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CONSTRUCTION OF BROWNIAN MOTION ON THE WIENER
MEASURE SPACE

SHUICHI SATO

ABSTRACT. We give a self contained construction of the Wiener probability
space.

1. INTRODUCTION

Let W = W, = C[0,00) be the collection of continuous R?-valued functions on
the interval Ry = [0,00). In this note we present a self contained construction of
the Wiener probability space (W, F, 1), where F is a sigma-algebra of subsets of W
and p is the Wiener measure. The mathematical theory of the Brownian motion
is based on this probability space. We follow the methods of [4], but we intend to
make our presentation more specific. (See also [2], [3], [6].)

2. DEFINITION OF THE WIENER MEASURE

Definition 2.1. We write t = (t1,...,t,) € (Ro)? if t = (t1,...,tn) € (Ro)™ =

Ry X - -+ x Ry (n-fold product) and 0 < t; < ty < --- < t,,. We also write R? = Ry,
when Cartesian products of R? are considered. Define &, : W — R%, t € (Ry)?, by

®.(f) = (¢, (f)s -+ b0, (),
where ¢, (f) = f(t;) and R} = (Rq)" =Ry x --- x Ry (n-fold product). Set
S ={®;'(B): Be B(R})},
where ®;'(B) = {f € W : &,(f) € B} and B(R?) denotes the Borel class of R?.

Since B(R}) is a sigma-algebra, obviously we have the following result.

n

Lemma 2.2. G; is a sigma-algebra for every t € (Ry)7.
We observe the following result on G;.

Lemma 2.3. Lett € (Ry)™, s € (Ro)? with m < n. Lett = {t1,...,tm},3

{s1,...,8n}, which are sets of positive numbers, ift = (t1,...,tm),s = (S1,...,5n)-
Suppose thatt C 5. Then §; C Gs.

Proof. Take 0(5) = (84(1);80(2) -+ +»50(n)) satisfying s,y = t1, s;2) = ta, ...,
So(m) = tm With some o € 8, (the permutation group). Suppose A € G;. Then
there exists A € B(R7') such that A = ®;'(A). Let A’ = A x R}™™. Define

Uﬁl(A’) = {(1‘0—1(1), v 7m0'_1(n)) : (mla v >xn) € A’}
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We see that f € ®;1(o~1(A")) if and only if
(651 (f),- -5 b (f)) €07H(A),

which means that

D5y ()5 by, (F)) €A
The definition of A’ implies that this is equivalent to

(Dsi1) (F)s s Bspimy () € A
This can be rewritten as

(¢t1(f)7"'7¢tm(f)) € A)

which is equivalent to f € ®;*(A). Thus A = &;'(A) = &7 (¢~ (A")), and hence
A € G, since o1 (A') € B(R?). O
Definition 2.4. Let §(*) = Ure(ro)» 9t and § = U;’L"ZIS(").
Lemma 2.5. G is an algebra of subsets of W.
Proof. We easily see that W € G. Let A € §. Then there is n > 1 such that 4 € G;
for some ¢t € (Ro)?. Since G; is a sigma-algebra (Lemma 2.2), we have A° € G,

and hence A° € G. Suppose that A, B € §. Lemma, 2.3 implies that A, B € G; for
some t. Thus AU B € G; by Lemma 2.2. Collecting results, we see that G is an

algebra. 0
Let |z| = (a? + -+ + a2)'/? be the Euclidean norm of = = (a,...,as) € R,
Define

(t,y) = ——ex <_|y_”“°|2
9(t:2.y) = s P 5
O O OWe have the following formulas:

), a:,yE]Rd, t> 0.

Lemma 2.6.

/ g(t,z,y)dy =1,
Rd

[ otssa.2)glt a0 do = g(s +t,0,b).
Rd
Definition 2.7. Define u; on G;, t € (Ry)?, by
ui(A) = / g(t1,0,x1)g(te —t1, 21, 22) ... g(tn — tne1, Tn—1,Tn) dzy ...dx,
A

with A = ®, '(A), t = (t1,...,t,), A € B(R}).

Lemma 2.8. Let u; be as in Definition 2.7. Then, u, defines a probability measure
on the sigma-algebra G;.

Proof. If p; is well-defined on G, it is easy to see that u; is a probability measure.
Suppose that A = &, *(A) = &, *(A’) with A, A’ € B(R?). We show that A = A'.
To see this, we notice that ®; is a surjection from W onto R};. Thus the relation

implies A = A’. Tt follows that pu, is well-defined on G;.
To show that p; is a probability measure, we have to prove

(1) (W) =1;
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(2) it A, € Gy, k=1,2,...,and A; N A, =0, j # k, then
pe (Upey Ag) = Z,ut (Ag) .

Obviously, we have part (1), since W = &, *(R?). To prove part (2), let A; =
®; ' (Ay) with Ay, € B(R?). We note that

<I>;1(AjﬂAk):AjﬂAk:®

if j # k. This implies that A; N Ay = 0, since ®, is a surjection. Thus the countable
additivity of u; follows from the definition of u; with the countable additivity of

Lebesgue integral.
O

We note that if A = ¢;'(A), t >0,

21)  m{feW:f(t) €A} = pm(4) = /A ﬁexp (—”;—t> dz.

Lemma 2.9. Let A € G. Then we can define p on G by u(A) = u(A) with
t € Un>1(Ro)} satisfying A € Gy.

Proof. Suppose that A = ®7'(A) = &, '(A') with s € (Ry)™, t € (Ro)” and
A e B(R}), A' € B(R}). We show that
/ 9(51,0,21)g(s2 — $1,%1,%2) - .- g(Sm — Sm—1,Tm—1,Tm) dT1 ...dTy,
A

:/ g(t1,0,21)g(t2 —t1,21,72) ... g(tn — tn1,Tn—1,%n) dz1 ... dTy.

Ifm<n,putA*—A><]R" st = (s1,. sm,sm+1,sm+2,...,sm+n—m).
Then A* € B(R?), s* € (Ry)?, ®,* ): +(A*) and

* 9

/ 9(51,0,21)g(s2 — $1,%1,%2) - .. g(Sm — Sm—1,Tm—1,Tm) dT1 - . . dTp,
A

= / g(s7,0,21)g(s5 — s7,x1,x2) ... g(s) — 8 _ 1, Tn_1,Tn)dxy ...dx,.

So, we may assume that s,¢ € (Ro)? and A, A’ € B(RY).

Let sNt = {80(1),...,80(k)} = {tT(l),...,tT(k)}, 0'(1) < e K O'(k‘), 7'(1) < K
(k) with ,7 € 8,,. We show that o(A) = 7(A') = T x R~ for some I € B(R%).
Let

D= {(x1, -, Tk) : (T1,- ey Th,Thi1s---,2n) € o(A) for some (zi1,...,2,) € RGF},
' ={(&1,..., k) : (T1y s Thy Thp1s ..., 2p) € T(A') for some (Tpi1,...,7,) € RJTF).
Ifz = (2,2") € REXRY ¥ let mp,(z) = 2’. ThenT = mi(a(A)), T' = mi(7(A')). We
can show I' =T as follows. Let (z1,...,2) € . Then (z1,..., %k, Thtt,---,Tn) €
o(A) for some (Tgy1,-..,7,) € RZF. Thus

(xly"'vxkykarl)"-;xn) = (yn(l)a'">ya(k)7yn(k+1)>---;ya(n))

with some (y1, ..., Yk, Yks1,---,Yn) € A. Since ®,(®,1(A)) = A, there exists f € A
such that

(f(sl)v"'7f(8k)7f(sk+1)7"'7f(sn)) = (yla---aykayk-i-la---ayn)'
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Therefore

(mla <oy Lhy Thet15 - - .,.’I}n) = (f(str(l))a - '7f(sa(k))7f(80'(k+l))7 e 7f(80'(n)))
Since ®71(A) = &, '(A’), we also have

(f(t1), s Ftr), ftrta), -, f(tn)) € A"
Thus
(f(t'r(l))v R f(t'r(k))7 f(t'r(k+1))7 R f(t‘r(n))) € T(AI)'
Since
(561, e .,.’Ek) = (f(sa(l))a L] f(sa(k))) = (f(tr(l))a B f(tr(k)))7

it follows that (21, ...,2x) € I'". This proves ' C I". Similarly, we also have I C T.
Thus we have I' = T'.

Next we show that o(A) =T x ]Rg_k. Let (z1,..., %k, Tht1,---,%n) €T X ]Rg_k.
Then, since (z1,...,7:) € I' = m(7(A")) and ®; is surjective from &, *(A’) to A’,
we can find f € &, (A") such that

(5[71, s 75676) = ﬂ-k((f(tr(l))a R f(tr(k))a f(tr(k+1))7 R f(tr(n))))

with

(f(t1), o F(tr), ftrta), -, f(tn)) € A"
Since Sq(kt1)s - -+ So(n) & t, f can be chosen so that F(8o(kt1)) = Tra1s o, [(So(n) =
x, for any zxi1,...,7, € R?. Since f € ®;1(A) also and So(j) =tr(j), L <J <k,

(:L’l, ooy Ty Ty 1y e v - ,:L’n) = (f(s,,(l)), ey f(s,,(k)), f(sf,(k_;,_l)), ey f(s,,(n)))
with
(f(sl)a SRR f(sk)a f(3k+1), R f(sn)) € A.

This implies that T' x R7~* C ¢(A). The reverse inclusion is obvious. Also we have
T(A") =T x Ry %,

If 5Nt = 0, by the arguments above we have A = A’ = R? provided that
@A) =27 (A) (A#£0, A #0).

We note that

/ 9(s1,0,21)g(s2 — s1,%1,%2) ... 9(Sn — Sn—1,Tn—1,Tn) dTy ...dT,
A

= /(A) g(sly 0,1‘0—1(1))9(82 - 81,1'0—1(1),1’0-—1(2))

o 9(8n = Sn-1,To=1(n=1), To=1(n)) dT1 ... dTp.
We show that

(2.2) /(A) 9(51,0,T5-1(1))9(82 — 51, To-1(1), To—1(2))
< 9(8n = Sn-1,To=1(n=1), To=1(n)) dT1 ... dTy

= /g(sa(l);0,331)9(55(2)—50(1),331,1'2)---g(Sa(k)—Sa(k—1),l’k71,1‘k)dl‘l codxy.
r

To see this we first note that

o(l)—1
H 9(Si41=8i, To—1(i), To—1(i41)) ATo-1(1) - - - ATo-1(o(1)-1) = 9(S0(1), 0, 1)
=0

o(1)—1
Ry
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with s9 = 0, zg = 0, 07%(0) = 0. We consider this integral when o(1) > 2.
Similarly,

a'(m—‘,—l)—l

9(8i+1=8i, To=1(3), To=1(i41)) ATo=1 (o (m)+1) - - - ATo=1 (0(m+1)—1)

e(mtl)—a(m)—1 i=0(m)
Ry

= g(sa(m+1) — So(m)> Tm, Trm+1)
for 1 <m < k — 1, where this is considered when o(m + 1) > o(m) + 2, and
n—1
H 9(Sit1 = 8i,To-1(3), To—1(i41)) ATo—1(a(k)+1) - - - ATg—1(n) = 1.
g et i=7(k)

This integral is considered when o(k) < n — 1. Let us denote by F(xy,...,x,) the
integrand of the left hand side of (2.2). Then the integral on the left hand side of
(2.2) equals

(2.3) /(/ kF(xl,...,xk,mkH,...,a:n)da:kH...da:n> dry...,dzy.
r \J/r?-

Collecting results above, we see that the inner integral is equal to

g(sa(l)yoyxl)g(sa(Q) - 50(1),1'1,1'2) .. g(sa'(k) - Sa’(k—l)yxkflyxk)-
Using this in (2.3), we get (2.2).
In the same way, we have

(2.4) /T(A,) 9(t1,0,3-1(1))g(t2 — t1,Tr-1(1), Tr-1(2))

o g(tn =t 1, Tt (1), Trm1(ny) dT1 ... dTy,
= /, 9(tr1),0,21)9(tr(2)—tr (1), T1,22) - - . g(tr (k) —tr(k—1)> Th1, Th) Ty . .. dp.
From (2.2) and (2.4), it follows that

/J(A) 9(51,0,25-1(1))9(82 = 81, To-1(1), Tg—1(2))
< 9(8n = Sn-1,To=1(n—1), To=1(n)) dT1 ... dTy
= /T(A’) g(t1,0,2,-1(1))g(t2 — t1, Tr-1(1), Tr-1(2))
o g(tn =t 1, Tt (n1), Tr=1(n)) dT1 . .. dTy,

since ' =T, 80(j) = tr(j) for 1 < j <k, and hence

/ 9(s1,0,21)g(s2 — s1,%1,T2) ... g(Sn — Sn—1, Tn-1,Tn)dry ...dT,
A

= / g(t1,0,21)g(ta — t1,x1,22) - .- g(tn — tne1,Tn-1,Tn)dx1 ... dx,.
This implies that u is well-defined on G. O

The set function p will extend to the Wiener measure on the sigma-algebra
generated by G.
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3. COUNTABLE ADDITIVITY OF THE WIENER MEASURE

We first prove countable additivity of p on the algebra G, which along with a
result from the measure theory will imply what we want to show.

Proposition 3.1. Let u be as in Lemma 2.9. Then p is countably additive on the
algebra G.

It is easy to see that this follows from the next result.

Proposition 3.2. Let u be as in Lemma 2.9. Let A,, € G, n =1,2,.... Suppose
that A, | 0. Then lim,,_,o p(4,) =0.

To prove Proposition 3.2 we shall show the following.

Assertion 1. Suppose that 4, € G, n =1,2,..., A, | and lim,,_,o, pu(4,) # 0.
Then lim,, oo A, # 0.

To prove this we assume that A4, = <I>;n1 (A,,) for some t, € (Ry)M~ and A, €
B(RY™), where N,, = cardf,. We may also assume that

A R m 1 2 m2"
tn_{tl 7t2 ""’ta(n)’Qn’2n""’ on )

where {a(n)} is a strictly increasing sequence of positive integers, which can be
seen by Lemma 2.3. Let

N . 1 2 on
7 :{t§>,t§),...,t<”) — - "—}

*
n

which are subsets of £,,. We note that

(3.1) Ut=U#%

Jj21 Jj21

and M,, = card(t}) < 3n2""L.
To prove the assertion we need the following.

Lemma 3.3. For any € > 0, there exists n > 1 such that

So{feW iwa(f) >2 "y} <,
n=1
where
wn(f) = max{|p:(f) — ¢s(f)| :0<t—s5<2 ™ s,t€tr}).
In proving this we apply the following formula.

Lemma 3.4. Let 0 < s <t < 0o, A € B(R?). Then

u{few:@(f)—@(f)eA}z/A(—mexp(_ ) o
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Proof. Define a continuous function h : R2 — R? by h(z,y) =y — z. Let

D50 (f) = (9s(f), D:(f))-

Then, we note that

{FeW:d(f) —bs(f) €Ay ={f €W : B )(f) € H(A)}.

Therefore
p{f € W2 di(f) = 6s(f) € A} = p(a ) (BLL (BH(A)))

= / 9(s,0,21)g(t — s,21,x0) dr1dx>
h=1(A)

:/ XA(z2 —21)9(s,0,21)9(t — 5,21, 72) dods
R

2
d

:/ </ 9(s,0,21)g(t — s, 21,21 +m2)dw2> dzq
Rd \JA

:/ g(S,O,xl)dml/g(t—S,O,mg)de
R4 A

= / g(t — 5,0, 22) dzo
A

[ (aits)

where ya denotes the characteristic function of A. O

Proof of Lemma 3.3. Note that

(32) {f €W :walf)>27"n}
= U Fewah) - ol > 2 ).

0<t—s<2™ ™,
stets

This in particular implies that the set on the left hand side is in G;, C G (see the
proof of (3.3) below). Since

I W oD -0N> = [ e (3 an,

jal>e (V27 (t = 5))
which follows from Lemma 3.4, by (3.2) we have
p{f €W swn(f) > 2773} < Z / ;exp<— Ll )dm
N ja|>2-n/3y (/27 (t — 5))¢ 2(t - )

0<tfs§~2_",
s,tetz

2

< Z Cayvt — 32"/317_1 exp <_777> ,

2(t — 5)22n/3d
0<t—s<27™,

s,tEE:
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where Cy = L\/}@ and to get the last inequality we have used the estimate

[ooimmoe ()

1 v? V2otd c?
< ——exp|—— ) dv; <d—exp | —— |,
- Z /|vi>c/\/3 V2mt P ( 2t> - \/Ec P ( 2dt>

i=1

with ¢ > 0. Therefore,

2 9—2n/3
WIEW (D> Py s (e e (<220

2 d2—n
0<t—s<2™ 7,
s,tEE:

< M,Z;Cﬂ*"/ﬁnfl exp (_n22n/371d71)

< (9/4)Cdn222n—n/6n—1 exp (_n22n/3—1d—1) )

Thus

Sl € W) > 2 o) < ((9/4)@ S w2n exp (~2n/ “d1)> n

n=1 n=1

and hence taking 1 large enough depending on €, we get the conclusion. O

Choose €y > 0 so that lim u;, (4,) > €. Applying Lemma 3.3, take 19 > 1 such
that

Z,Utn{f €W twn(f) >27" 10} < €0/3.

n=1

Choose a compact set A!, C A, such that
i, (20, (An \ A7) < €377

(see [5, p. 48, Theorem 2.18]). There exist a compact set A” in R)™ such that
A" C Al and

(3.3) O AL N{f €W twa(f) <27no} = &, H(AD).

This can be shown as follows.
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Let h: R2 — R?, h(z,y) =y —z as above. Let B(r) = {x € R? : |z| < r}. Then
{feW: () <2y = |J {feW:h(s:(f),0:(f) € B2 n0)}

0<t—s<27",

s,tEL
= U  {FeW:(alh),ds(f) € LB )}
0<t—s<27",

s,tety

U {Few:®, (f) €An,m,s 1)}

0<t—s<2™ 7,
s,tEE:

_ &1
=, U A(n,no, s,t)
0<t—s<277,
s,tets

for some A(n,mo,s,t) € B(]Rfiv") which is closed and can be written as
A(n,mo,s,t) =0 (h_l(B(Q—"/3n0)) x R —2)

with some 0 = 0, ; € 8x,. Thus we can take

A=Al N U A(n,no, s,t)
0<t—s<27™,
s,tets

Next, we show
(3.4) ﬂ@ (A)£0, n=1,2,....

To prove this we first observe that

n n n

A= =020 = (@;1(Aj VALY UL\ AL U <1>;]_1(A;.'))

j=1 =1 j=1

(Uq> A\A) (Uq> Af') (m@ Af')

We next note that
@ (NG \AY) = B A\ @A) C{f €W w;(f) > 27}
Thus

i) ens- gt

s 0= 3 =S (f €W () > 2 )
j=1 j=1

>60—60/2—60/3:60/6>0,
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from which we can deduce (3.4).

Let f, € Nf_ @, (A}). Since @, (fn) € A}, n = 1,2,..., {®,(fn) : n =
1,2,...} is a sequence in a compact set A}, and there is a convergent subsequence
{<I>t1(f (1))}] y in AY. Next, @, (f, (1)) isin AL if 5 > 2. Thus {®,(f (1))}] | con-

tains a convergent subsequence {®;, (f (2))}] 1 in AL, We note that {<I>t1 (f @ )}

is also convergent in A{. Continuing thls we have sequences {f ) }52, for k =
J

1,2,... such that {®; (f e )}32, is a convergent sequence in A} if k' > k and

such that {fng.kl)} is a subsequence of {f, (k)} °, if K > k.

Consider {fn,}, nx = ngck). Then {®;;(fn,)}r>; is a sequence in A7 and con-
verges in AY for each j > 1, since {®4,(f, 7))}i2; converges in A7 and {f & }r>;
1 k -

is a subsequence of {fn(,-)}l>1. Thus, if ¢ € U;j>1%;, the limit limy_c0 fn, (t) exists.
@) 51> >

Define z(t) on U;j>1t; by setting
z(t) = lm fo,(t), tE€Uj>it;.
k— o0 -
Then,
(3.5) (z(ar),z(az),...,z(an;)) € A} ift; = (a1,a2,...,an;).
Assertion 2. There exists f € W such that f = 2 on U;j>11;.
If we have this, ®;,(f) € A] C A; for all j > 1 by (3.5), and hence

Fe) e () =4,
j=1
which will prove Assertion 1.
Proof of Assertion 2. If f € (I>;]_1(A;-’), then w;(f) < 2=3/374. So, if k > j, we have
|¢t(fnk) - ¢5(f'"-k)| < 2_j/3770
whenever s,t € f;f and 0 < t — s < 277, Thus, letting k — oo, we have
(3.6) lz(t) — z(s)] <2793y ifs,t e trand 0<t—s< 277,

Since szlf;f* is dense in Ry, by (3.6) it will be shown that Assertion 2 will follow
from the next result.

Assertion 3. There exists f € W such that f =z on szlfj*.
To prove this we show the following.
Lemma 3.5. If s,t € szlf;*, 0<s<t<jand0<t—s<277, then
[2(t) — a(s)| < C279/*.
Obviously, this implies that z is uniformly continuous on every bounded subset

of szlf;*.

Proof of Lemma 3.5. Take j' > j such that 279 ~1 < ¢ — s < 279", It suffices to
prove the lemma with j' in place of j.
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We can find ug = ¢277 =1 with 1 < ¢ < j/20'+! guch that s < up < t. We have
s,t el for some n. We can take n as large as we wish. We have s = k277 —,
t=m2 7" with 1 <k < ;27" and 1 < m < j'2/'*". Then

up — s = (q2" " — k)29 .

Since 0 < ug — s < 279", we have 0 < 2" ! — k < 2. Thus we can write
n—1 n—1
Up— S = (Z €,20)277 " = Z ;2”0 +n=p)
p=0 p=0

with €, =0 or 1. Put
-2
s =8+ Z €p2*(j’+"*p)
p=0
for2<l<n+1ands; =s. Then s,4+1 = ug.
By definition, s,+1 € 77, and s1 € ¢}, ,,. Also, we observe that s; € £77,, ,.;
for 1 <1 < n. For n > 2, this can be shown as follows. First, since s, =

Uy — en,12*(j’“), we have s, € "T;’*—H' Next, suppose that s;y1 € f;f,’;nfl for
1<l<n-—1. Then

.1 -7 -1
SI = Si41 — 612" WAn—ltl) _ po—(i"4n=l) _ ¢ o-(i'4n-l+l)

=(2r — 6171)27(].4"7”1),
where

0<2r —€o1 <2r <2(j' +n— 02T L < (j' 4 — [ 4 1)20 FnHL

ok
Therefore, we see that s, € £37, ;..

We have s;41,s € t;f,*+n7l+1 for 1 <1 <mn. Also,

0< siq41—8 = 2~ U Hn=l+1) < 9=(i'+n=1+1)

for 1 <1 < n. Therefore by (3.6)

|2 (uo) — 2(5)] < D |w(sir1) —2(s)| <mo Y 2~ (=03 < popo27' /3
1=1 =1
where ¢y = S0 27™/3,
Similarly, |z(t) — z(uo)| < cono2~9'/3. To see this we write
n—1
t—ug = Z €, 2~ (' +1+)
v=0

with €, =0 or 1,
1—2

t =wup + Z ev2*(jl+1+”)
v=0

for2<l<n+1andt; =wug. Then t,,41 =t.
We have ¢, € t77, and ¢; € ¢/, | for 2 <1 <n+1. To see this, we first note

that ¢, € f;f,*H, since ty = up 4 €2 Ut = (g4 €)2 '+ with 1 < ¢ < j/27+1,
Next, suppose that #; € #5%,,_, for 2 <1 < n. We write

tir =t + 27U =27 @HED g 0= UHD — (9 4 ¢_y)27U'HD
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with 0 < r < (j' +1 —1)2/' =1 We see that 0 < 2r + e_1 < (j' + )27+, which
implies t141 € &%, ;. The desired result follows from this.
We have t;,t;,1 € th,*H and t < 41 < t+2°U*D) for 1 <1 < n. So, by
applying (3.6) as above to |z(t;+1) — ()|, we have the estimate as claimed.
Thus |z(t) — z(s)| < |2(t) — x(uo)| + |x(uo) — x(s)| < 2como2~7'/3. This proves
Lemma 3.5. O

SinceU jzlf;* is dense in Ry, by Lemma 3.5 and a well-known argument, we have
Assertion 3.

Proof of Assertion 3. We write z(t) = (x1(t),z2(t), ..., z4(t)). For t € Ry, let
filt) = !gr[l) sup {zi(s) : [s —t] <e,s € Ujs1t5°}, 1<i<d,

and

f@) = (£ @), £2(8), .- -, fa(t)-

Then, by Lemma, 3.5 it is not difficult to see that f is continuous on Ry and equals
z when restricted to Uj>117". O

For any t € U;j>1;, by (3.1) and (3.6), there exists a sequence {t,,} in szlf;*
such that t,, — t and z(t,,) — x(t). Thus f(¢t) = lim f(t,,) = limz(t,,) = z(t).
This completes the proof of Assertion 2 and hence that of Assertion 1. O

This completes the proof of Proposition 3.2 and hence that of Proposition 3.1.

Let 3 = J,; be the sigma-algebra generated by §. Then, by Proposition 3.1, u
uniquely extends to a measure on F, which is again denoted by p (see [1, p. 30,
Theorem (1.14)]). We also write u = pg. The measure space (Wq, Fa, p1a) is called
the Wiener probability space.

Remark 3.6. We have
(3.7 u{fewW: f(0)=0}=1.
This can be shown as follows. By (2.1) we see that

wrew:swenm = [ gen (-G w

for all ¢,r > 0 (recall that B(r) = {z € R? : |z| < r}). Letting t — 0, we have
p{f e W: f(0)e B(r)} =1
for all » > 0. Thus (3.7) follows by taking the limit as r — 0.

4. WIENER MEASURE OF NOWHERE DIFFERENTIABLE FUNCTIONS

Let D be the subset of W7 consisting of the functions f for which there exists
at least one point in Ry at which they are differentiable.

Theorem 4.1. We have u(D) =0, where p = 1.

To prove this we need the following.
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Theorem 4.2. Let 0 < t; <ty <---<t, and A1, As,..., A, € B(R?). Then

uf €W : ¢, (f) € M,y (f) = be, () € Ay, b1, (f) = S10 () € A}
=p{f €W o, (f) € M} u{f €W : ¢4, (f) — b, (f) € A2} ...
Xpu{feW: ¢, (f) = ¢, (f) € An}.
Proof. Define a continuous function ¢ : R} — R} by
p(T1, T2, ..., Tn) = (T1,T2 — T1,T3 — T, ..., Ty — Tp_1)-
Then

{feW:¢u(f) € A,be,(f) — b, (f) € A2y ooy 0, (f) — br,, (f) € An}
=3, (o 1 (A1 x Az x -+ x A,,)),
where t = (t1,...,t,). Thus
,U{fEW5¢t1 f)€A1:¢t2(f)—¢t1(f)EAQ,---aff)tn(f)—fﬁtn_l(f)EAn}
= (®7" (o7 (A1 x Ag x -+ x Ay)))

= / g(t1,0,x1)g(te — t1, 21, 22) ... g(tn — tne1, Tne1,Tn) dz - . .doy
<p71(A1><A2><"'XAn)

= / g(t1,0,21)g(t2 —t1,0,22) ... g(tn — tn—1,0,2,) dzy ... d2y
Ay XAaX--XA,

= / g(t1,0, 1) dzy / g(ta — t1,0,29) dzo- - / g(tn —tn—1,0,2,) dx,,
Aq Ao An

which will imply the conclusion if we recall Lemma 3.4 and the formula (2.1). O
Proof of Theorem 4.1. Let Dy be the subset of D consisting of the functions f for

which there exists at least one point in [0, N] at which they are differentiable. It
suffices to prove u(Dy) =0 for N =1,2,..., since Dy 1 D. Define

nN j+2
Eppn = U ﬂ{f €W :@gi—1)/n(f) — Gi/n(f)] < k/n}
j=1li=j
fork=1,2,...;n=1,2,.... Then
Dy C kL;Jl (hnn_1>1013)f Ekm) .

Thus to prove the claim, it suffices to show that lim,_, u(Ex,,) = 0 for every k.
By Theorem 4.2 and Lemma 3.4 with d = 1, we see that

Jj+2

J+2

= Hu{f EW dgi—1)/n(f) — din(f)| < k/n}

n 9 3
_ (2 /0’“ e (-2) dx)
< (2k/V2m)*n 2,
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Thus
1(Ern) < nN(2k/VZR)*n 2,

from which we get the result as claimed. O
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