing feature selection to improve classification performance. In previous 

research, feature selection was implemented. However, it decreased the performance of classification. 

In this research, we conducted feature selection using the combination of new features and features 

from previous research to improve the classification result. 
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1.4 Thesis organization 

This thesis is divided into five chapters. 

Chapter 1 introduces the background of this research topic and the reasons of conducting the 

research. 

Chapter 2 explains the most recent literatures of protein phosphorylation site prediction. They 

include different approaches for prediction methods. Several feature selection and classification 

methods will also be listed and explained. Finally, in this chapter we will also explain about cross 

validation. 

Chapter 3 introduces the data sets which were used for classification. This includes information 

about the data sets and how we prepared the data sets to conduct classification. In this chapter, we 

also explain about the novel features, feature selection, and classification methods. Finally, we 

explain about evaluation metrics and grid search, which we used to search and evaluate the best 

classification performance. 

Chapter 4 shows and explains the result of our experiments in detail. This includes feature selection 

and classification results. Comparison of results with previous research related to this topic is 

explained in this chapter. 

Chapter 5 summarizes the thesis by stating a conclusion of achievements. Suggestions for the future 

work are discussed in this chapter. 
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Chapter 2 Literature review 

This chapter will explain and discuss about several approaches of phosphorylation site prediction, 

which include the experimental approach and computational approach. Two related research 

methods, which are PhosphoSVM and RF-Phos will also be discussed. We will also explain about 

feature selection, classification, and cross validation.   
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2.1 Phosphorylation site identification 

There are two common approaches in identifying protein phosphorylation sites. They are the 

experimental approach and the computational approach. 

2.1.1 Experimental approach: Mass spectrometry 

In the past, researchers relied on the experimental approach to analyze protein and identify its 

phosphorylation sites. One common method has been to use a machine called (as shown in Figure 

2.1) a mass spectrometry (MS) machine.  

 

Figure 2.1 Mass spectrometry machine (Source: Business Wire, 2014) 

Mass spectrometry is a method of splitting an atom, isotope, or even fragmented molecules 

based on their respective masses. Generally, a MS machine consists of three parts, which are an 

ionizer, mass analyzer, and a detector, as shown in Figure 2.2. The Ionizer is a vacuum where the 

sample is input. The sample is hit by electrons and several positive ions are created. The mass 

analyzer consists of two components, which are an electric field and a magnet. The electric fields 

consist of negative ions that will pull the positive ion to the mass analyzer. In addition, the magnets 

will bend the path of ions. Finally, the detector consists of an electro multiplier and amplifier. 
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Figure 2.2 Diagram of a mass spectrometry machine 

Calibration is required to be conducted before using a MS machine. The strength of the 

magnets must be calibrated in order for the positive ions from the sample to be received by the 

electron multiplier in the detector. Once calibrated, a sample is hit by a negative electron, this releases 

the positive ions from the sample. Using the negative charge in the electric field, the positive ion 

moves to the mass detector. The magnet is then used to bend the path of the positive ions. Heavier 

ions are harder to move than lighter ones. The electron multiplier then catches the positive ions and 

the result is amplified using the amplifier. We can identify the ions based on where the ion is located; 

the ions with heavier masses will be located higher than the ions with lighter masses. 

Based on that concept, we can also analyze complex molecules such as protein sequences. 

Amino acids can be identified by their masses. MS-based proteomics is commonly known as an 

indispensable technology for interpreting information encoded in genomes. Currently, protein 

analyses, especially PTM by MS, has been most successful when conducted on data sets that consist 

of small protein sequences isolated in a specific context [4].  

Cao conducted research to identify phosphorylation sites using MS [5]. Figure 2.3 shows an 

output from MS to identify phosphorylation sites at Serine66, Serine88, Threonine92, Serine169, and 

Serine189. 
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Figure 2.3 Example of mass spectrometry to identify phosphorylation at Serine (Source: Cao et al., 2006) 

The main advantage of using MS is that it can produce a high accuracy in phosphorylated 

protein site identifications on a mass spectrometer reading. However, it also has disadvantages. It 

requires expensive equipment. According to LabX website, a compact size MS type Shimadzu 

GZ/MS system (including computer and software) costs around $30,000 US dollars. Secondly, to 

conduct this experiment, it requires other supporting equipment and materials, such as a centrifugal 

machine. It also requires intensive labor and preparation time. Extracting protein sequences from 

samples requires pre-processing the sample which is also time consuming. Finally, not everyone can 

conduct this research to identity phosphorylation sites. It requires adequate skills and knowledge to 

prepare the sample and operate the machine and software. 

2.1.2 Computational approach 

Currently, because of the advancement of computer and information technology, researchers 

more commonly use computer technology to identify phosphorylation sites. There are four basic 

reasons why the computational approach is becoming more popular. First, a new generation of high-

speed computer processors with multi-core and multi-thread technology have been released. Second, 

large data storage is becoming more affordable. Third, there are new computer networking 

technologies that make data transfer faster and more reliable. Forth, new machine learning algorithms 

that make computers able to solve complex problems are being developed. 

In general, phosphorylation site prediction using the computational approach can be divided 

into two methods, which are the kinase-specific approach and the non-kinase-specific approach.  
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i. Kinase-specific approach 

To conduct phosphorylation site prediction using this approach, two areas of information are 

required. First is the information about the kinase protein, which catalyzes the phosphorylation. For 

example, the kinase family in Homo sapiens are AGC kinases, CaM kinases, CK1, CMGC, STE, TK, 

TKL. Second is information about the protein target of phosphorylation, including the information 

of residue that has been phosphorylated.  

There have been several research works conducted using this approach. Xue et al, proposed a 

method called GPS 2.1 using JAVA 1.5 [6]. Motif length selection (MLS) was implemented to 

improve the prediction of the previous method (GPS 2.0). In this work, they use phosphorylation site 

data from humans and several species of animal. Information about human protein kinase is also 

collected and classified into four groups. 

Bloom introduced NetphosK [3]. This method implemented Neural Network for the classifier. 

In this research, they selected different types of protein kinase, which are PKA, PKC, PKG, cdc2,CL-

2, and CaM-II. They also collected information about phosphorylated Serine and Threonine, which 

are catalyzed by protein kinase. 

The main problem of implementing this approach is that kinases protein information is 

typically not publicly available. 

ii. Non-kinase-specific approach 

This approach only requires information about the protein targets of phosphorylation, 

including phosphorylated residue. Many computational techniques using this approach have been 

implemented for phosphorylation site prediction. In this thesis, two related works using this approach 

will be explained. 

2.2 Related works  

2.2.1 PhosphoSVM 

PhosphoSVM was introduced by Dou in 2014 [7]. This method implemented eight different 

feature groups to classify phosphorylation sites. It implemented Support Vector Machine (SVM) for 

the classifier. The feature groups are named Shannon Entropy, Relative Entropy, Secondary Structure, 

Protein Disorder, Accessible Surface Area, Overlapping Properties, Average Cumulative 

Hydrophobicity, and K-Nearest Neighbor Profile. 

In the paper, classification was conducted with two different data sets: the P.ELM (human and 

animal) data set, and the PPA (plant) data set as the small independent data set. The AUC values for 

the P.ELM data set are: 0.84, 0.82, and 0.74 for Serine, Threonine, and Tyrosine, respectively. In 
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addition, for the PPA data set, the AUC values for Serine, Threonine, and Tyrosine are: 0.74, 0.67, 

and 0.60, respectively. Feature selection was not implemented in this method. 

2.2.2 RF-Phos 

Ismail proposed his method: RF-Phos in 2016 [8]. Ten different feature groups were used to 

conduct classification. Features that RF-Phos used from PhosphoSVM are: Shannon Entropy, 

Relative Entropy, Accessible Surface Area, Overlapping Properties, and Average Cumulative 

Hydrophobicity. This method also introduced new features, which are Information Gain, Sequence 

Feature, Composition-Transition-Distribution, Sequence Order Coupling Numbers, and Quasi 

Sequence Order. 

Using those features, Random Forest was used to classify the phosphorylation sites. The 

primary data set was P.ELM, and the independent data set was PPA. This method achieved a better 

performance when compared to PhosphoSVM. The accuracy for Serine, Threonine, and Tyrosine 

using the P.ELM data set were 0.83, 0.87, and 0.86, respectively. Also Random Forest was used to 

conduct feature selection. Gini Impurity Index (GII) was proposed to measure the important features. 

In the research, the results of classification using only the top 100 important features was compared 

with the results of classification using all the features. In general, it was found that feature selection 

using only the top 100 important features decreased the classification performance. 

2.3 Feature selection 

In real-world situations, our data contains relevant and irrelevant information. However, 

relevant and irrelevant features for many real-world learning problems are often unidentified. The 

problem with data sets containing irrelevant information is that it could degrade the performance of 

classification, both in computational time (because of high dimensional data) and in accuracy of 

prediction (because of irrelevant information). Therefore, it is important to identify and select 

relevant features. Feature selection is a process of selecting relevant feature subsets. There are several 

important reasons for implementing feature selection, to help visualize and understand the data, 
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reduce data storage, reduce computation time, and break the curse of dimensionality in order to 

improve classification performance [9]. 

 

Figure 2.4 Graphic illustrating the curse of dimensionality 

Figure 2.4 illustrates the curse of dimensionality. This occurs in a classification or prediction 

method that uses data containing a very large number of features. The performance of classification 

reduces as the number of features used increases.  

This method is used to select a sub group of features in order to improve the performance of 

the classifier. In other words, given a feature set 𝐹 = {𝑥1𝑥2, … , 𝑥𝑛}, the goal of this method is to find 

a subset 𝐹′ that maximizes the learning ability classifier. However, it would not be practical to 

implement a brute force approach to search each possibility from the large number of features. If our 

data contains n features then there will be a 2n possibility of finding feature subsets. 

2.3.1 Wrapper method 

This feature selection method was introduced by Kohavi, 1997 [10]. The goal of this method 

is to evaluate how useful a feature set is by using a learning algorithm. For this method to be able to 

select a subset of features, a learning model is trained for each different feature subset. The selected 

subset is the one that has the best learning performance. 

There are several requirements for implementing this feature selection method. First, it 

requires the measurement method to evaluate the selection performance. Performance measurement 

is implemented to generate the criteria of feature selection and to create the resampling strategy. 

Second, it requires a learning method. Finally, a method that is able to search all possible feature 

subsets is necessary. 

There are two terminologies used in the search method. They are forward selection and 

backward elimination. Forward selection can be define as the process of searching from the empty 

feature set. Backward elimination is the process of deleting from a full feature set. In most 
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experiments, the initial state is set to be empty, therefore forward selection is most commonly 

implemented. The main reason is because of computational time. It requires less time to generate 

classifiers for a small number of features. However, theoretically, by using a backward elimination 

we can search all features easily.  

2.3.2 Filter method 

Filter method conducts feature selection by using an attribute evaluator and an algorithm ranking 

system to rank all the features in a data set. This generates a list of features and their given ranks, in 

association with attribute evaluation. By omitting one feature at a time from the list provided by the 

algorithm ranking system, we can evaluate the performance of the features with a classification 

algorithm.  

A disadvantage of this method is that the value from the algorithm ranking system may be 

different from the value given by the classification algorithm. This may cause the model to be overfit. 

2.4 Classification 

Classification is a process using collected data to assign discrete labels. The goal is to predict 

the class of new observations. Classification tries to generate a classifier than can produce an output 

from arbitrary input. Classifiers can then label and assign an unseen example into a specific class. 

There are two main characteristics of classification problems. First, the output of classification is 

qualitative. Second, the classes to which a new observation can belong are known beforehand. 

In general, there are two classification problems. First, the binary-class classification has only 

two class labels. Second, the multi-class classification has more than two class labels. 

The possible applications of classification methods are very broad. For example, after a set of 

clinical examinations that verify the vital signals of a disease, we can predict whether a new patient 

with an unseen set of vital signals suffers that disease and needs further treatment. Another example 

is classifying a set of animal images into their species label.  

2.4.1 Decision tree 

This is a simple method for solving classification problems. The objective of this method is to 

generate a binary tree, which minimizes the error in each leaf. The main advantage of a decision tree 

is that it is easy to read and understand, as illustrated in Figure 2.5. In this data set, there are two class 

labels, which are A and B. This data set consists of two data variables xi1 and xi2. The leaves in the 

tree represent class labels and the nodes represent the conditions that lead to the class labels. 
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Figure 2.5 Illustration of decision tree using two variables. 

To build a decision tree we use data to determine several points. First, we have to decide which 

variable is used to split at a node and what will be the value of the split. The basic idea is to find a 

condition that will split class labels in a way that creates groupings consisting of the maximum 

possible number of identical class labels. To measure the split performance, we use a method called 

entropy. Second, we need to determine when to stop (create a leaf) or split again. Finally, we have 

to assign a leaf to the class labels  

2.4.2 Random Forest 

Introduced by Breiman, this is one of the more popular classification methods [11]. This 

method generates many decision trees based on random selection of data and random selection of 

features. It provides classes of dependent features on the various trees. Figure 2.6 illustrates 
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classification using Random Forest. The subsets are selected randomly so that they consist of 

different numbers of data and features.  

From the randomly selected subset of data, we create different decision trees. There are two 

reasons why we have to generate features randomly. First, most of the tree can generate a correct 

classification of class for most of the data set. Second, error generated in each tree occurs in different 

places. By conducting voting for each observation and deciding about the predicted class based on 

the voting result, this method is expected to have a better classification result. 

 

Figure 2.6 Classification process using Random Forest 

2.4.3 Support Vector Machine 

Another one of the more popular classification methods is the Support Vector Machine (SVM). 

It is proposed by Vapnik [12]. SVM models the classification problem by creating a feature space, 

which is a finite-dimension vector space, each dimension of which represents a feature of a particular 

object. In other words, SVM constructs linear separating hyperplanes in high-dimensional vector 

space. Data points are defined as (�⃗�, 𝑦) tuples, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑝) where 𝑥𝑗 are the feature values 

and 𝑦 is the class label. Optimal classification occurs when the hyperplane separates with maximum 

distances to the nearest training data set point, as illustrated in Figure 2.7. In this example, two classes 

are separated using a linear hyperplane. 
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Figure 2.7 Linear hyperplane classifying two classes 

SVM has many advantages, mostly because of its computational efficiency on large data sets. 

The first advantage of SVM is that it is an efficient classifier in high-dimensional spaces. This is 

particularly applicable to text or DNA/protein sequence classification problems where the dimension 

of the data set can be extremely large. Secondly, it is memory efficient. Since only a subset of the 

training data set is used in the actual process of assigning new members to a class, only this subset 

needs to be stored in the memory when making classification decisions. Thirdly, it is versatile. 

Separation of classes is often non-linear. The ability to implement different kernels allows flexibility 

for decision boundaries, leading to a better performance. 

2.5 Cross validation 

Cross validation is a method used to evaluate prediction performance from a certain model. 

The main concept of this method is to split the data set into training data and testing data. This is 

done to avoid overfitting the result and create a generalizable prediction model. The model is created 

by using the training data, and the test data is used for evaluating the performance of prediction. In 

addition, we hope that the model is generalizable enough to predict class labels from data that the 

model has not seen before.  

For example, we can use this method to create a system that can detect a spam email, as it is 

illustrated in Figure 2.8. First we collect the data of all the emails and we set a label called ‘spam’ or 

‘not spam’ for each email. Then we split the data into training and testing data. We create the 

classification model using the training data and evaluate it with the test data. The result of prediction 

is then compared with actual class label. We then change the role of each subset of data. The test 
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data from the previous step becomes the new training data, and vice versa with the training data from 

the previous step. We calculate the accuracy of the prediction using the model generated from 

training data. We then average the accuracy of both testing processes. 

 

Figure 2.8 Example of email spam prediction. Cross validation is used to test the model. 

2.5.1 k-fold cross validation 

One common implementation of k-fold is where k=10. Figure 2.9 describes the 

implementation of 10-fold cross validation. First, the data set is divided into ten groups. Ten iterations 

of cross validation are conducted for all groups, where 90% of the data is used to create the model to 

test 10% of the data. Then the average result of all iterations is used to measure the performance of 

the classification using the data set. 
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Figure 2.9 Procedure of 10-fold cross validation 

2.5.2 Leave-One-Out cross validation 

An extreme example of k-fold cross validation is Leave-One-Out cross validation. In this 

setting, we take one sample and leave it out and we generate the model based on the rest of the data 

set. After that, we use the model to evaluate the test data. We repeat this process for each data in the 

data set, as it is illustrated in Figure 2.10. In this example, the data set consists of only 4 objects of 

observation. We split the data set into 4 folds, taking one out for the test data. Using the 3 data sets 

left, we create a model for predicting the test data. This method is commonly used when the data set 

is not large, especially in the biomedical field where there are only a very small number of samples 

available for the data set.  

 

Figure 2.10 Illustration of LOOCV. In this example, there are 4 objects in the data set. 
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Chapter 3 Data and method 

This chapter will explain the two data sets, which are used in this research. The flowchart of the 

research will also be explained. Each process in the method will be explained in detail. The method 

of finding feature sets which achieve the best classification performance will also be explained. 
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3.1 Data 

In this research, we use two different data sets, which are P.ELM and PPA. 

3.1.1 P.ELM data set 

 P.ELM is a database containing phosphorylation sites in the eukaryotic cell which have been 

experimentally verified [13]. The database consists of 42,574 phosphorylation sites, which are: 

31,754, 7,449, and 3,370 for Serine, Threonine, and Tyrosine, respectively. Most of the information 

is from: Homo sapiens (62%), Mus musculus (16%), Dorsophila melanongstar (13%), 

Caenorhabditis elegans (7%). This data set was collected by Dou and redundant sequences with 30% 

similarity were removed, as shown in Table 3.1. The data was made available for download from the 

web site of PhosphoSVM [7]. 

Table 3.1 P.ELM data set of phosphorylation sites for Serine, Threonine, and Tyrosine residue 

Residue Number of Sequences Number of Sites 

Serine 6,635 20,964 

Threonine 3,227 5,685 

Tyrosine 1,392 2,163 

 

We then created protein sequences that have fixed-lengths. The window size for these 

sequences is 9, with the phosphorylatable residue (Serine, Threonine, or Tyrosine) located at the 

center. A sequence was defined as ‘positive’ when the center of that sequence is a known 

phosphorylated residue; otherwise, it is defined as a ‘negative’ sequence. We removed redundant 

sequences for both positive and negative sequences by using skipredundant [14]. The parameters we 

implemented using skipredundat are as follows: the acceptable percentage of similarity was set to 0-

20%, the value for gap opening penalty to 10, and gap extension penalty to 0.5. Table 3.2 lists the 

number of positive and negative sequences before and after removing redundant sequences for each 

residue. The number of negative sequences after redundancy removal are: 4,771, 3,343, and 898 for 

Serine, Threonine, and Tyrosine, respectively. We then selected negative sequences randomly for 

each residue based on the negative sequences from Ismail’s work. 

Table 3.2 Number of sequences before and after removing redundant sequences for window size-9 

Residue 
Positive 

Negative 
Before After 

Serine 20,557 1,554 1,543 

Threonine 5,596 707 453 

Tyrosine 1,392 267 226 
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3.1.2 PPA data set 

The second data we used was PPA, as a small independent data set. PPA is a database 

containing phosphorylation sites from Arabidopsis thaliana [15]. We created protein sequences for 

this data set using the same window size and method as P.ELM. After removal of redundant 

sequences, we selected positive and negative sequences randomly also based on Ismail’s work. We 

can see in Table 3.3 the number of positive and negative phosphorylation sites for each residue with 

window size 9. We set the number of positive and negative sequences as equal in order to make the 

data set well balanced. 

Table 3.3 PPA data set, the independent data set 

Residue Number of positive/negative 

sequences after redundancy removal 

Number of positive/negative 

sequences after selection 

Serine 484/1830 307/307 

Threonine 132/1227 68/68 

Tyrosine 187/640 51/51 

 

3.2. Method 

3.2.1 Flowchart of research method 

 

Figure 3.1 Flowchart of the research method 

We conducted six processes in our research, as shown in Figure 3.1. First, we collected the 

data of proteins related to phosphorylation and the position of the phosphorylated residues from the 

P.ELM and PPA data sets. Then we generated fixed length sequences. To reduce the computational 

time and create a non-redundant data set, we removed similar protein sequences using skipredundant. 

Then we generated features from the protein sequence using PROFEAT 2016, NCBI-PSIBlast, and 

protr package. We then conducted feature selection using Random Forest. Finally, we classified 

phosphorylation sites for each residue. We found the best feature selection by implementing grid 

Data preparation: Protein 

and Phosphorylation sites 

from P.ELM and PPA 

Generate fixed-length 

protein sequence 

Redundancy Removal using 

skipredundant 

Feature extraction using: 

PROFEAT 2016, NCBI-

PSIBlast, protr package 

Feature selection using 

Random Forest 

Classification using Support 

Vector Machine 
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search. In this research, we compared our results of classification after feature selection with the 

results from other works related to phosphorylation site prediction. 

3.2.2 Feature extraction 

Feature extraction generates a series of features by analyzing the original data. Using a fixed-

length protein sequence, we implemented feature extraction to generate information as numerical 

vectors. The features that we used in this research were extracted using three tools: PROFEAT 2016, 

NCBI-Psiblast, and protr package. 

PROFEAT (2016) is a web server that provides tools to extract features related to proteins 

from a list of protein sequences [16]. This web server is used to analyze and predict structural, 

functional, expression, and interaction information of proteins (polypeptides). We used it to 

generate the following features: Amino Acid Composition (AAC), Dipeptide Composition (DPC), 

Normalized Moreau-Broto Autocorrelation Descriptor (NMB), Moran Autocorrelation Descriptor 

(MORAN), Geary Autocorrelation Descriptor (GEARY), Composition, Transition, Distribution 

Descriptor (CTD), Amphiphilic Pseudo-Amino Acid Composition (APAAC), and Total Amino Acid 

Properties (AAC). 

Position-Specific Iterative (PSI)-BLAST is a search method based on a protein sequences 

profile that creates alignments generated by running BLASTp (protein) program [17].  

protr is an R package that provides tools to generate various numerical information from a 

protein (polypeptide) sequence [18]. This package generates eight different feature descriptor groups. 

From these eight groups, generally around 22,700 descriptor values are implemented. This package 

also allow the user to select amino acid properties from AAIndex database, and other properties that 

the user can define to generate customized descriptors. protr is used to produce the following features: 

BLOSUM and PAM Matrices for the 20 Amino Acids, Amino Acid Properties Based Scales 

Descriptor (Protein Fingerprint), Scales-based Descriptor derived by Principal Components Analysis, 

Scales-based Descriptor derived by Multidimensional Scaling, Conjoint Triad Descriptors, and 

Sequence-Order-Coupling Number. Details of these features are described below. Except three 

features (CTD, SOCN, QSO), most of the features are not used in Ismail’s work. 

We extracted these features in this research: 

i. Amino Acid Composition (AAC) 

Using a protein sequence, we can calculate the fraction of each amino acid by implementing these 

feature descriptors [19]. This fraction is calculated using Equation 1, for all 20 amino acids: 

 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑎𝑖 =
𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑡𝑦𝑝𝑒 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑 𝑖𝑛 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
  (1) 
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where a specific type of amino acid is symbolized by i. 

ii. Dipeptide Composition (DPC) 

Dipeptide Composition generates 400-dipeptide, fixed-length numerical information based on 

the input protein sequences. It measures the fraction of amino acids and their local order. It is 

calculated using Equation 2: 

 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑒𝑝(𝑖) =
𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝(𝑖)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑏𝑙𝑒 𝑑𝑖𝑝𝑒𝑝𝑡𝑖𝑑𝑒
  (2) 

where dep(i) is one dipeptide i of 400 dipeptides. 

iii. Normalized Moreau-Broto Autocorrelation Descriptors (NMB) 

Before calculating Normalized Moreau-Broto Autocorrelation, we must define Moreau-Broto 

Autocorrelation. It can be defined using Equation 3: 

 𝐴𝐶(𝑑) = ∑ 𝑃𝑖𝑃𝑖+𝑑
𝑁−𝑑
𝑖=1   (3) 

where Pi and Pi+d are the amino acid properties at position i and i+d, respectively. Equation 4 is used 

to calculate Normalized Moreau-Broto Autocorrelation [20]: 

 𝐴𝑇𝑆(𝑑) =
𝐴𝐶(𝑑)

(𝑁−𝑑)
  (4) 

where d=1,2,3, ... ,30.  

When we use PROFEAT, the value of nlag should be lower than the size of the sequence. Since the 

window size is 9, we set nlag=8. 

iv. Moran Autocorrelation Descriptors (MORAN) 

Moran Autocorrelation can be calculated using Equation 5: 

 𝐼(𝑑) =
1

𝑁−𝑑
∑ (𝑃𝑖−𝑃)(𝑃𝑖+𝑑−𝑃)𝑁−𝑑

𝑖=1

1

𝑁
∑ (𝑃𝑖−𝑃)

2𝑁
𝑖=1

 𝑑 = 1,2,3, … , 30  (5) 

where 𝑃 is the avarege of Pi. In the use of PROFEAT, we set nlag=8. 

v. Geary Autocorrelation Descriptors (GEARY) 

Geary Autocorrelation can be defined using Equation 6: 

 𝐶(𝑑) =

1

2(𝑁−𝑑)
∑ (𝑃𝑖−𝑃𝑖+𝑑)2𝑁−𝑑

𝑖=1

1

𝑁−1
∑ (𝑃𝑖−𝑃)

2𝑁
𝑖=1

 𝑑 = 1,2,3, … , 30  (6) 

In the use of PROFEAT, we set nlag=8. 
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vi. Composition, Transition, Distribution (CTD) 

These feature descriptors can be generated from protein sequences. It provides amino acid 

distribution patterns of a particular structural or physicochemical property [20] [21]. 

vii. Sequence-Order-Coupling Number (SOCN) 

These feature descriptors are used to measure the amino acid distribution pattern of a specific 

physicochemical property along a protein sequence. The dth rank of sequence-order-coupling 

number can be calculated using Equation 7: 

 𝜏𝑑 = ∑ (𝑑𝑖,𝑖+𝑑)2𝑁−𝑑
𝑖=1  𝑑 = 1,2,3, … , 30  (7) 

where di,i+d is the distance between two amino acids at position i and i+d. In the use of protr, we also 

set nlag=8.  

viii. Quasi-Sequence-Order Descriptors (QSO) 

The QSO type-1 can be calculated using Equation 8: 

 𝑋𝑟 =
𝑓𝑟

∑ 𝑓𝑟
20
𝑟=1 +𝑤 ∑ 𝜏𝑑

30
𝑑=1

 𝑟 = 1,2,3, … , 20  (8) 

where the normalized occurrence of amino acid type i is symbolized by fr. In addition, w is the 

weighting factor, w=0.1. QSO type-2 is calculated using Equation 9. 

 𝑋𝑑 =
𝑤𝜏𝑑−20

∑ 𝑓𝑟
20
𝑟=1 +𝑤 ∑ 𝜏𝑑

30
𝑑=1

 𝑟 = 21,22,23, … , 50  (9) 

In the use of PROFEAT, we set nlag=8. 

ix. Amphiphilic Pseudo-Amino Acid Composition (APAAC) 

Before we calculate APAAC, we must define Pseudo-Amino Acid Composition (PAAC) [16]. 

Three original variables are generated, hydrophobicity values 𝐻1
0(𝑖), hydrophilicity values 𝐻2

0(𝑖), 

and side chain masses 𝑀0(𝑖) of 20 amino acids (i=1,2,3, … ,20). 

 𝐻1(𝑖) =
𝐻1

0(𝑖)−∑
𝐻1

0(𝑖)

20
20
𝑖=1

√∑ [𝐻1
0(𝑖)−∑

𝐻1
0(𝑖)

20
20
𝑖=1 ]

2
20
𝑖

20

 (10) 

 𝐻2(𝑖) =
𝐻2

0(𝑖)−∑
𝐻2

0(𝑖)

20
20
𝑖=1

√∑ [𝐻2
0(𝑖)−∑

𝐻2
0(𝑖)

20
20
𝑖=1 ]

2
20
𝑖

20

 (11) 
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 𝑀(𝑖) =
𝑀0(𝑖)−∑

𝑀0(𝑖)

20
20
𝑖=1

√∑ [𝑀0(𝑖)−∑
𝑀0(𝑖)

20
20
𝑖=1 ]

2
20
𝑖

20

 (12) 

Then, a correlation function can be generated as: 

 𝜃(𝑅𝑖 , 𝑅𝑗) =
1

3
{[𝐻1(𝑅𝑖) − 𝐻1(𝑅𝑗)]

2
+ [𝐻2(𝑅𝑖) − 𝐻2(𝑅𝑗)]

2
+ [𝑀(𝑅𝑖) − 𝑀(𝑅𝑗)]

2
} (13) 

and sequence order-correlated factors can be calculated using Equation 14: 

 𝜃λ =
1

𝑛−λ
∑ 𝜃(𝑅𝑖, 𝑅𝑖+λ)𝑛−λ

𝐼=1 , (λ < N) (14) 

where λ is the parameter. The normalized frequency of 20 amino acids in the protein sequence is 

symbolized by fi. A group of 20+λ feature descriptors, called the PAAC, can be calculated using 

Equation 15: 

𝑋𝑢 =
𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 + 𝑤 ∑ 𝜃λ

λ
𝑗=1

, 𝑤ℎ𝑒𝑛 1 ≤ 𝑢 ≤ 20 

 𝑋𝑢 =
𝑤𝜃𝑢−20

∑ 𝑓𝑖
20
𝑖=1 +𝑤 ∑ 𝜃λ

λ
𝑗=1

, 𝑤ℎ𝑒𝑛 20 + 1 ≤ 𝑢 ≤ 20 + λ (15) 

where w=0.05. From Equation 10 and Equation 11, the hydrophobicity and hydrophilicity correlation 

can be defined as: 

 𝐻𝑖,𝑗
1 = 𝐻1(𝑖), 𝐻1(𝑗);  𝐻𝑖,𝑗

2 = 𝐻2(𝑖), 𝐻2(𝑗) (16) 

Then, sequence order factor can be defined using Equation 17: 

 𝜏2λ−1 =
1

𝑁−λ
∑ 𝐻𝑖,𝑖+λ

1 ;𝑁−λ
𝑖=1  𝜏2λ =

1

𝑁−λ
∑ 𝐻𝑖,𝑖+λ

2 , 𝑤ℎ𝑒𝑟𝑒 λ < 2 𝑁−λ
𝑖=1   (17) 

Finally, APAAC can be calculated using Equation 18: 

 𝑝𝑢 =
𝑓𝑢

∑ 𝑓𝑖
20
𝑖=1 +∑ 𝜏𝑗

2λ
𝑗=1

, 𝑤ℎ𝑒𝑛 1 ≤ 𝑢 ≤ 20 

 𝑝𝑢 =
𝑤𝜏𝑢

∑ 𝑓𝑖
20
𝑖=1 +∑ 𝜏𝑗

2λ
𝑗=1

, 𝑤ℎ𝑒𝑛 20 + 1 ≤ 𝑢 ≤ 20 + λ (18) 

In the use of PROFEAT, we set the weight factor=0.05 andλ=8.  

x. Total Amino Acid Properties (AAP) 

Total Amino Acid Properties for a specific physicochemical property i is defined using Equation 19: 

 𝑝𝑡𝑜𝑡(𝑖) =
1

𝑁
∑ 𝑃

𝑛𝑜𝑟𝑚𝑗
𝑖

𝑁
𝑗=1  (19) 

where 𝑃
𝑛𝑜𝑟𝑚𝑗

𝑖  represents the property i of amino acid Rj that is normalized between 0 and 1. N is the 

length of the protein sequence. 𝑃
𝑛𝑜𝑟𝑚𝑗

𝑖  is calculated using Equation 20: 
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 𝑃
𝑛𝑜𝑟𝑚𝑗

𝑖 =
(𝑝𝑗

𝑖−𝑝𝑚𝑖𝑛
𝑖 )

(𝑝𝑚𝑎𝑥
𝑖 −𝑝𝑚𝑖𝑛

𝑖 )
  (20) 

where 𝑝𝑗
𝑖  is the original amino acid property i for the residue j. 𝑝𝑚𝑎𝑥

𝑖  and 𝑝𝑚𝑖𝑛
𝑖  are the maximum and 

the minimum values of the original amino acid property i, respectively.  

xi. Position Specific Scoring Matrix (PSSM) 

PSSM features were generated using PSI-BLAST against a local database generated from the 

phosphorylation data set. For each protein sequence (window size 9), PSI-BLAST creates matrix (9× 

20 amino acid). We then create a 180-length vector for each sequence. 

xii. BLOSUM and PAM Matrices for the 20 Amino Acid (BLOSUM) 

These descriptors are generated from BLOSUM and PAM. In the use of protr, we set k=5, lag=3, 

and Matrix type=AABLOSUM45.  

xiii. Amino Acid Properties Based Scales Descriptors (Protein Fingerprint) (ProtFP) 

These descriptors are scaled-based generated from AAIndex properties. In the use of protr, we set 

pc=5, lag=5, index vector for Amino Acid Index =(160:165, 258:296). 

xiv. Scales-based Descriptor derived by Principal Components Analysis (SCALES) 

These descriptors are generated using principal components analysis. In the use of protr, we set pc=7, 

lag=5, properties matrix=AAindex (7:26). 

xv. Scales-based Descriptor derived by Multidimensional Scaling (MDDSCALES) 

Scales-based Descriptors are derived by Multidimensional Scaling. These descriptors are calculated 

by using multidimensional scaling. In the use of protr, we set lag=8. 

BLOSUM, PROTFP, SCALES, and MDDSCALES descriptors are often implemented in 

Proteochemometric Modeling (PCM). 

xvi. Conjoint Triad Descriptors (CTriad) 

Introduced by Shen et al. [22], these descriptors provide information about paired base protein 

based on amino acid classification. Every protein sequence is represented by a numerical vector space 

containing amino acid descriptors. Several groups were created to cluster the 20 kinds of amino acid, 

based on information of dipoles and the volumes of their side chains. There are two steps to create 

these descriptors. First, the amino acid is classified into seven groups based on the dipole scale and 

volume scale. The next step is to calculate the conjoint triad. There are three points for calculation: 

the properties of an amino acid, its surrounding amino acids, and the consideration of three 

continuous amino acids as one unit. 
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3.2.3 Protein feature selection using Random Forest  

Features used in this research were generated from 3 different tools that generate 16 feature 

descriptors. We implemented Random Forest for feature selection. We listed the important features 

based on the Gini Impurity index.  

3.2.4 Support Vector Machine for phosphorylation site prediction 

To classify whether a residue is phosphorylated, we used Support Vector Machine. We 

implemented Gaussian as the kernel. 

3.2.5 Evaluation 

i. Evaluation metrics 

We conducted an evaluation to measure and compare the performance of classification results. 

Table 3.4 shows the combination of results of prediction compared to the results of real observations. 

True positive (TP) and True Negative (TN) occur when the result of the prediction is the same as the 

outcome of the real observation. False Positive (FP) and False Negative (FN) occur when the result 

of the prediction is different from the outcome of real observation. 

Table 3.4 Combination of prediction outcomes with observation matrix 

 Predicted Condition 

Positive Negative 

True Condition Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Using Table 3.4, we analyzed and compared the classification based on these metrics: 

Accuracy  

Accuracy is a measurement to calculate the proportion of the number of times the classification 

predicted the result correctly. We computed accuracy using Equation 21: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (21) 

Sensitivity 

We use sensitivity to measure the proportion of the actual positive result which is classified correctly. 

By using Equation 22 we could compute the sensitivity value.  

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (22)  
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Specificity 

Specificity is a measurement that calculates the classification performance of predicting negative 

results correctly. We computed the value of specificity using Equation 23: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (23) 

F1 score 

F1 score is another type of accuracy measurement. It evaluates the proportion of precision and recall 

in the classification result. The F1 score could be measured using Equation 24: 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (24) 

Matthews Correlation Coefficient (MCC) 

MCC was introduced by Matthews, B.W in 1975. It is commonly used to measure the performance 

of a binary classification [23]. The value of MCC could be obtained using Equation 25. 

 𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
 (25) 

Receiver Operating Characteristic (ROC) Curve 

An ROC curve is a commonly used way to visualize and evaluate the performance of a binary 

classifier. ROC compares the values of True Positive Rate with the False Positive Rate. 

3.2.6 Grid search 

Grid search is a method of finding the best number of features that achieve the highest accuracy 

for classification. This method consisted of two phases.  

In the first phase, we defined the class label and the features. Then we split the data set into two 

sets, a data for training and a data for testing, by using k–fold cross validation. This is illustrated in 

Figure 3.2. Using the training data, we created a model with Random Forest and listed the important 

features. We then set the grid length (for example, grid length=20), selected the number of features, 

and added numbers of features based on grid length. Using the selected number of features, we 

conducted cross validation for each number of feature selection. We selected the best number of 

features (X) that produced the highest accuracy from cross validation. 
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Figure 3.2 First phase in grid search 

In phase two, we conducted a finer grid search than phase one as shown in Figure 3.3. The feature 

numbers that were selected were based on the numbers within the grid length of X. By selecting 

those feature numbers, we conducted cross validation. We then selected the number of the feature 

that had the highest accuracy (Y). Using the important list, we then selected Y number of features 

for the test and training data. We then generated a new model from the selected features in the training 

data and tested the model using the test data set, in which we also selected Y number of features. We 

conducted grid search for each fold. In addition, we recorded the result of the prediction.  
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Figure 3.3 Second phase in grid search 

The main goal of using grid search was to decrease the time of computation. If we were to use 

brute-force comparison to find the best number of features from the data set containing f number of 

features, it would require f comparison processes. However, using the grid search method, we can 

lower the computational time into (f/grid length)+2(grid length) number of processes, where the 

value f is much larger than grid length. 
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Chapter 4 Result and discussion 

This chapter will explain the result of feature selection. The classification result for phosphorylation 

site prediction using the two data sets (P.ELM and PPA) will also be explained. We will also compare 

our classification result and features with the results from previous work related to our topic. 
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4.1 P.ELM data set 

4.1.1 Important features 

We conducted classification using the P.ELM data set. To evaluate the performance, we used 

ten times 10-fold cross validation. For each fold in each iteration, the model generates a list of 

important features measured using Gini Impurity Index (GII). Thus, there were 100 lists of important 

features. We averaged the GII value of each feature in the 100 lists and conducted a detailed analysis 

to determine which features were dominant and most influenced the classification method. In 

addition, we averaged the numbers of features in the 100 lists to show how many features are selected 

in average (see Table 4.2 below).  

Figure 4.1 shows the list of features and their average GII values for Serine residue. The top 

three important values ranged from 38.26 to 47.10. In addition, as shown in the chart, there were 

only a few features of Serine that showed a significant importance. The important features in this 

data set are Amino Acid Composition (AAC) and Quasi-Sequence-Order Descriptors (QSO) which 

occupy the top three highest GII values. 
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Figure 4.1 Distribution of important features of Serine from P.ELM data set. The numbers 1-16 attached under the feature 

numbers indicate the 16 different feature groups (e.g. AAC and QSO).  

 

The highest value of the top important features in Threonine is lower than Serine. Figure 4.2 

shows the top three values of important features, which are between 11.51 to 12.04. These important 

features are Amino Acid Composition (AAC) and Amphiphilic Pseudo-Amino Acid Composition 

(APAAC). 
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Figure 4.2 Distribution of important features of Threonine from P.ELM data set. The numbers 1-16 attached under the 

feature numbers indicate the 16 different feature groups (e.g. QSO and APAAC).  

 

The third residue in the P.ELM data set is Tyrosine. The average GII value of the top three 

important features is lower than Serine and Tyrosine. The GII values of the top three important 

features are between 1.37 to 1.76 as shown in Figure 4.3. Composition, Transition, Distribution 
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(CTD), Quasi-Sequence-Order Descriptors (QSO), and Amphiphilic Pseudo-Amino Acid 

Composition (APAAC) are the top three important features in the Tyrosine data set. 

 

Figure 4.3 Distribution of important features of Tyrosine from P.ELM data set. The numbers 1-16 attached under the 

feature numbers indicate the 16 different feature groups (e.g. CTD, QSO, and APAAC). 

 

An important features comparison was conducted for the P.ELM data set. We listed the top 20 

important features for each residue, as shown in Table 4.1. For Serine, the Composition, Transition, 
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and Distribution (CTD) feature is the most prevalent important feature. We can see the same result 

for Threonine. However, for Tyrosine, the Scales-based Descriptor derived by Multidimensional 

Scaling (MDSSCALES) feature is the most prevalent important feature.  

 

Table 4.1 List of top 20 important features in the P.ELM data set for Serine, Threonine, and Tyrosine residues 

Rank Serine Threonine Tyrosine 

1 QSO QSO QSO 

2 AAC QSO CTD 

3 QSO APAAC APAAC 

4 APAAC AAC QSO 

5 PSSM PSSM CTD 

6 CTD BLOSUM MDSSCALES 

7 CTD DPC MDSSCALES 

8 CTD CTD QSO 

9 CTD PSSM AAC 

10 CTD SCALES MDSSCALES 

11 CTD CTD MDSSCALES 

12 CTD CTD PSSM 

13 DPC CTD MDSSCALES 

14 CTD CTD SCALES 

15 CTD CTD CTD 

16 CTD CTD BLOSUM 

17 CTD MDSSCALES SOCN 

18 CTD PROTFP QSO 

19 PSSM PSSM MDSSCALES 

20 PSSM PSSM MDSSCALES 

 

4.1.2 Classification result 

In this research, we conducted a detailed analysis of feature selection for each residue data set. 

The metrics we used for measuring the performance were Accuracy, Area Under ROC Curve (AUC), 

Sensitivity, Septicity, F1 Score, and Matthews Correlation Coefficient (MCC). From the result of the 

10-fold cross validation conducted 10 times, we measured the average of each evaluation metric. 
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By implementing feature selection with grid search for finding the best set of features, 

performances were greatly improved, as shown in Table 4.2. For instance, Serine increased its 

accuracy and had the highest accuracy at 96.46% using 373.45 important features in average (i.e. the 

average number of features selected in 10 times 10-fold cross validation). This is followed by 

Threonine at 91.75% using its averaged 296.71 important features. Tyrosine achieved its best 

performance, 76.77%, using its averaged 402.69 important features. Based on the comparison of 

before and after using feature selection, Threonine had the largest percentage of increase in accuracy, 

26.08%, followed by Serine, 24.68%, and Tyrosine, 12.44%.  

Since feature selection decreased the performance in Ismail’s work, it is an important finding 

in this study that under an appropriate combination of classifier and features, feature selection could 

improve the performance of protein phosphorylation site prediction. 

Table 4.2 Performance of classification using all of the features (2292 features) and best result of features selection for 

P.ELM data set 

Metrics 

Serine Threonine Tyrosine 

All 

features 

Average 

373.45 

features 

All 

features 

Average 

296.71 

features 

All 

features 

Average 

402.69 

features 

Accuracy  0.7174 0.9642 0.6567 0.9175 0.6433 0.7677  

AUC 0.7171 0.9642 0.6567 0.9168 0.6387 0.7639 

Sensitivity 0.7946 0.9701 0.8581 0.9197 0.6968 0.8097 

Specificity 0.6396 0.9582 0.3425 0.9139 0.5805 0.7181 

F1 Score 0.7382 0.9645 0.7526 0.9314 0.6783 0.7906 

MCC 0.4404 0.9285 0.2381 0.8282 0.2814 0.5309 

 

4.2 PPA data set  

4.2.1 Important features 

For the PPA data set, we also conducted classification. We evaluated performance using 

Leave-One-Out cross validation. Based on each fold, using Random Forest, an important feature list 

was generated from the training data. Therefore, the number of important feature lists generated 

equals the number of observations in the data set. As in the P.ELM data set, we measured the average 

value of each feature importance and the number of features in all the feature lists. 

Figure 4.4 shows the list of features and their average GII values for Serine residue. The top 

three important values ranged from 5.48 to 6.49. In addition, as shown in the chart, there were only 

a few features that showed a significant importance also for Serine. The important features in this 
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data set are Amphiphilic Pseudo-Amino Acid Composition (APAAC) and Quasi-Sequence-Order 

Descriptors (QSO) which occupy the top three highest GII values. 

 

 

Figure 4.4 Distribution of important features of Serine from PPA data set. The numbers 1-16 attached under the feature 

numbers indicate the 16 different feature groups (e.g. QSO and APAAC). 

The highest value of the top important features in Threonine is lower than Serine. Figure 4.5 

shows the top three values of important features ranging from 1.51 to 1.61. These important features 
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are Amphiphilic Pseudo-Amino Acid Composition (APAAC) and Quasi-Sequence-Order 

Descriptors (QSO).  

 

Figure 4.5 Distribution of important features of Threonine from PPA data set. The numbers 1-16 attached under the 

feature numbers indicate the 16 different feature groups (e.g. APAAC and QSO). 

The third residue in the PPA data set is Tyrosine. The average GII value of the top three 

important features is lower than Serine and Tyrosine. The GII values of the top three important 

features are between 0.34 to 0.35 as shown in. Figure 4.6. Quasi-Sequence-Order Descriptors (QSO), 
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Total Amino Acid Properties (AAP), and Sequence-Order-Coupling Number (SOCN) are the top 

three important features in the Tyrosine data set. 

 

 

Figure 4.6 Distribution of important features of Tyrosine from PPA data set. The numbers 1-16 attached under the feature 

numbers indicate the 16 different feature groups (e.g. QSO, AAP, and SOCN). 

Important feature comparison is also conducted for the PPA data set. We list top 20 important 

feature for each residue as shown in Table 4.3 List of top 20 important features in the PPA data set 
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for Serine, Threonine, and Tyrosine residues. For Serine, Composition, Transition, Distribution 

(CTD) feature is the most prevalent important feature. For Threonine, Scales-based Descriptor 

derived by Multidimensional Scaling (MDSSCALES) feature is the most prevalent important feature. 

Finally, for Tyrosine, Quasi-Sequence-Order Descriptors (QSO), feature is the most prevalent 

important feature.  

Table 4.3 List of top 20 important features in the PPA data set for Serine, Threonine, and Tyrosine residues 

Rank Serine Threonine Tyrosine 

1 QSO APAAC QSO 

2 QSO QSO AAP 

3 APAAC QSO SOCN 

4 AAC AAC QSO 

5 CTD CTD CTD 

6 CTD CTD QSO 

7 CTD APAAC CTD 

8 CTD QSO APAAC 

9 CTD QSO CTD 

10 CTD AAC AAP 

11 CTD CTD QSO 

12 CTD CTD CTD 

13 AAP MDSSCALES QSO 

14 CTD MDSSCALES PSSM 

15 CTD MDSSCALES QSO 

16 CTD MDSSCALES BLOSUM 

17 CTD BLOSUM MDSSCALES 

18 CTD MDSSCALES SCALES 

19 CTD SCALES APAAC 

20 CTD MDSSCALES QSO 

4.2.2 Classification result  

In general, as shown in Table 4.4, we can see that without feature selection the accuracy is 

lower than 70% for all three data sets. However, there is an improvement if we implement feature 

selection before conducting class prediction. Threonine has the highest accuracy, 86.76%, using the 

averaged 521.49 important features. This is followed by Serine, achieving 84.73% accuracy using 
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the averaged 403.98 important features. Tyrosine has the lowest accuracy, achieving 77.45% using 

the averaged 264.18 important features. 

If we compare the increase in performance between not using feature selection and feature 

selection, Threonine achieved a 30.88% increase in accuracy, followed by Serine’s 27.30% increase. 

Tyrosine has the lowest increase of accuracy at 10.78%. 

Table 4.4 Performance of classification using all of the features (2292 features) and best result of features selection for 

PPA data set 

Metrics Serine Threonine Tyrosine 

All 

features 

Average 

403.98 

features 

All 

features 

Average 

521.49 

feature 

All 

features 

Average 

264.18 

feature 

Accuracy  0.5863 0.8593 0.5588 0.8676 0.6667 0.7745 

AUC 0.5863 0.8593 0.5588 0.8676 0.6667 0.7745 

Sensitivity 0.7687 0.8586 0.4412 0.8529 0.6471 0.7647 

Specificity 0.4039 0.8599 0.6765 0.8823 0.6863 0.7843 

F1 Score 0.6502 0.8592 0.5 0.8657 0.66 0.6531 

MCC 0.1854 0.7186 0.1210 0.7356 0.3336 0.5491 

 

4.3 Comparison with other previous works 

In this research, we compared the result from our method with several other previous research 

works on phosphorylation site prediction as shown in Table 4.5. The compared methods are as 

follows: Netphos [24] , NetphosK [3], GPS 2.1 [6], Swaminathan, PPRED [25], Musite [26], 

PhosphoSVM [7], and RF-Phos [8]. Most of the previous research did not conduct feature selection 

to improve the classification of phosphorylation sites. Only RF-Phos implemented feature selection 

using Random Forest. 

Table 4.5. List of related phoshphorylation site prediciton research 

Method Researchers Year Feature Selection Classifier 

NetPhosK Blom et al. 2004 - Neural Network 

GPS 2.1 Xue et al. 2011 - Motif Length Selection 

Swaminathan Swaminathan et al. 2010 - Epsilon-SVR 

Netphos Blom et al. 1999 - Neural Network 

PPRED Biswas et al. 2010 - SVM 

Musite Gao et al. 2010 - KNN 

PhoshoSVM Dou et al. 2014 - SVM 
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RF-Phos Ismail et al. 2016 Random Forest Random Forest 

 

4.3.1 Classification result 

P.ELM Data Set 

In this work, we also compared the result from the P.ELM data set and the PPA data set with 

other results from previous research. Table 4.6 shows the performance comparison between our 

results and other results. For Serine and Threonine, our method achieved the highest AUC, sensitivity, 

and MCC values. However, our specificity value from the Threonine data set is lower than the result 

of RF-Phos. On the other hand, in the Tyrosine data set our method achieved a lower AUC, specificity, 

and MCC, in comparison with the result of RF-Phos.  

Table 4.6 Performance comparison of several phosphorylation site prediction methods for Serine, Threonine, and 

Tyrosine residues using the P.ELM data set 

Methods 
Serine Threonine Tyrosine 

AUC Sen Spec MCC AUC Sen Spec MCC AUC Sen Spec MCC 

NetPhosK 0.63 0.509 0.678 0.08 0.60 0.620 0.568 0.07 0.60 0.395 0.742 0.08  

GPS 2.1 0.73 0.331 0.933 0.20 0.70 0.381 0.923 0.20 0.61 0.345 0.789 0.08  

Swaminathan 0.70 0.313 0.887 0.13 0.72 0.280 0.925 0.14 0.62 0.605 0.570 0.09  

NetPhos 0.70 0.341 0.867 0.12 0.66 0.343 0.837 0.09 0.65 0.347 0.845 0.13  

PPRED 0.75 0.323 0.916 0.17 0.73 0.303 0.910 0.13 0.70 0.430 0.827 0.17  

Musite 0.81 0.414 0.937 0.25 0.78 0.338 0.948 0.22 0.72 0.384 0.867 0.18  

PhosphoSVM 0.84 0.444 0.940 0.30 0.82 0.378 0.950 0.25 0.74 0.419 0.873 0.21  

RF-Phos 0.88 0.840 0.850 0.65 0.90 0.830 0.940 0.70 0.91 0.830 0.880 0.70  

Our Method 0.96 0.970 0.958 0.93 0.92 0.920 0.914 0.83 0.77 0.810 0.759 0.53 

 

PPA Data Set 

We also compared our classification results with the results in other research. The methods we 

compared are: NetphosK, GPS 2.1, NetPhos, PHOSPHER, Musite, PhosphoSVM, and RF-Phos. In 

Table 4.7, we can see that our method has a lower performance in sensitivity and specificity, for all 

residues. However, achieving the best MCC for all residues is of higher importance.  

Table 4.7 Performance comparison of several phosphorylation site prediction methods for Serine, Threonine, and 

Tyrosine residues using the PPA data set 

Methods 
Serine Threonine Tyrosine 

Sen Spec MCC Sen Spec MCC Sen Spec MCC 

NetPhosK 0.8013 0.3879 0.10 0.6912 0.5082 0.06 0.2549 0.8323 0.04 

GPS 2.1 0.9479 0.2862 0.14 0.9559 0.2084 0.07 0.9804 0.2142 0.09 

NetPhos 0.7655 0.5420 0.16 0.5441 0.7743 0.12 0.6471 0.6750 0.13 

PHOSFER 0.7459 0.6551 0.22 0.7794 0.6477 0.14 0.6275 0.5929 0.08 

Musite 0.5570 0.8739 0.31 0.4853 0.9355 0.26 0.4706 0.8877 0.20 

PhosphoSVM 0.6384 0.8176 0.29 0.7059 0.8176 0.19 0.8235 0.6418 0.18 

RF-Phos 0.7200 0.7000 0.41 0.7900 0.7000 0.50 0.6100 0.6200 0.29 

Our Method 0.8430 0.8556 0.68 0.8529 0.8824 0.74 0.7647 0.7843 0.55 

 



A Study on the Protein Phosphorylation Site Prediction by a Set of New Features and Feature 

Selection with Grid Search 

47 

 

4.3.2 Feature selection 

Table 4.8 shows a comparison of the top ten important features used in our method and RF-

Phos. Both of these lists are used to classify phosphorylation sites using the P.ELM data set. In the 

RF-Phos list, CTD is the most prevalent feature, followed by QSO. The number one rank for each 

residue is also occupied by CTD and QSO. 

In our method, the CTD and QSO features are also important features. However, there are new 

additional features, including: AAC, APAAC, PSSM, BLSOSUM, DPC, and SCALES. For the 

Serine and Threonine residues, the new features improve performance. However, for Tyrosine, there 

was no improvement in classification performance. This lack of improvement may have been caused 

by the addition of new features or the absence of several features from previous methods. 

Table 4.8 Comparison of the top 10 important features between RF-Phos and our method for phosphorylation site 

prediction using the P.ELM data set 

Rank RF-Phos Our Method 

Serine Threonine Tyrosine Serine Threonine Tyrosine 

1 QSO QSO CTD QSO QSO QSO 

2 OP QSO CTD AAC QSO CTD 

3 QSO SF ASA QSO APAAC APAAC 

4 SF OP IG APAAC AAC QSO 

5 CTD CTD OP PSSM PSSM CTD 

6 ACH CTD CTD CTD BLOSUM MDSSCALES 

7 ACH CTD CTD CTD DPC MDSSCALES 

8 ASA OP CTD CTD CTD QSO 

9 CTD CTD CTD CTD PSSM AAC 

10 ASA CTD ASA CTD SCALES MDSSCALES 
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Chapter 5 Summary and future work 

We conclude our thesis by explaining the summary of accomplished work. We also suggest ideas and 

topics for future research to improve results. 
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5.1 Summary 

One of the most common types of post-translational modification in the eukaryotic cell is 

phosphorylation. This occurs when a phosphate group attaches to a residue in the protein sequence. 

Phosphorylation commonly occurs at the Serine, Threonine, or Tyrosine residues. It is also important 

for cellular activities, such as cell growth and intracellular signal transduction. Many research works 

have been conducted to predict phosphorylation sites using the experimental and computational 

approaches. The computational approach, in particular the non-kinase-specific approach, is being 

studied intensively in recent years. This is because of improvements in computer technology and the 

advancement of machine learning algorithms.  

In this research, we conducted predictions for phosphorylation sites using the non-kinase-specific 

approach. We used the P.ELM data set which consists of phosphorylation sites from humans and 

several species of animal. In addition, we used the PPA data set as a small independent data set, 

which consists of plant phosphorylation site information. Random Forest was implemented for 

feature selection. We listed the important features using Gini Impurity Index. By implementing grid 

search we found the numbers of features that achieved the highest classification performance for 

each residue. We classified the phosphorylation sites by using Support Vector Machine. 

In this study using the P.ELM data set, we (i) outperformed the classification performance from 

previous research for the Serine and Threonine data sets. However, the classification performance 

using Tyrosine data could not be improved. For PPA data set, our method achieved the highest MCC 

value for all residues. 

(ii) Feature selection was implemented in previous research. However, the classification 

performance decreased. Conversely, by implementing feature selection in our method, we could 

increase the performance of phosphorylation site classification. We conducted a grid search to find 

the best number of features to increase the classification performance.  

(iii) We introduced new features to improve Phosphorylation site classification. These features 

are Amino Acid Composition (AAC), Amphiphilic Pseudo-Amino Acid Composition (APAAC), 

and Position Specific Scoring Matrix (PSSM). Our method also implemented features from previous 

works, which are Composition, Transition, Distribution Descriptors (CTD), and Quasi-Sequence-

Order Descriptor (QSO).  

5.2 Future work 

In this study, we proposed new features to be implemented for the classification of 

phosphorylation sites. These new features consisted of numerical information representing the 

physicochemical properties of each amino acid in the protein sequence.  
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We hope future work can discover new features that may improve classification performance. 

Feature selection in this thesis is conducted using three tools PROFEAT, PSIBlast, and protr to 

generate 16 different feature descriptors. We suggest finding new features, not only numerical but 

also categorical, which can increase the performance of phosphorylation site prediction. 

 Future research should explore new combinations of new features with features from previous 

research. We hope that combining new features with the features in our thesis will have an 

improvement for the prediction. 

More research should be done for phosphorylated Tyrosine to achieve a better result. In both the 

P.ELM and PPA data sets, the classification performance using the Tyrosine data set achieved the 

lowest results. Improvement of features extraction and selection for the Tyrosine data set is suggested 

to increase performance. 
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