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Abstract 

The ability to reversibly switch between invasive and non-invasive phenotype has 

been considered to be critical for the high malignancy of melanoma. Increasing evidence 

suggests that this ability is determined by the activities of microphthalmia-associated 

transcription factor (MITF) and EMT-related transcription factors (EMT-TFs). GLI1 and 

GLI2, the components of Hedgehog (HH) pathway, are associated with progression and 

invasiveness of melanoma. Although GLI2 is known to suppress MITF expression and to 

promote invasive phenotype of melanoma, the role of GLI1 remains elusive. Here I show 

that inhibition of Shh-pathway by cyclopamine or GLI1 knockdown ( Gli1 KD) decreased 

migration and invasion activity of mouse and human melanoma without affecting MITF 

levels. I observed that Gli1 KD B16F10 melanoma cells exhibited a loss of mesenchymal-

like characteristic as indicated by an increased expression of E-cadherin and a decreased 

expression of mesenchymal markers. To gain insight into the molecular mechanism, I 

analyzed several EMT-TFs that are known to regulate melanoma invasiveness. My 

analysis suggested that the expression of SNAIL1, ZEB1, and TWIST1, but not SNAIL2 

and ZEB2, are directly regulated by GLI1. Collectively my findings suggest a regulatory 

role of GLI1 on a subset of EMT-TFs to promote invasive phenotype of melanoma 

independent of MITF.  
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Ab  antibody 
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shRNA short hairpin RNA 
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TGF  transforming growth factor 
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1. Introduction 

Melanoma incidence is increasing over past 50 years. It represents a small 

percentage of skin cancers, but is the major cause of mortality from these cancers.(1,2) The 

primary source of melanoma is melanocytes (pigment cells) that underwent a mutation 

that lead to the constitutive activation of MAPK signaling pathway. Approximately 50% 

of melanomas harbor the activating BRAFV600E mutation.(3) Current therapies for 

metastatic melanoma provides only transient response and modest disease-free survival.  

Although small molecule inhibitors targeting BRAF and MEK, a downstream effector of 

BRAF, are effective in BRAF-mutated melanoma, virtually all of the tumors develop 

resistance to the drugs, usually within a few months.(4-10) On the other hand, immune 

checkpoint inhibitors, such as an anti-programmed death 1 (PD-1) antibody, provide 

durable responses in patients with metastatic melanoma independent of the BRAF 

mutational status; however, a significant proportion of the patients either do not respond 

or develop resistance to the PD-1 immunotherapy.(11-15) 

Tumor heterogeneity poses a major challenge for the effective treatment of cancer. 

Accumulating evidence indicates that the heterogeneity in melanoma can be driven 

through phenotypic plasticity.(16-18) That is, the aggressiveness of melanoma appears to 

be due to the cancer cells’ ability to reversibly switch between different phenotypes with 

non-invasive and invasive potentials. Microphthalmia-associated transcription factor 

(MITF) plays an essential role in determining the melanocyte lineage and has been 

proposed to act as a rheostat for the cellular heterogeneity in melanoma.(17,19,20) In the 

rheostat model, low levels of MITF generate invasive, stem-like cells, whereas high MITF 

levels stimulate proliferation and inhibit invasion.  

Acquisition of invasive phenotype is an important step for metastasis of melanoma 

which involves downregulation of melanocyte differentiation program accompanied by 

decreased expression of E-cadherin, increase expression of mesenchymal markers, and 

enhanced invasion. This process resembles the epithelial-mesenchymal transition (EMT) 
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in carcinoma.  Epithelial-to-mesenchymal transition (EMT) is a dynamic and reversible 

phenotypic switching process from polarized epithelial cells to motile mesenchymal cells; 

this process is essential for normal development and is widely thought to be a critical 

switch for tumor-cell invasiveness.(21-23) EMT is driven by an interconnected signaling 

network of EMT-inducing transcription factors (EMT-TFs), including SNAIL, TWIST, 

and ZEB. Recent studies have shown that some EMT-TFs play important roles in 

malignant melanoma, but their regulation and function are different from those in 

epithelial cancers.(24,25) These studies also suggest that the EMT-TFs SNAIL2 and ZEB2 

act as tumor-suppressor proteins by activating an MTIF-dependent melanocyte 

differentiation program. 

Hedgehog-Gli (HH-Gli) pathway is an intercellular signaling pathway playing a role 

in determining proper embryonic patterning and cell fate during development. HH-Gli 

pathway plays important roles in various cancers. Sonic hedgehog (Shh) signaling has 

critical roles in embryonic patterning, and aberrant Shh-signaling activation is implicated 

in various cancer types, including skin cancer.(26-29) The Shh signal is transduced by a 

receptor complex composed of two proteins, Patched (PTCH) and Smoothened (SMO). 

The binding of Shh to PTCH relieves PTCH’s repression of SMO. HH-Gli signaling is 

active in hair follicles and required for normal proliferation of melanocyte. HH-Gli 

pathway also regulates proliferation, survival and self-renewal of melanoma. The 

transcription factor glioma-associated oncogene homolog 1 (GLI1) acts as a terminal, 

positive effector of Shh signaling. GLI1 is known to induce the expression of EMT-TFs 

to promote EMT and invasion in various cancers and has been proposed as an attractive 

target for cancer. GLI1’s expression and activity are also regulated through a non-

canonical Shh pathway, such as those involving hypoxia or transforming growth factor 

(TGF)-β.(30-32) GLI1 has been suggested to be involved in melanoma progression, 

although its precise role and the mechanism underlying invasion remain unclear. 
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In the present study, I analyzed the role of HH-Gli pathway in the regulation of 

invasive phenotype with respect to EMT and MITF expression levels. Unexpectedly I 

found that modulation of MITF levels is not required for HH-Gli-induced EMT and 

invasion. My results showed HH-Gli pathway activation is capable of inducing invasion 

in MITF-overexpressing cells. I propose HH-Gli pathway may serves as a signaling cue 

that regulate EMT-TFs expression to drive invasive phenotype independent of the MITF. 

Therefore targeting HH-Gli pathway might be effective for metastatic melanoma therapy.
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2. Materials and methods 

Cell Culture 

B16F10 murine melanoma cells were obtained from Riken BioResource (Tokyo, Japan), 

and MeWo and G361 human melanoma cells from JCRB Cell Bank (Osaka, Japan). 

B16F10 cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium 

(Nissui Pharmaceutical, Tokyo, Japan) supplemented with 10% fetal bovine serum (FBS), 

and MeWo and G361 cells in Eagle's Minimum Essential Medium (EMEM) with non-

essential amino acids (Wako, Tokyo, Japan) and 10% FBS. To prepare conditioned 

medium, NIH3T3 cells, a kind gift from Dr. Chiaki Takahashi (Kanazawa University, 

Kanazawa, Japan), were cultured in RPMI 1640 (Nissui Pharmaceutical) supplemented 

with 10% FBS. Mouse embryonic fibroblasts (MEFs) and HEK293T cells were cultured 

as described previously (33). In some experiments, cyclopamine (LKT Labs, St. Paul, MN, 

USA) and forskolin (Wako) were dissolved in dimethyl sulfoxide (DMSO) and added to 

the culture medium (see Figure 3.1 and Figure 3.2). 

 

Plasmids, viral vector preparation, and viral infection 

The pLVTH lentivirus plasmid vectors for short hairpin RNAs (shRNAs) were 

constructed as previously described.(34) In pLVTH, enhanced green fluorescent protein 

(EGFP) is encoded as a marker. Previously reported target sequences, which are listed in 

Table 1, were used to express shRNAs against mouse Gli1, human Gli1, and firefly 

Luciferase (Luc). Lentiviral vectors were produced as previously described.(34) B16F10, 

MeWo, and G361 cells were infected with the lentiviruses, and were analyzed at 7 days 

post-infection (dpi). The mammalian expression plasmid pCL20c-CMV-EGFP was 

described previously(34). To generate pCL20c-CMV-HA-GLI1, the JSAP1-coding 

sequence in pCL20c-CMV-HA-JSAP1(34) was replaced with the mouse GLI1-coding 

sequence. The potential promoter regions of Snail1, Zeb1, and Twist1 were obtained by 

polymerase chain reaction (PCR) using B16F10 genomic DNA as templates. The PCR 
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products were subcloned into a promoter-less pGL3 vector (Promega, Madison, WI, 

USA), and used for the Luc assays in Figure 5. All PCR products were verified by 

sequencing. 

 

Table 1. List of oligonucleotides for the shRNA constructs used in this study. The 

underlined letters represent mouse Gli1, human Gli1, or firefly Luc sequences. 

 

Gene Oligonucleotide Reference 

mouse Gli1 <For shGli1-1> 

sense strand: 

5’-

GATCCCCAACTCCACAGGCATACAGGATCTCGAGA

TCCTGTATGCCTGTGGAGTTTTTTTGGAAA-3’ 

 

antisense strand: 

5’AGCTTTTCCAAAAAAAGCTGAGCAAGATTCAGA

CCCTCGAGAATTACACACCAGCTGAGCTTGGG-3’ 

 

(61) 

<For shGli1-2> 

sense strand: 

5’-

GATCCCCCCACATCAACAGTGAGCATATCTCGAGA

TATGCTCACTGTTGATGTGGTTTTTGGAAA-3’ 

 

antisense strand: 

(62) 
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5’-

AGCTTTTCCAAAAACCACATCAACAGTGAGCATAT

CTCGAGATATGCTCACTGTTGATGTGGGGG-3’ 

 

human GLI1 sense strand: 5’-

GATCCCCAACTCCACAGGCATACAGGATCTCGAGA

TCCTGTATGCCTGTGGAGTTTTTTTGGAAA-3’ 

 

antisense strand: 5’-

AGCTTTTCCAAAAAAACTCCACAGGCATACAGGAT

CTCGAGATCCTGTATGCCTGTGGAGTTGGG-3’ 

 

(63) 

firefly Luc sense strand: 5’-

GATCCCCGGCTATGAAGAGATACGCCTTCAAGAGA

GGCGTATCTCTTCATAGCCTTTTTGGAAA -3’ 

 

antisense strand: 5’-

AGCTTTTCCAAAAAGGCTATGAAGAGATACGCCTC

TCTTGAAGGCTATCTCTTCATAGCCGGG-3’ 

 

(64) 

 

Western blot analysis 

Total cell lysates were prepared and analyzed by Western blotting as previously 

described,(34) using rabbit anti-GLI1 H300 (sc-20687), rabbit anti-E-cadherin H108 (sc-

7870) (each diluted to 1:1000; Santa Cruz Biotechnology, Santa Cruz, CA, USA), rabbit 
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anti-MITF N2C1 (1:1000; GTX113776; GeneTex, Irvine, CA, USA), and mouse anti-α-

tubulin (1:3000; #T5168; Sigma-Aldrich, St. Louis, MO, USA) antibodies (Abs). 

 

Quantitative reverse-transcription PCR (qRT-PCR) 

Total RNA was prepared and qRT-PCR was performed as previously described.(35) 

Primers used for qRT-PCR are listed in table 2. 

 

Table 2. List of qRT-PCR primers used in this study. 

F: Forward primer. R: Reverse primer 

 

Gene Primer Reference 

mouse Cdh1 F: 5’-ATTGCAAGTTCCTGCCATCCTC-3’ 

R: 5’-CACATTGTCCCGGGTATCATCA-3’ 

(65) 

mouse Cdh2 F: 5’-AGTTTCTGCACCAGGTTTGG-3’ 

R: 5’-CATACGTCCCAGGCTTTGA-3’ 

(66) 

mouse Fn1 F: 5’-GCTCAGCAAATCGTGCAGC-3’ 

R: 5’-CTAGGTAGGTCCGTTCCCACT-3’ 

(67) 

mouse Gapdh F: 5’-AAATGGTGAAGGTCGGTGTG-3’ 

R: 5’-TGAAGGGGTCGTTGATGG-3’ 

(68) 

mouse Mitf F: 5’-GCCTGAAACCTTGCTATGCT-3’ 

R: 5’-TACCTGGTGCCTCTGAGCTT-3’ 

(69) 

mouse Snail1 F: 5’-GTGGAAAGGCCTTCTCTAGGC-3’ 

R: 5’-GGTTGGAGCGGTCAGCAAAA-3’ 

(70) 

mouse Snail2 F: 5’-TGGTCAAGAAACATTTCAACGCC-3’ 

R: 5’-GGTGAGGATCTCTGGTTTTGGTA-3’ 

(72) 

mouse Twist1 F: 5’-CGGCCAGGTACATCGACTTC-3’ 

R: 5’-TGCAGCTTGCCATCTTGGAG-3’ 

(70) 
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mouse Tyr F: 5’-CTCTGGGCTTAGCAGTAGGC-3’ 

R: 5’-GCAAGCTGTGGTAGTCGTCT-3’ 

(67) 

mouse Vim F: 5’-GGACGTTTCCAAGCCTGACCTC-3’ 

R: 5’-CCGGTACTCGTTTGACTCCTGC-3’ 

(73) 

mouse Zeb1 F: 5’-GATCCAGCCAAACGGAAACC-3’ 

R: 5’-TGGCGTGGAGTCAGAGTCAT-3’ 

(70) 

mouse Zeb2 F: 5’-GGGACAGATCAGCACCAAAT-3’ 

R: 5’-GACCCAGAATGAGAGAAGCG-3’ 

(73) 

human CDH2 F: 5’-TGCGGTACAGTGTAACTGGG-3’ 

R: 5’-GAAACCGGGCTATCTGCTCG-3’ 

(67) 

human FN1 F: 5’-AGGAAGCCGAGGTTTTAACTG-3’ 

R: 5’-AGGACGCTCATAAGTGTCACC-3’ 

(67) 

human GAPDH F: 5’-ACCCAGAAGACTGTGGATGG-3’ 

R: 5’-TCTAGACGGCAGGTCAGGTC-3’ 

(70) 

human TYR F: 5’-CTGGAAGGATTTGCTAGTCCAC-3’ 

R: 5’-CCTGTACCTGGGACATTGTTC-3’ 

(74) 

human VIM F: 5’-AGTCCACTGAGTACCGGAGAC-3’ 

R: 5’-CATTTCACGCATCTGGCGTTC-3’ 

(67) 

 

Phalloidin staining and immunocytochemistry 

B16F10 cells plated on coverslips coated with poly-L-lysine (Sigma-Aldrich) were fixed 

with 4% paraformaldehyde (PFA), washed with 0.1% Triton X-100 in phosphate buffered 

saline (PBS), and stained with rhodamine-phalloidin (1:500; Thermo Fisher Scientific, 

Waltham, MA, USA) and 4’,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) to 

visualize F-actin and nuclei, respectively. Fluorescent images were captured with a 

fluorescence microscope (BX50, Olympus, Tokyo, Japan). Immunocytochemistry was 

performed by standard protocols as previously described,(34) using the rabbit anti-E-
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cadherin H108 (1:200; Santa Cruz Biotechnology) Ab. The secondary Ab was goat Alexa 

fluor 568-conjugated anti-rabbit IgG Ab (1:1000; Thermo Fisher Scientific). Nuclei were 

stained with DAPI (Sigma-Aldrich). Fluorescent images were captured using a confocal 

laser scanning microscope (LSM510 META, Carl Zeiss, Oberkochen, Germany) with a 

20x or 40x objective lens. In some experiments (Figure 3.9d), twelve Z-stack images at 

1.2-μm intervals were acquired using the confocal microscope with a 40x objective lens. 

 

Luc assay 

To measure the GLI-mediated transcriptional repression in response to cyclopamine, 

B16F10 cells were plated in 12-well plates at 8 x 104 cells per well, and were 

cotransfected with 950 ng of the Luc reporter vector (8xGLI-BS-Luc or 8xmGli-BS-Luc, 

kind gifts from Dr. Hiroshi Sasaki, Kumamoto University, Kumamoto, Japan)(36) and 50 

ng of the Renilla Luc control vector (pRL-TK-Luc, Promega) using Lipofectamine LTX 

with Plus reagent (Thermo Fisher Scientific). Six hours after transfection, the medium 

was changed, and the cells were treated with either vehicle (DMSO) or cyclopamine for 

24 hours. The cells were then lysed, and the Luc activity was measured as previously 

described.(34) To examine the effect of GLI1 overexpression on the potential promoters 

of Snail1, Zeb1, and Twist1, 350 ng of the Luc reporter vector containing the potential 

promoter region, 140 ng of either pCL20c-CMV-EGFP or pCL20c-CMV-HA-GLI1, and 

10 ng of pRL-TK-Luc were cotransfected into HEK293T cells plated in 12-well plates at 

2 x 105 cells per well. Thirty-six hours after transfection, the cells were lysed, and 

subjected to Luc assays as described previously(34). 

 

Matrigel invasion assay 

The cell invasion assay was carried out using Transwell chambers with inserts of an 8-

μm pore size (Corning, Corning, NY, USA). The upper chamber was pre-coated with 

Matrigel (300 μg/ml, 100 μl per well for B16F10 cells; 200 μg/ml, 100 μl per well for 
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MeWo cells, BD Biosciences, San Jose, CA, USA). NIH3T3-conditioned medium 

containing 10% FBS (for B16F10 cells) or EMEM complete growth medium 

supplemented with 10% FBS (for MeWo and G361 cells) was added to the lower chamber, 

which was pre-coated with 50 μl of fibronectin (50 μg/ml) (Thermo Fisher Scientific), 

and then 1x105 cells were seeded on the upper chamber in serum-free medium containing 

0.1% bovine serum albumin (BSA). In some experiments (Figure 3.1), cyclopamine was 

added to both the upper and lower chambers. At 24 hours (for B16F10 cells) or 30 hours 

(for MeWo and G361 cells) after seeding, the cells were fixed in 4% PFA and stained 

with 0.1% crystal violet. Cells remaining on the upper side of the inserts were scraped 

with cotton swabs, and cells on the lower side were counted. 

 

Cell migration assay 

To measure the cell migration activity, wound-healing (for B16F10 cells) and Transwell 

chamber (for MeWo and G361 cells) assays were performed. B16F10 cells were replated 

at a saturation density (2 x 105 cells per well of a 12-well plate) in RPMI 1640 

supplemented with 1% FBS, and incubated for 6 hours. The plates were then scratched 

manually with a sterile pipette tip. After being washed with RPMI 1640, the wounded 

regions were allowed to heal for 12 hours in RPMI 1640 medium supplemented with 1% 

FBS. The cell movements were monitored using a cultured cell monitoring system (CCM-

1.4XYZ/CO2, Astec, Fukuoka, Japan). Video images were collected at 15-minute 

intervals for 12 hours. Transwell chamber migration assays were carried out as described 

above (Matrigel invasion assay) without pre-coating the upper chamber. 

 

Thiazolyl Blue Tetrazolium Bromide (MTT) assay 

The MTT assay was used to examine cell viability. B16F10, MeWo, or G361 cells were 

seeded in 24-well plates (8 x 104 cells per well), and incubated overnight. The medium 

was then changed to serum-free medium containing 0.1% BSA, and the cells were 
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incubated for 24 hours to mimic the Matrigel invasion assay described above. In some 

experiments (Figure 3.2), cyclopamine was added to the culture medium. The cells were 

washed with PBS and incubated with MTT solution (0.5 mg/ml, Sigma) for 1 hour. The 

resulting insoluble formazan was dissolved in 0.04 N HCl in isopropanol, and the 

absorbance at 595 nm was measured. 

 

Chromatin immunoprecipitation (ChIP) assays 

ChIP assays were performed essentially as described previously(37). B16F10 cells were 

fixed in formaldehyde, then lysed by sonication using a Bioruptor sonicator (CosmoBio, 

Tokyo, Japan). The lysates were immunoprecipitated with the rabbit anti-GLI1 H300 Ab 

(sc-20687; Santa Cruz Biotechnology) or control rabbit IgG (011-000-003; Jackson 

ImmunoResearch Laboratory, West Grove, PA, USA), and the precipitated DNA was 

subjected to quantitative PCR (qPCR). Primers used for the qPCR are listed in Table 3. 

 

Table 3. List of qPCR primers used in this study. 

F: Forward primer. R: Reverse primer 

 

PCR target site Primer PCR length (bp) 

Snail S1 F: 5’-CCAGTGCTGGGAGTCTGATT-3’ 

R: 5’-CTGAAAATCGTGTTGGAACG-3’ 

190 

Snail S2 F: 5’-CACCTGCCCTTATTGGTGTT-3’ 

R: 5’-TTGAGAGCAGGTTCCAGGAT-3’ 

182 

Zeb1 Z1 F: 5’-CTCAGGCTCCTGACTTTTCG-3’ 

R: 5’-AAGAAATTCCGCTCACAGGA-3’ 

174 

Zeb1 Z2 F: 5’-CAGCAGAACGAGCCAGGTAG-3’ 

R: 5’-TTCCTAGGCCAGGTTGAGC-3’ 

179 

Twist1 T1 F: 5’-GTCACCGTAGCAGGAAAGGA-3’ 164 
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R: 5’-CGGAAACCTCTAGTCCCAAG-3’ 

Twist1 T2 F: 5’-GACCCAGACAGTCCCCTGTT-3’ 

R: 5’-AACCATTCAAAACCGACCTG-3’ 

183 

 

Animal experiments 

All experimental procedures involving mice were approved by the Institutional Animal 

Care and Use Committee of Kanazawa University. To evaluate the cells’ metastatic 

ability, in vivo metastasis assays were performed in mice. B16F10 cells suspended in 200 

μl of PBS containing 5% FBS were injected into the tail vein of 8-week-old male 

C57BL/6 mice (Sankyo Labo Service, Tokyo, Japan). The mice were sacrificed 14 days 

after the inoculation, and the lungs were fixed in 10% formaldehyde. The metastatic foci 

in the lungs were counted under a microscope to evaluate the development of pulmonary 

metastasis. 

 

Statistical analysis 

Significance was determined using a two-tailed unpaired Student’s t-test. Values of P < 

0.05 were considered to be statistically significant. 
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3. Results 

Blockade of Shh signaling inhibits the invasion ability of melanoma cells without 

affecting their MITF expression and activity 

To examine the role of Shh signaling in maintaining the invasive phenotype of 

melanoma cells, I blocked the Shh-GLI signaling pathway using cyclopamine, an 

inhibitor of SMO. I used a highly metastatic murine melanoma cell line, B16F10 cells, 

which is widely used as a model system to study melanoma biology. B16F10 cells were 

treated with cyclopamine at relatively low concentrations, 2.5 µM and 5 µM. The 

inhibition of Shh-GLI signaling pathway was confirm as shown by decreased levels of 

GLI1 protein and of GLI-mediated transcriptional activity, in a dose-dependent manner 

(Figure 3.1a,b). In addition, I also examined the expression of GLI2 and GLI3, which 

mainly function as a transcriptional activator and repressor, respectively. GLI2 protein 

levels was decreased by cyclopamine, but to a lesser degree than GLI1 (Figure 3.1b). The 

processed, repressive form of GLI3 (GLI3-R) was slightly increased, and full-length 

GLI3 (GLI3-FL) was decreased, in cyclopamine-treated B16F10 cells in a dose-

dependent manner (Figure 3.1c). As shown in Figure 3.1d,e, blocking Shh signaling with 

cyclopamine caused a dose-dependent decrease in invasion activity, in which a 

statistically significant difference was observed between cyclopamine-untreated and -

treated B16F10 cells at 5 µM, but not 2.5 µM. There was no significant effect of 

cyclopamine at either concentration on cell viability, under the conditions used for the 

invasion assay (Figure 3.2). 

The invasive phenotype of melanoma cells is often characterized by low levels of 

MITF. Therefore, I examined the expression levels of MITF in cyclopamine-treated 

B16F10 cells at 2.5 µM and 5 µM. The protein and mRNA levels of MITF were 

comparable among these cells (Figure 3.1b,f). There were also no significant differences 

in the mRNA levels Tyrosinase (Tyr), a MITF-target gene, in these cells (Figure 3.1g). 

To rule out the possibility that the transcriptional regulation of the Mitf gene was impaired  
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Figure 3.1. Blockade of Shh signaling inhibits the invasion activity of melanoma cells. (a) 

B16F10 cells were cotransfected with a firefly Luc reporter plasmid containing GLI-binding 

sites (8xGli-BS-Luc) or mutated sites (8xmGli-BS-Luc) together with a Renilla Luc reporter 

plasmid, and were assayed for Luc activity, as described in Materials and Methods. (b,c) 

B16F10 cells were treated with cyclopamine for 48 hours at the indicated concentrations, and 

were then subjected to Western blotting using anti-GLI1, -GLI2, -MITF (b), and -GLI3 (c) 

Abs. Lane 1, cell lysate prepared from MEFs. α-tubulin was used as a loading control. (d) 

B16F10 cells were pre-treated with cyclopamine for 24 hours at the indicated concentrations, 

and were then subjected to a Matrigel invasion assay. Representative images captured using a 

microscope (BX50, Olympus) are shown. (e) Quantification of the results in (d). The average 

numbers of invading cells from five randomly chosen fields acquired using a 20x objective 

lens are shown. (f,g) B16F10 cells were untreated or treated with cyclopamine for 48 hours at 

the indicated concentrations, and the relative mRNA levels of Mitf (e) and Tyr (f) were then 

measured by qRT-PCR. The expression levels were normalized to Gapdh. Quantitative data 

are expressed as the mean ± S.E.M of three independent experiments. *P < 0.05; **P < 0.01; 
***P < 0.001; n.s., not significant. Cyc, cyclopamine; NT, untreated. 
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in the B16F10 cells, I stimulated the cells with forskolin, a cAMP-elevating reagent 

known to induce Mitf expression. As expected, the protein levels of MITF and mRNA 

Tyr were increased, in the forskolin-treated B16F10 cells (Figure 3.3). Taken together, 

these results indicated that blocking the Shh signaling by cyclopamine at low 

concentration inhibits the invasion ability of B16F10 melanoma cells without affecting 

their MITF expression and activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gli1 KD inhibits the invasion ability and migration of melanoma cells, 

independently of the regulation of MITF expression and activity 

I next asked whether GLI1 is important for the invasive phenotype of melanoma 

cells. I knockdown Gli1 in B16F10 cells using two Gli1-targeting lentiviral shRNAs  

Figure 3.2. Blockade of Shh signaling shows no 

significant effect on cell viability. B16F10 cells untreated 

or treated with cyclopamine at the indicated 

concentrations were cultured under the conditions used for 

the invasion assay (see Materials and Methods, Matrigel 

invasion assay), and were then analyzed by MTT assay. “0 

μM cyclopamine” denotes vehicle treatment. The 

activities are shown as a percentage of the MTT activity 

of vehicle-treated control cells and are expressed as the 

mean ± S.E.M of three independent experiments. Cyc, 

cyclopamine; NT, untreated. n.s., not significant. 

Figure 3.3.  Forskolin induces the expression of MITF protein and its target gene Tyr. B16F10 

cells were untreated or treated with either vehicle (DMSO) or forskolin (20 μM) for the 

indicated time (a) or for 24 hours (b), and the cells were then analzyed by Western blotting 

using an anti-MITF Ab (a) or by qRT-PCR with Tyr-specific primers (b). Anti-α-tubulin was 

used as a loading control in the Western blot. The relative mRNA levels of Tyr were 

normalized to Gapdh and are expressed as the mean ± S.E.M of three independent 

experiments. *P < 0.05. Ctrl., control; Fsk, forskolin; NT, untreated. 
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Figure 3.4.  Gli1 KD inhibits the invasion and migration abilities of melanoma cells. (a) 

B16F10 cells were infected with lentiviral shLuc, shGli1-1, or shGli1-2 (termed 

B16F10_shLuc, B16F10_shGli1-1, and B16F10_shGli1-2 cells, respectively), and the protein 

levels of GLI1 and MITF were examined by Western blotting using anti-GLI1 and -MITF 

Abs. α-tubulin was used as a loading control. (b) Matrigel invasion assays were performed as 

in Figure 3.1b, using B16F10_shLuc, B16F10_shGli1-1, and B16F10_shGli1-2 cells. 

Representative images of invading cells are shown. (c) Quantification of the results in (b), 

performed as described in Figure 3.1e. (d) B16F10_shLuc, B16F10_shGli1-1, and 

B16F10_shGli1-2 cells were analyzed by in vitro wound-healing assays. Phase-contrast time-

lapse images at 0, 3, 6, and 9 hours are shown. Curved red lines indicate the boundary between 

the unscratched and scratched areas. (e) Quantification of wound size using ImageJ software 

(NIH). (f,g) Relative mRNA levels of Mitf (e) and Tyr (f) in B16F10_shLuc, B16F10_shGli1-

1, and B16F10_shGli1-2 cells were measured by qRT-PCR. The expression levels were 

normalized to Gapdh. Quantitative data are expressed as the mean ± S.E.M of three 

independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; n.s., not significant. 
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(shGli1-1 and shGli1-2) (Figure 3.4a), and then examined the invasion ability and 

migration of the Gli1-knockdown (Gli1 KD) cells. The invasion ability of the KD cells 

was substantially reduced compared to that of control B16F10 cells expressing a Luc-

targeting lentiviral shRNA (shLuc) (Figure 3.4b,c). The cell migration activity was also 

inhibited by knocking down Gli1 (Figure 3.4d,e). No significant differences in viability 

were detected between the shLuc- and shGli1-expressing B16F10 cells under the culture 

conditions used for the invasion assay (Figure 3.5a). Furthermore, exogenous expression 

of GLI1 in B16F10 cells significantly increased the invasion activity (Figure 3.6). Then I 

analyzed the expression levels of MITF (protein and mRNA) and its target gene Tyr in 

the Gli1 KD B16F10 cells, and found that the MITF and Tyr levels were unchanged 

(Figure 3.4a,f,g), as seen in the cyclopamine-treated B16F10 cells. I also observed similar 

effects on the cell migration and invasion abilities and the MITF expression and activity 

in GLI1 KD MeWo (wild-type BRAF/NRAS) and G361 (BRAFV600E) cells, metastatic 

human melanoma cell lines (Figure 3.7). Taken together, these results strongly suggested 

that GLI1 plays a crucial role in maintaining the invasive phenotype of melanoma cells, 

independently of the regulation of MITF expression and activity. 

   

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Gli1 KD shows no significant effects on melanoma cell viability. B16F10_shLuc 

and B16F10_shGli1 (a), MeWo_shLuc and MeWo_shGli1 (b), and G361_shLuc and 

G361_shGli1 (c) cells were cultured under the conditions used for the invasion assay as in 

Figure 3.2, and were analyzed by MTT assay. The activities are shown as a percentage of the 

MTT activity of shLuc-expressing control cells and are expressed as the mean ± S.E.M of 

three independent experiments. n.s., not significant. 
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Gli1 KD prevents the lung metastasis ability of B16F10 cells 

The decreased invasion and migration after Gli1 KD prompted us to examine the 

metastatic ability of the KD cells in vivo. I performed an experimental in vivo metastasis 

assay, in which B16F10 cells expressing shLuc (control) or shGli1 were injected into the 

mouse tail vein, and lung metastasis was evaluated. There were many fewer metastatic 

nodules in the lungs of mice injected with shGli1-expressing cells than in the lungs of 

control B16F10-injected mice (Figure 3.8), indicating that Gli1 KD decreases the lung 

metastasis ability of B16F10 cells. 

Figure 3.6.  GLI1 overexpression of GLI1 enhances the invasion activity of B16F10 cells. 

(a,b) B16F10 cells were infected with a lentiviral vector (pCL20c-CMV(34)) expressing EGFP 

(control) or C-terminally HA-tagged GLI1 (GLI1-HA), and subjected to staining with DAPI 

and an anti-HA Ab (a) and to Westen blotting with anti-HA and anti-GLI1 Abs (b), as 

indicated. (c) Matrigel invasion assays using the infected cells were performed as described 

in Materials and Methods, except that half the number of cells (i.e., 5 x 104) was used. 

Representative images of invading cells are shown. (d) Quantification of the results in (c). The 

average numbers of invading cells, determined as described in the legend for Figure 3.1e, are 

shown.  
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Gli1 KD induces a reversal of the mesenchymal-like phenotype 

Gli1 activity has been associated with EMT in various cancer. I question whether 

the decrease invasion and migration is also associated with this function in melanoma. In 

addition, I noticed that the Gli1 KD B16F10 cells tended to associate with each other and  

Figure 3.7.  Gli1 KD induces a reversal of the mesenchymal-like phenotype in MeWo and 

G361 cells. (a) The protein levels of GLI1 and MITF in MeWo_shLuc, MeWo_shGli1, 

G361_shLuc, and G361_shGli1 cells were examined by Western blotting, using anti-GLI1 

and -MITF Abs. α-tubulin was used as a loading control. (b) Relative mRNA levels of TYR in 

MeWo_shLuc, MeWo_shGli1, G361_shLuc, and G361_shGli1 cells were measured by qRT-

PCR. The expression levels were normalized to GAPDH. Quantitative data are expressed as 

the mean ± S.E.M of three independent experiments. (c) Transwell chamber migration assays 

were performed using MeWo_shLuc, MeWo_shGli1, G361_shLuc, and G361_shGli1 cells. 

(d) Quantification of the results in (c). The average numbers of migrating cells are shown. (e) 

Matrigel invasion assays were performed as described in the legend for Figure 3.1b, using 

MeWo_shLuc, MeWo_shGli1, G361_shLuc, and G361_shGli1 cells. (f) Quantification of the 

results in (e). The average numbers of invading cells as in Figure 3.1c are shown. *P < 0.05; 
**P < 0.01; ***P < 0.001; n.s., not significant. 
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Figure 3.8. Gli1 KD decreases the 

lung metastasis ability of B16F10 

cells. (a) Representative images of 

the lungs of mice injected with 

B16F10_shLuc or B16F10_shGli 

cells. (b) Each open circle denotes 

the number of nodules representing 

the pulmonary metastasis ability of 

B16F10_shLucand 16F10_shGli1 

cells in mice treated as in (a). Data 

are the means ± S.E.M (n = 15 mice 

per group). Scale bar, 0.5 cm. 

Figure 3.9. Gli1 KD induces reversal of the mesenchymal-like phenotype. (a) B16F10_shLuc 

and B16F10_shGli1 cells, which express EGFP, were double stained with rhodamine-

phalloidin and DAPI. Lower panels show higher-magnification images of the boxed areas in 

the upper panels. (b) Relative mRNA levels of E-cadherin (Cdh1) in the B16F10_shLuc and 

B16F10_shGli1 cells were measured by qRT-PCR. The expression levels were normalized to 

Gapdh and are expressed as the mean ± S.E.M of three independent experiments. (c) The 

protein levels of E-cadherin in B16F10_shLuc and B16F10_shGli1 cells were examined by 

Western blotting using an anti-E-cadherin Ab. α-tubulin was used as a loading control. (d) 

B16F10_shLuc and B16F10_shGli1 cells were double stained with DAPI and an anti-E-

cadherin Ab. Lower panels show higher-magnification Z-stack images of the boxed areas in 

the upper panels. Z-stack images were acquired using a confocal microscope as described in 

Materials and Methods. (e) Relative mRNA levels of N-cadherin (Cdh2), vimentin (Vim), and 

fibronectin (Fn1) in B16F10_shLuc and B16F10_shGli1 cells were measured by qRT-PCR as 

in (b). *P < 0.05; **P < 0.01. Scale bars, 100 μm. 
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changed morphologically. Further examination by phalloidin staining showed that stress 

fiber formation was severely inhibited in the Gli1 KD cells (Figure 3.9a). Consistent with 

the changes in morphology and cytoskeletal structures, the expression levels of E-

cadherin (protein and mRNA) were substantially increased, with the E-cadherin protein 

being predominantly localized to areas of cell-cell contact, in the Gli1 KD cells (Figure 

3.9b-d). Furthermore, the mRNA expression levels of mesenchymal markers, such as N-

cadherin and vimentin were significantly decreased in the Gli1 KD cells compared to the 

shLuc-expressing control cells (Figure 3.9e). Similar expression profiles of E-cadherin 

and mesenchymal markers were obtained using MeWo and G361 cells (Figure 3.10), 

although there were no increased cell-cell adhesion in both cell lines as observed in 

B16F10. These results may indicate that GLI1 regulates a subset of EMT-TFs to prevent 

the reverse transition from a mesenchymal-like to an epithelial-like phenotype. 

 

GLI1 transcriptionally regulates the expression of Snail1, Zeb1, and Twist1 

To gain insight into the molecular mechanism, I investigated whether GLI1 

modulates the expression of key EMT-TFs, including SNAIL and ZEB family members. 

As shown in Figure3-11a, the mRNA levels of Snail1, Zeb1, and Twist1 were 

significantly decreased in the Gli1 KD B16F10 cells compared to the control B16F10 

cells, whereas no significant differences in the Snail2 or Zeb2 mRNA levels were 

observed between the Gli1 KD and control cells. Using the MatInspector software(40), I 

identified several putative GLI-binding sites within the one-kilobase (1-kb) upstream 

region of the transcriptional start sites of Snail1, Zeb1, and Twist1 (termed S1 and S2 for 

Snail1; Z1, Z2, and Z3 for Zeb1; and T1, T2, and T3 for Twist1; see Figure 3.11b). I then 

conducted ChIP assays with an anti-GLI1 Ab in B16F10 cells. The precipitated DNAs 

were analyzed by qPCR using primers specific for the GLI1-binding sites. However, 

because the regions around Z3 and T3, which are close to transcriptional start sites, are 

GC-rich, I were unable to design specific primer sets and therefore did not perform ChIP  
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Figure 3.11. GLI1 transcriptionally regulates the expression of Snail1, Zeb1, and Twist1. (a) 

Expression of EMT-TFs in Gli1 KD B16F10 cells. Relative mRNA levels of Snail1, Snail2, 

Zeb1, Zeb2, and Twist1 in B16F10_shLuc and B16F10_shGli1 cells were measured by qRT-

PCR. The expression levels were normalized to Gapdh and are expressed as the mean ± S.E.M 

of three independent experiments. (b) Scheme of the potential promoter regions of Snail1, 

Zeb1, and Twist1, and the Luc reporter. Numbers indicate the position relative to the 

transcriptional start sites (+1). Closed vertical boxes represent putative GLI-binding sites. 

Core sequences of the GLI-binding motif are shown by uppercase letters, in which the 

underlined nucleotides differ from the consensus sequences. Open and closed arrowheads 

indicate qPCR primers. (c-h) ChIP and qPCR (c,e,g), and Luc (d,f,h) assays were performed 

as described in Materials and Methods. *P < 0.05; **P < 0.01; n.s., not significant. 
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experiments for them. The ChIP results revealed that GLI1 bound significantly to S1, Z1, 

and T1, but not to S2, Z2, or T2 (Figure 3.11c,e,g and Figure 3.12b). I then examined the 

effect of GLI1 overexpression on the potential promoters of Snail1, Zeb1, and Twist1 

using reporter assays, and found that GLI1 overexpression substantially enhanced the 

promoter activities of the 1-kb regions. The activities were not significantly increased 

when the regions’ corresponding deletion derivatives were used (Figure 3.11d,f,h). 

Collectively, these results strongly suggest that GLI1 binds directly to the promoters of 

Snail1, Zeb1, and Twist1, and regulates their expression. In addition, I found a significant 

co-occurrence between Gli1 and Zeb1 (P = 0.002) and between Gli1 and Sail1 (P = 0.004) 

by analyzing the TCGA cutaneous melanoma dataset (287 samples with RNA sequencing 

expression data) through the cBioPortal for cancer genomic data using mutual exclusivity 

analysis (41,42). 

 

Figure 3.12. Primers used in ChIP assays, and agarose gels of PCR products. (a) Schematic 

representation of the regions surrounding putative GLI-binding sites in the promoter regions 

of Snail1, Zeb1, and Twist1. Closed vertical boxes indicate putative GLI-binding sites. Open 

and closed arrowheads represent primers (see Table S3) used for the ChIP and PCR analyses 

shown in Figure 5b. Numbers indicate positions relative to the transcriptional start sites (+1) 

of Snail1, Zeb1, and Twist1. (b) Agarose gels of PCR products. Chromatin was prepared from 

fixed and sonicated B16F10 cells expressing lentiviral shLuc, and subjected to PCR. Input 

DNA (lanes 1 and 4) and ChIP DNA with IgG (lanes 2 and 5) and anti-GLI1 Ab (lanes 3 and 

6) were amplified by PCR (30 cycles) using primer sets for the Snail1 S1 (lanes 1-3) and S2 

(lanes 4-6) sites, Zeb1 Z1 (lanes 1-3) and Z2 (lanes 4-6) sites, and Twist1 T1 (lanes 1-3) and 

T2 (lanes 4-6) sites. Lane M, 100-bp ladder DNA marker. 
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4. Discussion 

The expression level of MITF is thought to be the key factor in determining the 

proliferative or invasive state of melanoma according to MITF-dependent phenotype 

switching model. MITF is a key molecule that regulates heterogeneity in melanoma, and 

the MITF rheostat model has become widely accepted in melanoma biology. In the 

present study, I demonstrated for the first time that the transcription factor GLI1 plays an 

important role in maintaining the invasive phenotype of melanoma cells without affecting 

the MITF expression and activity. I also showed that GLI1 prevents the reversal of the 

mesenchymal-like phenotype of melanoma cells, most likely by modulating a subset of 

EMT-TFs. These findings provide new insight into how a high degree of heterogeneity 

and plasticity is achieved and regulated in melanoma. 

Microenvironmental factors, such as hypoxia or TGF-β, are known to influence 

both MITF expression and the phenotype switching of melanoma cells.(17,20,43-46) In 

addition, Pierrat et al.(43) reported that Mitf is down-regulated by GLI2 and TGF-β to 

antagonize the MITF activity. Furthermore, Faião-Flores et al.(46) recently showed that 

the GLI1 and GLI2 expressions increase upon the acquisition of BRAF inhibitor (BRAFi) 

resistance in melanoma cell lines and patient melanoma samples, where again the inverse 

correlation between GLI2 and MITF expression is observed. On the other hand, in this 

study I found that GLI1 exerts its function with little or no effect on the MITF expression 

and activity. Nevertheless, the results of the present study are not inconsistent with 

previous studies, considering the following points. First, Gli1 is a direct transcriptional 

target of GLI2.(47,48) Second,  GANT61, a pharmacological inhibitor used in the previous 

studies, inhibits both the GLI1 and GLI2 activities.(49,50) Accordingly, as explained by 

Faião-Flores et al.,(46) the increased expression of GLI2 by TGF-β through a non-

canonical Shh pathway results in an increase and decrease in GLI1 and MITF expression, 

respectively, which can be canceled by GANT61. Finally, although GLI1 and GLI2 have 

very similar consensus DNA-binding sites,(51) GLI2, but not GLI1, may specifically 



31 
 

regulate Mitf transcription along with GLI2-interacting cofactors, which have been 

proposed by Eichberger et al.(52) Taken together, it is conceivable that GLI1 and GLI2 

play distinct roles in the transcriptional regulation of Mitf. 

Recent studies have shown that a switch in the EMT-TF expression pattern from 

SNAIL2high/ZEB2high/TWIST1low/ZEB1low to SNAIL2low/ZEB2low/TWIST1high/ZEB1high 

occurs during melanoma progression.(24,25) Caramel et al.(24) further demonstrated that 

EMT-TF reprograming is associated with decreased MITF expression and activity. In 

addition, Richard et al.(53) reported that ZEB1 plays a key role as a major driver of 

melanoma cell plasticity and phenotypic resistance to BRAFi, and that Zeb1 KD increases 

the sensitivity to BRAFi in both MITFlow and MITFhigh cellular contexts. In this study, on 

the other hand, I found that Gli1 KD induced a mesenchymal-epithelial-like transition in 

melanoma cells, which was accompanied by severely decreased invasive and migratory 

properties, and by an increased expression of E-cadherin and downregulation of 

mesenchymal markers. I also observed decreased mRNA levels of Snail1, Zeb1, and 

Twist1, but not of Snail2 or Zeb2, in the Gli1 KD melanoma cells. It is reported that 

SNAIL1 and TWIST1 cooperatively control Zeb1 expression during EMT in epithelial 

cells.(54) Taken together with the results of my ChIP and Luc reporter assays (Figure 3.11), 

it is conceivable that GLI1 directly regulates the transcriptional expression of a subset of 

EMT-TFs, including Snail1 and Twist1, as in non-melanoma cancer cells,(55,56) to 

maintain the invasive activity of melanoma cells through MITF-independent mechanisms. 

Further studies are needed to clarify this issue. 

An increased expression of Gli1 has been observed in BRAFi-resistant melanoma 

cells and patient samples,(46) as well as during melanoma progression.(57) Taken together 

with my present results, GLI1 may play a role in generating a high level of intratumor 

heterogeneity in melanoma. Targeting GLI1 may therefore be an effective approach for 

melanoma therapy. Indeed, accumulating evidence suggests that GLI antagonists, of 



32 
 

which GANT61 has been most extensively studied in vitro and in animal models, are 

promising therapeutic candidates for a wide range of cancers, including melanoma.(58) 

Current therapy for metastatic melanoma using MEK inhibitor or BRAF inhibitor 

possess a great challenge. An alternative differentiation therapy by inducing MITF-

dependent melanocyte differentiation program has been proposed recently (59). However, 

since high or low expression of MITF may contribute to drug resistance mechanism, 

further understanding is required. Recently, several studies link the EMT and MITF-

dependent phenotype switching. However, ~14% of melanoma showed high expression 

of MITF and EMT marker and metastatic melanoma with high expression of MITF 

showed worse outcome as compared to the melanoma with low expression of MITF (60). 

These evidence together with my study suggest that in a certain condition, high MITF 

expression may coexist with EMT which give rise to melanoma subtype with high 

malignancy. Certainly, further understanding of this process might be helpful to design 

an effective therapy for metastatic melanoma. 
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