## Construction of Brownian motion on the Wiener measure space

| メタデータ | 言語：eng |
| :---: | :--- |
|  | 出版者： |
|  | 公開日：2019－10－03 |
|  | キーワード（Ja）： |
|  | キーワード（En）： |
|  | 作成者：佐藤，秀一 |
|  | メールアドレス： |
|  | 所属： |
| URL | http：／／hdl．handle．net／2297／00055659 |

This work is licensed under a Creative Commons
Attribution－NonCommercial－ShareAlike 3.0
International License．

# CONSTRUCTION OF BROWNIAN MOTION ON THE WIENER MEASURE SPACE 

SHUICHI SATO


#### Abstract

We give a self contained construction of the Wiener probability space.


## 1. Introduction

Let $W=W_{d}=C[0, \infty)$ be the collection of continuous $\mathbb{R}^{d}$-valued functions on the interval $\mathbb{R}_{0}=[0, \infty)$. In this note we present a self contained construction of the Wiener probability space $(W, \mathcal{F}, \mu)$, where $\mathcal{F}$ is a sigma-algebra of subsets of $W$ and $\mu$ is the Wiener measure. The mathematical theory of the Brownian motion is based on this probability space. We follow the methods of [4], but we intend to make our presentation more specific. (See also [2], [3], [6].)

## 2. Definition of the Wiener measure

Definition 2.1. We write $t=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{R}_{0}\right)_{*}^{n}$ if $t=\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbb{R}_{0}\right)^{n}=$ $\mathbb{R}_{0} \times \cdots \times \mathbb{R}_{0}$ (n-fold product) and $0<t_{1}<t_{2}<\cdots<t_{n}$. We also write $\mathbb{R}^{d}=\mathbb{R}_{d}$, when Cartesian products of $\mathbb{R}^{d}$ are considered. Define $\Phi_{t}: W \rightarrow \mathbb{R}_{d}^{n}, t \in\left(\mathbb{R}_{0}\right)_{*}^{n}$, by

$$
\Phi_{t}(f)=\left(\phi_{t_{1}}(f), \ldots, \phi_{t_{n}}(f)\right),
$$

where $\phi_{t_{j}}(f)=f\left(t_{j}\right)$ and $\mathbb{R}_{d}^{n}=\left(\mathbb{R}_{d}\right)^{n}=\mathbb{R}_{d} \times \cdots \times \mathbb{R}_{d}$ ( $n$-fold product). Set

$$
\mathcal{G}_{t}=\left\{\Phi_{t}^{-1}(B): B \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right)\right\}
$$

where $\Phi_{t}^{-1}(B)=\left\{f \in W: \Phi_{t}(f) \in B\right\}$ and $\mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$ denotes the Borel class of $\mathbb{R}_{d}^{n}$.
Since $\mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$ is a sigma-algebra, obviously we have the following result.
Lemma 2.2. $\mathcal{G}_{t}$ is a sigma-algebra for every $t \in\left(\mathbb{R}_{0}\right)_{*}^{n}$.
We observe the following result on $\mathcal{G}_{t}$.
Lemma 2.3. Let $t \in\left(\mathbb{R}_{0}\right)_{*}^{m}, s \in\left(\mathbb{R}_{0}\right)_{*}^{n}$ with $m \leq n$. Let $\tilde{t}=\left\{t_{1}, \ldots, t_{m}\right\}, \tilde{s}=$ $\left\{s_{1}, \ldots, s_{n}\right\}$, which are sets of positive numbers, if $t=\left(t_{1}, \ldots, t_{m}\right), s=\left(s_{1}, \ldots, s_{n}\right)$. Suppose that $\tilde{t} \subset \tilde{s}$. Then $\mathcal{G}_{t} \subset \mathcal{G}_{s}$.

Proof. Take $\sigma(s)=\left(s_{\sigma(1)}, s_{\sigma(2)}, \ldots, s_{\sigma(n)}\right)$ satisfying $s_{\sigma(1)}=t_{1}, s_{\sigma(2)}=t_{2}, \ldots$, $s_{\sigma(m)}=t_{m}$ with some $\sigma \in \mathcal{S}_{n}$ (the permutation group). Suppose $A \in \mathcal{G}_{t}$. Then there exists $\Lambda \in \mathcal{B}\left(\mathbb{R}_{d}^{m}\right)$ such that $A=\Phi_{t}^{-1}(\Lambda)$. Let $\Lambda^{\prime}=\Lambda \times \mathbb{R}_{d}^{n-m}$. Define

$$
\sigma^{-1}\left(\Lambda^{\prime}\right)=\left\{\left(x_{\sigma^{-1}(1)}, \ldots, x_{\sigma^{-1}(n)}\right):\left(x_{1}, \ldots, x_{n}\right) \in \Lambda^{\prime}\right\}
$$

[^0]We see that $f \in \Phi_{s}^{-1}\left(\sigma^{-1}\left(\Lambda^{\prime}\right)\right)$ if and only if

$$
\left(\phi_{s_{1}}(f), \ldots, \phi_{s_{n}}(f)\right) \in \sigma^{-1}\left(\Lambda^{\prime}\right)
$$

which means that

$$
\left(\phi_{s_{\sigma(1)}}(f), \ldots, \phi_{s_{\sigma(n)}}(f)\right) \in \Lambda^{\prime}
$$

The definition of $\Lambda^{\prime}$ implies that this is equivalent to

$$
\left(\phi_{s_{\sigma(1)}}(f), \ldots, \phi_{s_{\sigma(m)}}(f)\right) \in \Lambda
$$

This can be rewritten as

$$
\left(\phi_{t_{1}}(f), \ldots, \phi_{t_{m}}(f)\right) \in \Lambda
$$

which is equivalent to $f \in \Phi_{t}^{-1}(\Lambda)$. Thus $A=\Phi_{t}^{-1}(\Lambda)=\Phi_{s}^{-1}\left(\sigma^{-1}\left(\Lambda^{\prime}\right)\right)$, and hence $A \in \mathcal{G}_{s}$, since $\sigma^{-1}\left(\Lambda^{\prime}\right) \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$.
Definition 2.4. Let $\mathcal{G}^{(n)}=\cup_{t \in\left(\mathbb{R}_{0}\right)_{*}^{n}} \mathcal{G}_{t}$ and $\mathcal{G}=\cup_{n=1}^{\infty} \mathcal{G}^{(n)}$.
Lemma 2.5. $\mathcal{G}$ is an algebra of subsets of $W$.
Proof. We easily see that $W \in \mathcal{G}$. Let $A \in \mathcal{G}$. Then there is $n \geq 1$ such that $A \in \mathcal{G}_{t}$ for some $t \in\left(\mathbb{R}_{0}\right)_{*}^{n}$. Since $\mathcal{G}_{t}$ is a sigma-algebra (Lemma 2.2), we have $A^{c} \in \mathcal{G}_{t}$ and hence $A^{c} \in \mathcal{G}$. Suppose that $A, B \in \mathcal{G}$. Lemma 2.3 implies that $A, B \in \mathcal{G}_{t}$ for some $t$. Thus $A \cup B \in \mathcal{G}_{t}$ by Lemma 2.2. Collecting results, we see that $\mathcal{G}$ is an algebra.

Let $|x|=\left(\alpha_{1}^{2}+\cdots+\alpha_{d}^{2}\right)^{1 / 2}$ be the Euclidean norm of $x=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d}$. Define

$$
g(t, x, y)=\frac{1}{(\sqrt{2 \pi t})^{d}} \exp \left(-\frac{|y-x|^{2}}{2 t}\right), \quad x, y \in \mathbb{R}^{d}, \quad t>0
$$

We have the following formulas:

## Lemma 2.6.

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} g(t, x, y) d y & =1 \\
\int_{\mathbb{R}^{d}} g(s, a, x) g(t, x, b) d x & =g(s+t, a, b)
\end{aligned}
$$

Definition 2.7. Define $\mu_{t}$ on $\mathcal{G}_{t}, t \in\left(\mathbb{R}_{0}\right)_{*}^{n}$, by

$$
\mu_{t}(A)=\int_{\Lambda} g\left(t_{1}, 0, x_{1}\right) g\left(t_{2}-t_{1}, x_{1}, x_{2}\right) \ldots g\left(t_{n}-t_{n-1}, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n}
$$

with $A=\Phi_{t}^{-1}(\Lambda), t=\left(t_{1}, \ldots, t_{n}\right), \Lambda \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$.
Lemma 2.8. Let $\mu_{t}$ be as in Definition 2.7. Then, $\mu_{t}$ defines a probability measure on the sigma-algebra $\mathcal{G}_{t}$.
Proof. If $\mu_{t}$ is well-defined on $\mathcal{G}_{t}$, it is easy to see that $\mu_{t}$ is a probability measure. Suppose that $A=\Phi_{t}^{-1}(\Lambda)=\Phi_{t}^{-1}\left(\Lambda^{\prime}\right)$ with $\Lambda, \Lambda^{\prime} \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$. We show that $\Lambda=\Lambda^{\prime}$. To see this, we notice that $\Phi_{t}$ is a surjection from $W$ onto $\mathbb{R}_{d}^{n}$. Thus the relation

$$
\Lambda \cap \Phi_{t}(W)=\Phi_{t}(A)=\Lambda^{\prime} \cap \Phi_{t}(W)
$$

implies $\Lambda=\Lambda^{\prime}$. It follows that $\mu_{t}$ is well-defined on $\mathcal{G}_{t}$.
To show that $\mu_{t}$ is a probability measure, we have to prove
(1) $\mu_{t}(W)=1$;
(2) if $A_{k} \in \mathcal{G}_{t}, k=1,2, \ldots$, and $A_{j} \cap A_{k}=\emptyset, j \neq k$, then

$$
\mu_{t}\left(\cup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \mu_{t}\left(A_{k}\right)
$$

Obviously, we have part (1), since $W=\Phi_{t}^{-1}\left(\mathbb{R}_{d}^{n}\right)$. To prove part (2), let $A_{k}=$ $\Phi_{t}^{-1}\left(\Lambda_{k}\right)$ with $\Lambda_{k} \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$. We note that

$$
\Phi_{t}^{-1}\left(\Lambda_{j} \cap \Lambda_{k}\right)=A_{j} \cap A_{k}=\emptyset
$$

if $j \neq k$. This implies that $\Lambda_{j} \cap \Lambda_{k}=\emptyset$, since $\Phi_{t}$ is a surjection. Thus the countable additivity of $\mu_{t}$ follows from the definition of $\mu_{t}$ with the countable additivity of Lebesgue integral.

We note that if $A=\phi_{t}^{-1}(\Lambda), t>0$,

$$
\begin{equation*}
\mu_{t}\{f \in W: f(t) \in \Lambda\}=\mu_{t}(A)=\int_{\Lambda} \frac{1}{(\sqrt{2 \pi t})^{d}} \exp \left(-\frac{|x|^{2}}{2 t}\right) d x \tag{2.1}
\end{equation*}
$$

Lemma 2.9. Let $A \in \mathcal{G}$. Then we can define $\mu$ on $\mathcal{G}$ by $\mu(A)=\mu_{t}(A)$ with $t \in \cup_{n \geq 1}\left(\mathbb{R}_{0}\right)_{*}^{n}$ satisfying $A \in \mathcal{G}_{t}$.
Proof. Suppose that $A=\Phi_{s}^{-1}(\Lambda)=\Phi_{t}^{-1}\left(\Lambda^{\prime}\right)$ with $s \in\left(\mathbb{R}_{0}\right)_{*}^{m}, t \in\left(\mathbb{R}_{0}\right)_{*}^{n}$ and $\Lambda \in \mathcal{B}\left(\mathbb{R}_{d}^{m}\right), \Lambda^{\prime} \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$. We show that

$$
\begin{aligned}
& \int_{\Lambda} g\left(s_{1}, 0, x_{1}\right) g\left(s_{2}-s_{1}, x_{1}, x_{2}\right) \ldots g\left(s_{m}-s_{m-1}, x_{m-1}, x_{m}\right) d x_{1} \ldots d x_{m} \\
& \quad=\int_{\Lambda^{\prime}} g\left(t_{1}, 0, x_{1}\right) g\left(t_{2}-t_{1}, x_{1}, x_{2}\right) \ldots g\left(t_{n}-t_{n-1}, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

If $m<n$, put $\Lambda^{*}=\Lambda \times \mathbb{R}_{d}^{n-m}, s^{*}=\left(s_{1}, \ldots, s_{m}, s_{m}+1, s_{m}+2, \ldots, s_{m}+n-m\right)$. Then $\Lambda^{*} \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right), s^{*} \in\left(\mathbb{R}_{0}\right)_{*}^{n}, \Phi_{s}^{-1}(\Lambda)=\Phi_{s^{*}}^{-1}\left(\Lambda^{*}\right)$ and

$$
\begin{aligned}
& \int_{\Lambda} g\left(s_{1}, 0, x_{1}\right) g\left(s_{2}-s_{1}, x_{1}, x_{2}\right) \ldots g\left(s_{m}-s_{m-1}, x_{m-1}, x_{m}\right) d x_{1} \ldots d x_{m} \\
& \quad=\int_{\Lambda^{*}} g\left(s_{1}^{*}, 0, x_{1}\right) g\left(s_{2}^{*}-s_{1}^{*}, x_{1}, x_{2}\right) \ldots g\left(s_{n}^{*}-s_{n-1}^{*}, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

So, we may assume that $s, t \in\left(\mathbb{R}_{0}\right)_{*}^{n}$ and $\Lambda, \Lambda^{\prime} \in \mathcal{B}\left(\mathbb{R}_{d}^{n}\right)$.
Let $\tilde{s} \cap \tilde{t}=\left\{s_{\sigma(1)}, \ldots, s_{\sigma(k)}\right\}=\left\{t_{\tau(1)}, \ldots, t_{\tau(k)}\right\}, \sigma(1)<\cdots<\sigma(k), \tau(1)<\cdots<$ $\tau(k)$ with $\sigma, \tau \in \mathcal{S}_{n}$. We show that $\sigma(\Lambda)=\tau\left(\Lambda^{\prime}\right)=\Gamma \times \mathbb{R}_{d}^{n-k}$ for some $\Gamma \in \mathcal{B}\left(\mathbb{R}_{d}^{k}\right)$. Let
$\Gamma=\left\{\left(x_{1}, \ldots, x_{k}\right):\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right) \in \sigma(\Lambda)\right.$ for some $\left.\left(x_{k+1}, \ldots, x_{n}\right) \in \mathbb{R}_{d}^{n-k}\right\}$, $\Gamma^{\prime}=\left\{\left(x_{1}, \ldots, x_{k}\right):\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right) \in \tau\left(\Lambda^{\prime}\right)\right.$ for some $\left.\left(x_{k+1}, \ldots, x_{n}\right) \in \mathbb{R}_{d}^{n-k}\right\}$. If $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}_{d}^{k} \times \mathbb{R}_{d}^{n-k}$, let $\pi_{k}(x)=x^{\prime}$. Then $\Gamma=\pi_{k}(\sigma(\Lambda)), \Gamma^{\prime}=\pi_{k}\left(\tau\left(\Lambda^{\prime}\right)\right)$. We can show $\Gamma=\Gamma^{\prime}$ as follows. Let $\left(x_{1}, \ldots, x_{k}\right) \in \Gamma$. Then $\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right) \in$ $\sigma(\Lambda)$ for some $\left(x_{k+1}, \ldots, x_{n}\right) \in \mathbb{R}_{d}^{n-k}$. Thus

$$
\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)=\left(y_{\sigma(1)}, \ldots, y_{\sigma(k)}, y_{\sigma(k+1)}, \ldots, y_{\sigma(n)}\right)
$$

with some $\left(y_{1}, \ldots, y_{k}, y_{k+1}, \ldots, y_{n}\right) \in \Lambda$. Since $\Phi_{s}\left(\Phi_{s}^{-1}(\Lambda)\right)=\Lambda$, there exists $f \in A$ such that

$$
\left(f\left(s_{1}\right), \ldots, f\left(s_{k}\right), f\left(s_{k+1}\right), \ldots, f\left(s_{n}\right)\right)=\left(y_{1}, \ldots, y_{k}, y_{k+1}, \ldots, y_{n}\right)
$$

Therefore

$$
\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)=\left(f\left(s_{\sigma(1)}\right), \ldots, f\left(s_{\sigma(k)}\right), f\left(s_{\sigma(k+1)}\right), \ldots, f\left(s_{\sigma(n)}\right)\right)
$$

Since $\Phi_{s}^{-1}(\Lambda)=\Phi_{t}^{-1}\left(\Lambda^{\prime}\right)$, we also have

$$
\left(f\left(t_{1}\right), \ldots, f\left(t_{k}\right), f\left(t_{k+1}\right), \ldots, f\left(t_{n}\right)\right) \in \Lambda^{\prime}
$$

Thus

$$
\left(f\left(t_{\tau(1)}\right), \ldots, f\left(t_{\tau(k)}\right), f\left(t_{\tau(k+1)}\right), \ldots, f\left(t_{\tau(n)}\right)\right) \in \tau\left(\Lambda^{\prime}\right)
$$

Since

$$
\left(x_{1}, \ldots, x_{k}\right)=\left(f\left(s_{\sigma(1)}\right), \ldots, f\left(s_{\sigma(k)}\right)\right)=\left(f\left(t_{\tau(1)}\right), \ldots, f\left(t_{\tau(k)}\right)\right),
$$

it follows that $\left(x_{1}, \ldots, x_{k}\right) \in \Gamma^{\prime}$. This proves $\Gamma \subset \Gamma^{\prime}$. Similarly, we also have $\Gamma^{\prime} \subset \Gamma$. Thus we have $\Gamma=\Gamma^{\prime}$.

Next we show that $\sigma(\Lambda)=\Gamma \times \mathbb{R}_{d}^{n-k}$. Let $\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right) \in \Gamma \times \mathbb{R}_{d}^{n-k}$. Then, since $\left(x_{1}, \ldots, x_{k}\right) \in \Gamma^{\prime}=\pi_{k}\left(\tau\left(\Lambda^{\prime}\right)\right)$ and $\Phi_{t}$ is surjective from $\Phi_{t}^{-1}\left(\Lambda^{\prime}\right)$ to $\Lambda^{\prime}$, we can find $f \in \Phi_{t}^{-1}\left(\Lambda^{\prime}\right)$ such that

$$
\left(x_{1}, \ldots, x_{k}\right)=\pi_{k}\left(\left(f\left(t_{\tau(1)}\right), \ldots, f\left(t_{\tau(k)}\right), f\left(t_{\tau(k+1)}\right), \ldots, f\left(t_{\tau(n)}\right)\right)\right)
$$

with

$$
\left(f\left(t_{1}\right), \ldots, f\left(t_{k}\right), f\left(t_{k+1}\right), \ldots, f\left(t_{n}\right)\right) \in \Lambda^{\prime}
$$

Since $s_{\sigma(k+1)}, \ldots, s_{\sigma(n)} \notin \tilde{t}, f$ can be chosen so that $f\left(s_{\sigma(k+1)}\right)=x_{k+1}, \ldots, f\left(s_{\sigma(n)}\right)=$ $x_{n}$ for any $x_{k+1}, \ldots, x_{n} \in \mathbb{R}^{d}$. Since $f \in \Phi_{s}^{-1}(\Lambda)$ also and $s_{\sigma(j)}=t_{\tau(j)}, 1 \leq j \leq k$,

$$
\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)=\left(f\left(s_{\sigma(1)}\right), \ldots, f\left(s_{\sigma(k)}\right), f\left(s_{\sigma(k+1)}\right), \ldots, f\left(s_{\sigma(n)}\right)\right)
$$

with

$$
\left(f\left(s_{1}\right), \ldots, f\left(s_{k}\right), f\left(s_{k+1}\right), \ldots, f\left(s_{n}\right)\right) \in \Lambda
$$

This implies that $\Gamma \times \mathbb{R}_{d}^{n-k} \subset \sigma(\Lambda)$. The reverse inclusion is obvious. Also we have $\tau\left(\Lambda^{\prime}\right)=\Gamma \times \mathbb{R}_{d}^{n-k}$.

If $\tilde{s} \cap \tilde{t}=\emptyset$, by the arguments above we have $\Lambda=\Lambda^{\prime}=\mathbb{R}_{d}^{n}$ provided that $\Phi_{s}^{-1}(\Lambda)=\Phi_{t}^{-1}\left(\Lambda^{\prime}\right)\left(\Lambda \neq \emptyset, \Lambda^{\prime} \neq \emptyset\right)$.

We note that

$$
\begin{aligned}
& \int_{\Lambda} g\left(s_{1}, 0, x_{1}\right) g\left(s_{2}-s_{1}, x_{1}, x_{2}\right) \ldots g\left(s_{n}-s_{n-1}, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\int_{\sigma(\Lambda)} g\left(s_{1}, 0, x_{\sigma^{-1}(1)}\right) g\left(s_{2}-s_{1}, x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}\right) \\
& \ldots g\left(s_{n}-s_{n-1}, x_{\sigma^{-1}(n-1)}, x_{\sigma^{-1}(n)}\right) d x_{1} \ldots d x_{n} .
\end{aligned}
$$

We show that

$$
\begin{align*}
& (2.2) \quad \int_{\sigma(\Lambda)} g\left(s_{1}, 0, x_{\sigma^{-1}(1)}\right) g\left(s_{2}-s_{1}, x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}\right)  \tag{2.2}\\
& \ldots g\left(s_{n}-s_{n-1}, x_{\sigma^{-1}(n-1)}, x_{\sigma^{-1}(n)}\right) d x_{1} \ldots d x_{n} \\
& =\int_{\Gamma} g\left(s_{\sigma(1)}, 0, x_{1}\right) g\left(s_{\sigma(2)}-s_{\sigma(1)}, x_{1}, x_{2}\right) \ldots g\left(s_{\sigma(k)}-s_{\sigma(k-1)}, x_{k-1}, x_{k}\right) d x_{1} \ldots d x_{k}
\end{align*}
$$

To see this we first note that
$\int_{\mathbb{R}_{d}^{\sigma(1)-1}} \prod_{i=0}^{\sigma(1)-1} g\left(s_{i+1}-s_{i}, x_{\sigma^{-1}(i)}, x_{\sigma^{-1}(i+1)}\right) d x_{\sigma^{-1}(1)} \ldots d x_{\sigma^{-1}(\sigma(1)-1)}=g\left(s_{\sigma(1)}, 0, x_{1}\right)$
with $s_{0}=0, x_{0}=0, \sigma^{-1}(0)=0$. We consider this integral when $\sigma(1) \geq 2$. Similarly,

$$
\begin{array}{r}
\int_{\mathbb{R}_{d}^{\sigma(m+1)-\sigma(m)-1}} \prod_{i=\sigma(m)}^{\sigma(m+1)-1} g\left(s_{i+1}-s_{i}, x_{\sigma^{-1}(i)}, x_{\sigma^{-1}(i+1)}\right) d x_{\sigma^{-1}(\sigma(m)+1)} \ldots d x_{\sigma^{-1}(\sigma(m+1)-1)} \\
=g\left(s_{\sigma(m+1)}-s_{\sigma(m)}, x_{m}, x_{m+1}\right)
\end{array}
$$

for $1 \leq m \leq k-1$, where this is considered when $\sigma(m+1) \geq \sigma(m)+2$, and

$$
\int_{\mathbb{R}_{d}^{n-\sigma(k)}} \prod_{i=\sigma(k)}^{n-1} g\left(s_{i+1}-s_{i}, x_{\sigma^{-1}(i)}, x_{\sigma^{-1}(i+1)}\right) d x_{\sigma^{-1}(\sigma(k)+1)} \ldots d x_{\sigma^{-1}(n)}=1
$$

This integral is considered when $\sigma(k) \leq n-1$. Let us denote by $F\left(x_{1}, \ldots, x_{n}\right)$ the integrand of the left hand side of (2.2). Then the integral on the left hand side of (2.2) equals

$$
\begin{equation*}
\int_{\Gamma}\left(\int_{\mathbb{R}_{d}^{n-k}} F\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right) d x_{k+1} \ldots d x_{n}\right) d x_{1} \ldots, d x_{k} \tag{2.3}
\end{equation*}
$$

Collecting results above, we see that the inner integral is equal to

$$
g\left(s_{\sigma(1)}, 0, x_{1}\right) g\left(s_{\sigma(2)}-s_{\sigma(1)}, x_{1}, x_{2}\right) \ldots g\left(s_{\sigma(k)}-s_{\sigma(k-1)}, x_{k-1}, x_{k}\right)
$$

Using this in (2.3), we get (2.2).
In the same way, we have

$$
\begin{align*}
& (2.4) \quad \int_{\tau\left(\Lambda^{\prime}\right)} g\left(t_{1}, 0, x_{\tau^{-1}(1)}\right) g\left(t_{2}-t_{1}, x_{\tau^{-1}(1)}, x_{\tau^{-1}(2)}\right)  \tag{2.4}\\
& \ldots g\left(t_{n}-t_{n-1}, x_{\tau^{-1}(n-1)}, x_{\tau^{-1}(n)}\right) d x_{1} \ldots d x_{n} \\
& =\int_{\Gamma^{\prime}} g\left(t_{\tau(1)}, 0, x_{1}\right) g\left(t_{\tau(2)}-t_{\tau(1)}, x_{1}, x_{2}\right) \ldots g\left(t_{\tau(k)}-t_{\tau(k-1)}, x_{k-1}, x_{k}\right) d x_{1} \ldots d x_{k} .
\end{align*}
$$

From (2.2) and (2.4), it follows that

$$
\begin{aligned}
& \int_{\sigma(\Lambda)} g\left(s_{1}, 0, x_{\sigma^{-1}(1)}\right) g\left(s_{2}-s_{1}, x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}\right) \\
& \ldots g\left(s_{n}-s_{n-1}, x_{\sigma^{-1}(n-1)}, x_{\sigma^{-1}(n)}\right) d x_{1} \ldots d x_{n} \\
& =\int_{\tau\left(\Lambda^{\prime}\right)} g\left(t_{1}, 0, x_{\tau^{-1}(1)}\right) g\left(t_{2}-t_{1}, x_{\tau^{-1}(1)}, x_{\tau^{-1}(2)}\right) \\
& \ldots g\left(t_{n}-t_{n-1}, x_{\tau^{-1}(n-1)}, x_{\tau^{-1}(n)}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

since $\Gamma=\Gamma^{\prime}, s_{\sigma(j)}=t_{\tau(j)}$ for $1 \leq j \leq k$, and hence

$$
\begin{aligned}
& \int_{\Lambda} g\left(s_{1}, 0, x_{1}\right) g\left(s_{2}-s_{1}, x_{1}, x_{2}\right) \ldots g\left(s_{n}-s_{n-1}, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n} \\
& \quad=\int_{\Lambda^{\prime}} g\left(t_{1}, 0, x_{1}\right) g\left(t_{2}-t_{1}, x_{1}, x_{2}\right) \ldots g\left(t_{n}-t_{n-1}, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n}
\end{aligned}
$$

This implies that $\mu$ is well-defined on $\mathcal{G}$.
The set function $\mu$ will extend to the Wiener measure on the sigma-algebra generated by $\mathcal{G}$.

## 3. Countable additivity of the Wiener measure

We first prove countable additivity of $\mu$ on the algebra $\mathcal{G}$, which along with a result from the measure theory will imply what we want to show.

Proposition 3.1. Let $\mu$ be as in Lemma 2.9. Then $\mu$ is countably additive on the algebra $\mathcal{G}$.

It is easy to see that this follows from the next result.
Proposition 3.2. Let $\mu$ be as in Lemma 2.9. Let $A_{n} \in \mathcal{G}, n=1,2, \ldots$ Suppose that $A_{n} \downarrow \emptyset$. Then $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$.

To prove Proposition 3.2 we shall show the following.
Assertion 1. Suppose that $A_{n} \in \mathcal{G}, n=1,2, \ldots, A_{n} \downarrow$ and $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \neq 0$. Then $\lim _{n \rightarrow \infty} A_{n} \neq \emptyset$.

To prove this we assume that $A_{n}=\Phi_{t_{n}}^{-1}\left(\Lambda_{n}\right)$ for some $t_{n} \in\left(\mathbb{R}_{0}\right)_{*}^{N_{n}}$ and $\Lambda_{n} \in$ $\mathcal{B}\left(\mathbb{R}_{d}^{N_{n}}\right)$, where $N_{n}=\operatorname{card} \tilde{t}_{n}$. We may also assume that

$$
\tilde{t}_{n}=\left\{t_{1}^{(n)}, t_{2}^{(n)}, \ldots, t_{a(n)}^{(n)}, \frac{1}{2^{n}}, \frac{2}{2^{n}}, \ldots, \frac{n 2^{n}}{2^{n}}\right\}
$$

where $\{a(n)\}$ is a strictly increasing sequence of positive integers, which can be seen by Lemma 2.3. Let

$$
\begin{gathered}
\tilde{t}_{n}^{*}=\left\{t_{1}^{(n)}, t_{2}^{(n)}, \ldots, t_{n}^{(n)}, \frac{1}{2^{n}}, \frac{2}{2^{n}}, \ldots, \frac{n 2^{n}}{2^{n}}\right\}, \\
\tilde{t}_{n}^{* *}=\left\{\frac{1}{2^{n}}, \frac{2}{2^{n}}, \ldots, \frac{n 2^{n}}{2^{n}}\right\},
\end{gathered}
$$

which are subsets of $\tilde{t}_{n}$. We note that

$$
\begin{equation*}
\bigcup_{j \geq 1} \tilde{t}_{j}=\bigcup_{j \geq 1} \tilde{t}_{j}^{*} \tag{3.1}
\end{equation*}
$$

and $M_{n}=\operatorname{card}\left(\tilde{t}_{n}^{*}\right) \leq 3 n 2^{n-1}$.
To prove the assertion we need the following.
Lemma 3.3. For any $\epsilon>0$, there exists $\eta>1$ such that

$$
\sum_{n=1}^{\infty} \mu\left\{f \in W: \omega_{n}(f)>2^{-n / 3} \eta\right\}<\epsilon
$$

where

$$
\omega_{n}(f)=\max \left\{\left|\phi_{t}(f)-\phi_{s}(f)\right|: 0<t-s \leq 2^{-n}, s, t \in \tilde{t}_{n}^{*}\right\}
$$

In proving this we apply the following formula.
Lemma 3.4. Let $0<s<t<\infty, \Lambda \in \mathcal{B}\left(\mathbb{R}^{d}\right)$. Then

$$
\mu\left\{f \in W: \phi_{t}(f)-\phi_{s}(f) \in \Lambda\right\}=\int_{\Lambda} \frac{1}{(\sqrt{2 \pi(t-s)})^{d}} \exp \left(-\frac{|x|^{2}}{2(t-s)}\right) d x
$$

Proof. Define a continuous function $h: \mathbb{R}_{d}^{2} \rightarrow \mathbb{R}^{d}$ by $h(x, y)=y-x$. Let

$$
\Phi_{(s, t)}(f)=\left(\phi_{s}(f), \phi_{t}(f)\right)
$$

Then, we note that

$$
\left\{f \in W: \phi_{t}(f)-\phi_{s}(f) \in \Lambda\right\}=\left\{f \in W: \Phi_{(s, t)}(f) \in h^{-1}(\Lambda)\right\}
$$

Therefore

$$
\begin{aligned}
& \mu\left\{f \in W: \phi_{t}(f)-\phi_{s}(f) \in \Lambda\right\}=\mu_{(s, t)}\left(\Phi_{(s, t)}^{-1}\left(h^{-1}(\Lambda)\right)\right) \\
&=\int_{h^{-1}(\Lambda)} g\left(s, 0, x_{1}\right) g\left(t-s, x_{1}, x_{2}\right) d x_{1} d x_{2} \\
&=\int_{\mathbb{R}_{d}^{2}} \chi_{\Lambda}\left(x_{2}-x_{1}\right) g\left(s, 0, x_{1}\right) g\left(t-s, x_{1}, x_{2}\right) d x_{1} d x_{2} \\
&=\int_{\mathbb{R}^{d}}\left(\int_{\Lambda} g\left(s, 0, x_{1}\right) g\left(t-s, x_{1}, x_{1}+x_{2}\right) d x_{2}\right) d x_{1} \\
&=\int_{\mathbb{R}^{d}} g\left(s, 0, x_{1}\right) d x_{1} \int_{\Lambda} g\left(t-s, 0, x_{2}\right) d x_{2} \\
&=\int_{\Lambda} g\left(t-s, 0, x_{2}\right) d x_{2} \\
&=\int_{\Lambda} \frac{1}{(\sqrt{2 \pi(t-s)})^{d}} \exp \left(-\frac{\left|x_{2}\right|^{2}}{2(t-s)}\right) d x_{2}
\end{aligned}
$$

where $\chi_{\Lambda}$ denotes the characteristic function of $\Lambda$.
Proof of Lemma 3.3. Note that

$$
\begin{align*}
&\left\{f \in W: \omega_{n}(f)>2^{-n / 3} \eta\right\}  \tag{3.2}\\
&=\bigcup_{\substack{0<t-s \leq 2^{-n} \\
s, t \in \tilde{t}_{n}^{*}}}\left\{f \in W:\left|\phi_{t}(f)-\phi_{s}(f)\right|>2^{-n / 3} \eta\right\}
\end{align*}
$$

This in particular implies that the set on the left hand side is in $\mathcal{G}_{t_{n}} \subset \mathcal{G}$ (see the proof of (3.3) below). Since

$$
\mu\left\{f \in W:\left|\phi_{t}(f)-\phi_{s}(f)\right|>c\right\}=\int_{|x|>c} \frac{1}{(\sqrt{2 \pi(t-s)})^{d}} \exp \left(-\frac{|x|^{2}}{2(t-s)}\right) d x
$$

which follows from Lemma 3.4, by (3.2) we have

$$
\begin{aligned}
\mu\left\{f \in W: \omega_{n}(f)>2^{-n / 3} \eta\right\} & \leq \sum_{\substack{0<t-s \leq 2^{-n}, s, t \in \hat{t}_{n}^{*}}} \int_{|x|>2^{-n / 3} \eta} \frac{1}{(\sqrt{2 \pi(t-s)})^{d}} \exp \left(-\frac{|x|^{2}}{2(t-s)}\right) d x \\
& \leq \sum_{\substack{0<t-s \leq 2^{-n} \\
s, t \in t_{n}^{*}}} C_{d} \sqrt{t-s} 2^{n / 3} \eta^{-1} \exp \left(-\frac{\eta^{2}}{2(t-s) 2^{2 n / 3} d}\right)
\end{aligned}
$$

where $C_{d}=\frac{d^{3 / 2} \sqrt{2}}{\sqrt{\pi}}$ and to get the last inequality we have used the estimate

$$
\begin{aligned}
\int_{|x|>c} \frac{1}{(\sqrt{2 \pi t})^{d}} & \exp \left(-\frac{|x|^{2}}{2 t}\right) d x \\
& \leq \sum_{i=1}^{d} \int_{\left|v_{i}\right|>c / \sqrt{d}} \frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{v_{i}^{2}}{2 t}\right) d v_{i} \leq d \frac{\sqrt{2 t d}}{\sqrt{\pi} c} \exp \left(-\frac{c^{2}}{2 d t}\right)
\end{aligned}
$$

with $c>0$. Therefore,

$$
\begin{aligned}
\mu\left\{f \in W: \omega_{n}(f)>2^{-n / 3} \eta\right\} & \leq \sum_{\substack{0<t-s \leq 2^{-n} \\
s, t \in \tilde{t}_{n}^{*}}}\left(C_{d} 2^{-n / 2} 2^{n / 3} \eta^{-1}\right) \exp \left(-\frac{\eta^{2}}{2} \frac{2^{-2 n / 3}}{d 2^{-n}}\right) \\
& \leq M_{n}^{2} C_{d} 2^{-n / 6} \eta^{-1} \exp \left(-\eta^{2} 2^{n / 3-1} d^{-1}\right) \\
& \leq(9 / 4) C_{d} n^{2} 2^{2 n-n / 6} \eta^{-1} \exp \left(-\eta^{2} 2^{n / 3-1} d^{-1}\right)
\end{aligned}
$$

Thus

$$
\sum_{n=1}^{\infty} \mu\left\{f \in W: \omega_{n}(f)>2^{-n / 3} \eta\right\} \leq\left((9 / 4) C_{d} \sum_{n=1}^{\infty} n^{2} 2^{11 n / 6} \exp \left(-2^{n / 3-1} d^{-1}\right)\right) \eta^{-1}
$$

and hence taking $\eta$ large enough depending on $\epsilon$, we get the conclusion.

Choose $\epsilon_{0}>0$ so that $\lim \mu_{t_{n}}\left(A_{n}\right)>\epsilon_{0}$. Applying Lemma 3.3, take $\eta_{0}>1$ such that

$$
\sum_{n=1}^{\infty} \mu_{t_{n}}\left\{f \in W: \omega_{n}(f)>2^{-n / 3} \eta_{0}\right\}<\epsilon_{0} / 3
$$

Choose a compact set $\Lambda_{n}^{\prime} \subset \Lambda_{n}$ such that

$$
\mu_{t_{n}}\left(\Phi_{t_{n}}^{-1}\left(\Lambda_{n} \backslash \Lambda_{n}^{\prime}\right)\right)<\epsilon_{0} 3^{-n}
$$

(see [5, p. 48, Theorem 2.18]). There exist a compact set $\Lambda_{n}^{\prime \prime}$ in $\mathbb{R}_{d}^{N_{n}}$ such that $\Lambda_{n}^{\prime \prime} \subset \Lambda_{n}^{\prime}$ and

$$
\begin{equation*}
\Phi_{t_{n}}^{-1}\left(\Lambda_{n}^{\prime}\right) \cap\left\{f \in W: \omega_{n}(f) \leq 2^{-n / 3} \eta_{0}\right\}=\Phi_{t_{n}}^{-1}\left(\Lambda_{n}^{\prime \prime}\right) \tag{3.3}
\end{equation*}
$$

This can be shown as follows.

Let $h: \mathbb{R}_{d}^{2} \rightarrow \mathbb{R}^{d}, h(x, y)=y-x$ as above. Let $B(r)=\left\{x \in \mathbb{R}^{d}:|x| \leq r\right\}$. Then

$$
\begin{aligned}
\left\{f \in W: \omega_{n}(f) \leq 2^{-n / 3} \eta_{0}\right\} & =\bigcup_{\substack{0<t-s \leq 2^{-n}, s, t \in \bar{t}_{n}^{*}}}\left\{f \in W: h\left(\phi_{t}(f), \phi_{s}(f)\right) \in B\left(2^{-n / 3} \eta_{0}\right)\right\} \\
& =\bigcup_{\substack{0<t-s \leq 2^{-n}, s, t \in \tilde{t}_{n}^{*}}}\left\{f \in W:\left(\phi_{t}(f), \phi_{s}(f)\right) \in h^{-1}\left(B\left(2^{-n / 3} \eta_{0}\right)\right)\right\} \\
& =\bigcup_{\substack{0<t-s \leq 2^{-n} \\
s, t \in \tilde{t}_{n}^{*}}}\left\{f \in W: \Phi_{t_{n}}(f) \in \Lambda\left(n, \eta_{0}, s, t\right)\right\} \\
& =\Phi_{t_{n}}^{-1}\left(\bigcup_{\substack{ \\
0<t-s \leq 2^{-n} \\
s, t \in \tilde{t}_{n}^{*}}} \Lambda\left(n, \eta_{0}, s, t\right)\right)
\end{aligned}
$$

for some $\Lambda\left(n, \eta_{0}, s, t\right) \in \mathcal{B}\left(\mathbb{R}_{d}^{N_{n}}\right)$ which is closed and can be written as

$$
\Lambda\left(n, \eta_{0}, s, t\right)=\sigma\left(h^{-1}\left(B\left(2^{-n / 3} \eta_{0}\right)\right) \times \mathbb{R}_{d}^{N_{n}-2}\right)
$$

with some $\sigma=\sigma_{s, t} \in \mathcal{S}_{N_{n}}$. Thus we can take

$$
\Lambda_{n}^{\prime \prime}=\Lambda_{n}^{\prime} \cap\left(\bigcup_{\substack{0<t s \leq \sum^{-n} \\ s, t \in \tilde{t}_{n}^{*}}} \Lambda\left(n, \eta_{0}, s, t\right)\right)
$$

Next, we show

$$
\begin{equation*}
\bigcap_{j=1}^{n} \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime \prime}\right) \neq \emptyset, \quad n=1,2, \ldots \tag{3.4}
\end{equation*}
$$

To prove this we first observe that

$$
\begin{aligned}
A_{n}=\bigcap_{j=1}^{n} A_{j} & =\bigcap_{j=1}^{n} \Phi_{t_{j}}^{-1}\left(\Lambda_{j}\right)=\bigcap_{j=1}^{n}\left(\Phi_{t_{j}}^{-1}\left(\Lambda_{j} \backslash \Lambda_{j}^{\prime}\right) \cup \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime} \backslash \Lambda_{j}^{\prime \prime}\right) \cup \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime \prime}\right)\right) \\
& \subset\left(\bigcup_{j=1}^{n} \Phi_{t_{j}}^{-1}\left(\Lambda_{j} \backslash \Lambda_{j}^{\prime}\right)\right) \cup\left(\bigcup_{j=1}^{n} \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime} \backslash \Lambda_{j}^{\prime \prime}\right)\right) \cup\left(\bigcap_{j=1}^{n} \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime \prime}\right)\right)
\end{aligned}
$$

We next note that

$$
\Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime} \backslash \Lambda_{j}^{\prime \prime}\right)=\Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime}\right) \backslash \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime \prime}\right) \subset\left\{f \in W: \omega_{j}(f)>2^{-j / 3} \eta_{0}\right\}
$$

Thus

$$
\begin{aligned}
\mu\left(\bigcap_{j=1}^{n} \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime \prime}\right)\right) & \geq \mu_{t_{n}}\left(A_{n}\right)-\sum_{j=1}^{n} \mu_{t_{j}}\left(\Phi_{t_{j}}^{-1}\left(\Lambda_{j} \backslash \Lambda_{j}^{\prime}\right)\right)-\sum_{j=1}^{n} \mu_{t_{j}}\left(\Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime} \backslash \Lambda_{j}^{\prime \prime}\right)\right) \\
& >\epsilon_{0}-\sum_{j=1}^{n} \epsilon_{0} 3^{-j}-\sum_{j=1}^{n} \mu_{t_{j}}\left\{f \in W: \omega_{j}(f)>2^{-j / 3} \eta_{0}\right\} \\
& >\epsilon_{0}-\epsilon_{0} / 2-\epsilon_{0} / 3=\epsilon_{0} / 6>0
\end{aligned}
$$

from which we can deduce (3.4).
Let $f_{n} \in \cap_{j=1}^{n} \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime \prime}\right)$. Since $\Phi_{t_{1}}\left(f_{n}\right) \in \Lambda_{1}^{\prime \prime}, n=1,2, \ldots,\left\{\Phi_{t_{1}}\left(f_{n}\right): n=\right.$ $1,2, \ldots\}$ is a sequence in a compact set $\Lambda_{1}^{\prime \prime}$, and there is a convergent subsequence $\left\{\Phi_{t_{1}}\left(f_{n_{j}^{(1)}}\right)\right\}_{j=1}^{\infty}$ in $\Lambda_{1}^{\prime \prime}$. Next, $\Phi_{t_{2}}\left(f_{n_{j}^{(1)}}\right)$ is in $\Lambda_{2}^{\prime \prime}$ if $j \geq 2$. Thus $\left\{\Phi_{t_{2}}\left(f_{n_{j}^{(1)}}\right)\right\}_{j=1}^{\infty}$ contains a convergent subsequence $\left\{\Phi_{t_{2}}\left(f_{n_{j}^{(2)}}\right)\right\}_{j=1}^{\infty}$ in $\Lambda_{2}^{\prime \prime}$. We note that $\left\{\Phi_{t_{1}}\left(f_{n_{j}^{(2)}}\right)\right\}_{j=1}^{\infty}$ is also convergent in $\Lambda_{1}^{\prime \prime}$. Continuing this, we have sequences $\left\{f_{n_{j}^{(k)}}\right\}_{j=1}^{\infty}$ for $k=$ $1,2, \ldots$ such that $\left\{\Phi_{t_{k}}\left(f_{n_{j}^{\left(k^{\prime}\right)}}\right)\right\}_{j=1}^{\infty}$ is a convergent sequence in $\Lambda_{k}^{\prime \prime}$ if $k^{\prime} \geq k$ and such that $\left\{f_{n_{j}^{\left(k^{\prime}\right)}}\right\}_{j=1}^{\infty}$ is a subsequence of $\left\{f_{n_{j}^{(k)}}\right\}_{j=1}^{\infty}$ if $k^{\prime} \geq k$.

Consider $\left\{f_{n_{k}}\right\}, n_{k}=n_{k}^{(k)}$. Then $\left\{\Phi_{t_{j}}\left(f_{n_{k}}\right)\right\}_{k \geq j}$ is a sequence in $\Lambda_{j}^{\prime \prime}$ and converges in $\Lambda_{j}^{\prime \prime}$ for each $j \geq 1$, since $\left\{\Phi_{t_{j}}\left(f_{n_{l}^{(j)}}\right)\right\}_{l=1}^{\infty}$ converges in $\Lambda_{j}^{\prime \prime}$ and $\left\{f_{n_{k}^{(k)}}\right\}_{k \geq j}$ is a subsequence of $\left\{f_{n_{l}^{(j)}}\right\}_{l \geq 1}$. Thus, if $t \in \cup_{j \geq 1} \tilde{t}_{j}$, the limit $\lim _{k \rightarrow \infty} f_{n_{k}}(t)$ exists. Define $x(t)$ on $\cup_{j \geq 1} \tilde{t}_{j}$ by setting

$$
x(t)=\lim _{k \rightarrow \infty} f_{n_{k}}(t), \quad t \in \cup_{j \geq 1} \tilde{t}_{j} .
$$

Then,

$$
\begin{equation*}
\left(x\left(a_{1}\right), x\left(a_{2}\right), \ldots, x\left(a_{N_{j}}\right)\right) \in \Lambda_{j}^{\prime \prime} \quad \text { if } t_{j}=\left(a_{1}, a_{2}, \ldots, a_{N_{j}}\right) \tag{3.5}
\end{equation*}
$$

Assertion 2. There exists $f \in W$ such that $f=x$ on $\cup_{j \geq 1} \tilde{t}_{j}$.
If we have this, $\Phi_{t_{j}}(f) \in \Lambda_{j}^{\prime \prime} \subset \Lambda_{j}$ for all $j \geq 1$ by (3.5), and hence

$$
f \in \bigcap_{j=1}^{\infty} \Phi_{t_{j}}^{-1}\left(\Lambda_{j}\right)=\bigcap_{j=1}^{\infty} A_{j}
$$

which will prove Assertion 1.
Proof of Assertion 2. If $f \in \Phi_{t_{j}}^{-1}\left(\Lambda_{j}^{\prime \prime}\right)$, then $\omega_{j}(f) \leq 2^{-j / 3} \eta_{0}$. So, if $k \geq j$, we have

$$
\left|\phi_{t}\left(f_{n_{k}}\right)-\phi_{s}\left(f_{n_{k}}\right)\right| \leq 2^{-j / 3} \eta_{0}
$$

whenever $s, t \in \tilde{t}_{j}^{*}$ and $0<t-s \leq 2^{-j}$. Thus, letting $k \rightarrow \infty$, we have

$$
\begin{equation*}
|x(t)-x(s)| \leq 2^{-j / 3} \eta_{0} \quad \text { if } s, t \in \tilde{t}_{j}^{*} \text { and } 0<t-s \leq 2^{-j} \tag{3.6}
\end{equation*}
$$

Since $\cup_{j \geq 1} \tilde{t}_{j}^{* *}$ is dense in $\mathbb{R}_{0}$, by (3.6) it will be shown that Assertion 2 will follow from the next result.

Assertion 3. There exists $f \in W$ such that $f=x$ on $\cup_{j \geq 1} \tilde{t}_{j}^{* *}$.
To prove this we show the following.
Lemma 3.5. If $s, t \in \cup_{j \geq 1} \tilde{t}_{j}^{* *}, 0<s<t<j$ and $0<t-s<2^{-j}$, then

$$
|x(t)-x(s)| \leq C 2^{-j / 3}
$$

Obviously, this implies that $x$ is uniformly continuous on every bounded subset of $\cup_{j \geq 1} \tilde{t}_{j}^{* *}$.

Proof of Lemma 3.5. Take $j^{\prime} \geq j$ such that $2^{-j^{\prime}-1} \leq t-s<2^{-j^{\prime}}$. It suffices to prove the lemma with $j^{\prime}$ in place of $j$.

We can find $u_{0}=q 2^{-j^{\prime}-1}$ with $1 \leq q \leq j^{\prime} 2^{j^{\prime}+1}$ such that $s \leq u_{0} \leq t$. We have $s, t \in \tilde{t}_{j^{\prime}+n}^{* *}$ for some $n$. We can take $n$ as large as we wish. We have $s=k 2^{-j^{\prime}-n}$, $t=m 2^{-j^{\prime}-n}$ with $1 \leq k \leq j^{\prime} 2^{j^{\prime}+n}$ and $1 \leq m \leq j^{\prime} 2^{j^{\prime}+n}$. Then

$$
u_{0}-s=\left(q 2^{n-1}-k\right) 2^{-j^{\prime}-n}
$$

Since $0 \leq u_{0}-s<2^{-j^{\prime}}$, we have $0 \leq q 2^{n-1}-k<2^{n}$. Thus we can write

$$
u_{0}-s=\left(\sum_{p=0}^{n-1} \epsilon_{p} 2^{p}\right) 2^{-j^{\prime}-n}=\sum_{p=0}^{n-1} \epsilon_{p} 2^{-\left(j^{\prime}+n-p\right)}
$$

with $\epsilon_{p}=0$ or 1. Put

$$
s_{l}=s+\sum_{p=0}^{l-2} \epsilon_{p} 2^{-\left(j^{\prime}+n-p\right)}
$$

for $2 \leq l \leq n+1$ and $s_{1}=s$. Then $s_{n+1}=u_{0}$.
By definition, $s_{n+1} \in \tilde{t}_{j^{\prime}+1}^{* *}$ and $s_{1} \in \tilde{t}_{j^{\prime}+n}^{* *}$. Also, we observe that $s_{l} \in \tilde{t}_{j^{\prime}+n-l+1}^{* *}$ for $1 \leq l \leq n$. For $n \geq 2$, this can be shown as follows. First, since $s_{n}=$ $u_{0}-\epsilon_{n-1} 2^{-\left(j^{\prime}+1\right)}$, we have $s_{n} \in \tilde{t}_{j^{\prime}+1}^{* *}$. Next, suppose that $s_{l+1} \in \tilde{t}_{j^{\prime}+n-l}^{* *}$ for $1 \leq l \leq n-1$. Then

$$
\begin{aligned}
s_{l} & =s_{l+1}-\epsilon_{l-1} 2^{-\left(j^{\prime}+n-l+1\right)}=r 2^{-\left(j^{\prime}+n-l\right)}-\epsilon_{l-1} 2^{-\left(j^{\prime}+n-l+1\right)} \\
& =\left(2 r-\epsilon_{l-1}\right) 2^{-\left(j^{\prime}+n-l+1\right)}
\end{aligned}
$$

where

$$
0<2 r-\epsilon_{l-1} \leq 2 r \leq 2\left(j^{\prime}+n-l\right) 2^{j^{\prime}+n-l} \leq\left(j^{\prime}+n-l+1\right) 2^{j^{\prime}+n-l+1}
$$

Therefore, we see that $s_{l} \in \tilde{t}_{j^{\prime}+n-l+1}^{* *}$.
We have $s_{l+1}, s_{l} \in \tilde{t}_{j^{\prime}+n-l+1}^{* *}$ for $1 \leq l \leq n$. Also,

$$
0 \leq s_{l+1}-s_{l}=\epsilon_{l-1} 2^{-\left(j^{\prime}+n-l+1\right)} \leq 2^{-\left(j^{\prime}+n-l+1\right)}
$$

for $1 \leq l \leq n$. Therefore by (3.6)

$$
\left|x\left(u_{0}\right)-x(s)\right| \leq \sum_{l=1}^{n}\left|x\left(s_{l+1}\right)-x\left(s_{l}\right)\right| \leq \eta_{0} \sum_{l=1}^{n} 2^{-\left(j^{\prime}+n-l+1\right) / 3} \leq c_{0} \eta_{0} 2^{-j^{\prime} / 3}
$$

where $c_{0}=\sum_{m=1}^{\infty} 2^{-m / 3}$.
Similarly, $\left|x(t)-x\left(u_{0}\right)\right| \leq c_{0} \eta_{0} 2^{-j^{\prime} / 3}$. To see this we write

$$
t-u_{0}=\sum_{v=0}^{n-1} \epsilon_{v} 2^{-\left(j^{\prime}+1+v\right)}
$$

with $\epsilon_{v}=0$ or 1,

$$
t_{l}=u_{0}+\sum_{v=0}^{l-2} \epsilon_{v} 2^{-\left(j^{\prime}+1+v\right)}
$$

for $2 \leq l \leq n+1$ and $t_{1}=u_{0}$. Then $t_{n+1}=t$.
We have $t_{1} \in \tilde{t}_{j^{\prime}+1}^{* *}$ and $t_{l} \in \tilde{t}_{j^{\prime}+l-1}^{* *}$ for $2 \leq l \leq n+1$. To see this, we first note that $t_{2} \in \tilde{t}_{j^{\prime}+1}^{* *}$, since $t_{2}=u_{0}+\epsilon_{0} 2^{-\left(j^{\prime}+1\right)}=\left(q+\epsilon_{0}\right) 2^{-\left(j^{\prime}+1\right)}$ with $1 \leq q \leq j^{\prime} 2^{j^{\prime}+1}$. Next, suppose that $t_{l} \in \tilde{t}_{j^{\prime}+l-1}^{* *}$ for $2 \leq l \leq n$. We write

$$
t_{l+1}=t_{l}+\epsilon_{l-1} 2^{-\left(j^{\prime}+l\right)}=r 2^{-\left(j^{\prime}+l-1\right)}+\epsilon_{l-1} 2^{-\left(j^{\prime}+l\right)}=\left(2 r+\epsilon_{l-1}\right) 2^{-\left(j^{\prime}+l\right)}
$$

with $0<r \leq\left(j^{\prime}+l-1\right) 2^{j^{\prime}+l-1}$. We see that $0<2 r+\epsilon_{l-1} \leq\left(j^{\prime}+l\right) 2^{j^{\prime}+l}$, which implies $t_{l+1} \in \tilde{t}_{j^{\prime}+l}^{* *}$. The desired result follows from this.

We have $t_{l}, t_{l+1} \in \tilde{t}_{j^{\prime}+l}^{* *}$ and $t_{l} \leq t_{l+1} \leq t_{l}+2^{-\left(j^{\prime}+l\right)}$ for $1 \leq l \leq n$. So, by applying (3.6) as above to $\left|x\left(t_{l+1}\right)-x\left(t_{l}\right)\right|$, we have the estimate as claimed.

Thus $|x(t)-x(s)| \leq\left|x(t)-x\left(u_{0}\right)\right|+\left|x\left(u_{0}\right)-x(s)\right| \leq 2 c_{0} \eta_{0} 2^{-j^{\prime} / 3}$. This proves Lemma 3.5.

Since $\cup_{j \geq 1} \tilde{t}_{j}^{* *}$ is dense in $\mathbb{R}_{0}$, by Lemma 3.5 and a well-known argument, we have Assertion 3.

Proof of Assertion 3. We write $x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right)$. For $t \in \mathbb{R}_{0}$, let

$$
f_{i}(t)=\lim _{\epsilon \rightarrow 0} \sup \left\{x_{i}(s):|s-t|<\epsilon, s \in \cup_{j \geq 1} \tilde{t}_{j}^{* *}\right\}, \quad 1 \leq i \leq d
$$

and

$$
f(t)=\left(f_{1}(t), f_{2}(t), \ldots, f_{d}(t)\right)
$$

Then, by Lemma 3.5 it is not difficult to see that $f$ is continuous on $\mathbb{R}_{0}$ and equals $x$ when restricted to $\cup_{j \geq 1} \tilde{t}_{j}^{* *}$.

For any $t \in \cup_{j \geq 1} \tilde{t}_{j}$, by (3.1) and (3.6), there exists a sequence $\left\{t_{m}\right\}$ in $\cup_{j \geq 1} \tilde{t}_{j}^{* *}$ such that $t_{m} \rightarrow t$ and $x\left(t_{m}\right) \rightarrow x(t)$. Thus $f(t)=\lim f\left(t_{m}\right)=\lim x\left(t_{m}\right)=x(t)$. This completes the proof of Assertion 2 and hence that of Assertion 1.

This completes the proof of Proposition 3.2 and hence that of Proposition 3.1.
Let $\mathcal{F}=\mathcal{F}_{d}$ be the sigma-algebra generated by $\mathcal{G}$. Then, by Proposition 3.1, $\mu$ uniquely extends to a measure on $\mathcal{F}$, which is again denoted by $\mu$ (see [1, p. 30, Theorem (1.14)]). We also write $\mu=\mu_{d}$. The measure space $\left(W_{d}, \mathcal{F}_{d}, \mu_{d}\right)$ is called the Wiener probability space.

Remark 3.6. We have

$$
\begin{equation*}
\mu\{f \in W: f(0)=0\}=1 \tag{3.7}
\end{equation*}
$$

This can be shown as follows. By (2.1) we see that

$$
\mu\{f \in W: f(t) \in B(r)\}=\int_{B(r)} \frac{1}{(\sqrt{2 \pi t})^{d}} \exp \left(-\frac{|x|^{2}}{2 t}\right) d x
$$

for all $t, r>0$ (recall that $B(r)=\left\{x \in \mathbb{R}^{d}:|x| \leq r\right\}$ ). Letting $t \rightarrow 0$, we have

$$
\mu\{f \in W: f(0) \in B(r)\}=1
$$

for all $r>0$. Thus (3.7) follows by taking the limit as $r \rightarrow 0$.

## 4. Wiener measure of nowhere differentiable functions

Let $D$ be the subset of $W_{1}$ consisting of the functions $f$ for which there exists at least one point in $\mathbb{R}_{0}$ at which they are differentiable.

Theorem 4.1. We have $\mu(D)=0$, where $\mu=\mu_{1}$.
To prove this we need the following.

Theorem 4.2. Let $0<t_{1}<t_{2}<\cdots<t_{n}$ and $\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{n} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$. Then

$$
\begin{aligned}
& \mu\left\{f \in W: \phi_{t_{1}}(f) \in \Lambda_{1}, \phi_{t_{2}}(f)-\phi_{t_{1}}(f) \in \Lambda_{2}, \ldots, \phi_{t_{n}}(f)-\phi_{t_{n-1}}(f) \in \Lambda_{n}\right\} \\
&=\mu\left\{f \in W: \phi_{t_{1}}(f) \in \Lambda_{1}\right\} \mu\left\{f \in W: \phi_{t_{2}}(f)-\phi_{t_{1}}(f) \in \Lambda_{2}\right\} \ldots \\
& \times \mu\left\{f \in W: \phi_{t_{n}}(f)-\phi_{t_{n-1}}(f) \in \Lambda_{n}\right\} .
\end{aligned}
$$

Proof. Define a continuous function $\varphi: \mathbb{R}_{d}^{n} \rightarrow \mathbb{R}_{d}^{n}$ by

$$
\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots, x_{n}-x_{n-1}\right)
$$

Then

$$
\begin{aligned}
&\left\{f \in W: \phi_{t_{1}}(f) \in \Lambda_{1}, \phi_{t_{2}}(f)-\phi_{t_{1}}(f) \in \Lambda_{2}, \ldots, \phi_{t_{n}}(f)-\phi_{t_{n-1}}(f) \in \Lambda_{n}\right\} \\
&=\Phi_{t}^{-1}\left(\varphi^{-1}\left(\Lambda_{1} \times \Lambda_{2} \times \cdots \times \Lambda_{n}\right)\right)
\end{aligned}
$$

where $t=\left(t_{1}, \ldots, t_{n}\right)$. Thus

$$
\begin{aligned}
& \mu\left\{f \in W: \phi_{t_{1}}(f) \in \Lambda_{1}, \phi_{t_{2}}(f)-\phi_{t_{1}}(f) \in \Lambda_{2}, \ldots, \phi_{t_{n}}(f)-\phi_{t_{n-1}}(f) \in \Lambda_{n}\right\} \\
& =\mu_{t}\left(\Phi_{t}^{-1}\left(\varphi^{-1}\left(\Lambda_{1} \times \Lambda_{2} \times \cdots \times \Lambda_{n}\right)\right)\right) \\
& =\int_{\varphi^{-1}\left(\Lambda_{1} \times \Lambda_{2} \times \cdots \times \Lambda_{n}\right)} g\left(t_{1}, 0, x_{1}\right) g\left(t_{2}-t_{1}, x_{1}, x_{2}\right) \ldots g\left(t_{n}-t_{n-1}, x_{n-1}, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\int_{\Lambda_{1} \times \Lambda_{2} \times \cdots \times \Lambda_{n}} g\left(t_{1}, 0, x_{1}\right) g\left(t_{2}-t_{1}, 0, x_{2}\right) \ldots g\left(t_{n}-t_{n-1}, 0, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\int_{\Lambda_{1}} g\left(t_{1}, 0, x_{1}\right) d x_{1} \int_{\Lambda_{2}} g\left(t_{2}-t_{1}, 0, x_{2}\right) d x_{2} \cdots \int_{\Lambda_{n}} g\left(t_{n}-t_{n-1}, 0, x_{n}\right) d x_{n}
\end{aligned}
$$

which will imply the conclusion if we recall Lemma 3.4 and the formula (2.1).
Proof of Theorem 4.1. Let $D_{N}$ be the subset of $D$ consisting of the functions $f$ for which there exists at least one point in $[0, N]$ at which they are differentiable. It suffices to prove $\mu\left(D_{N}\right)=0$ for $N=1,2, \ldots$, since $D_{N} \uparrow D$. Define

$$
E_{k, n}=\bigcup_{j=1}^{n N} \bigcap_{i=j}^{j+2}\left\{f \in W:\left|\phi_{(i-1) / n}(f)-\phi_{i / n}(f)\right|<k / n\right\}
$$

for $k=1,2, \ldots ; n=1,2, \ldots$ Then

$$
D_{N} \subset \bigcup_{k \geq 1}\left(\liminf _{n \rightarrow \infty} E_{k, n}\right)
$$

Thus to prove the claim, it suffices to show that $\lim _{n \rightarrow \infty} \mu\left(E_{k, n}\right)=0$ for every $k$.
By Theorem 4.2 and Lemma 3.4 with $d=1$, we see that

$$
\begin{aligned}
& \mu\left(\bigcap_{i=j}^{j+2}\left\{f \in W:\left|\phi_{(i-1) / n}(f)-\phi_{i / n}(f)\right|<k / n\right\}\right) \\
& =\prod_{i=j}^{j+2} \mu\left\{f \in W:\left|\phi_{(i-1) / n}(f)-\phi_{i / n}(f)\right|<k / n\right\} \\
& =\left(2 \int_{0}^{k / n} \frac{1}{\sqrt{2 \pi / n}} \exp \left(-\frac{x^{2}}{2 / n}\right) d x\right)^{3} \\
& \leq(2 k / \sqrt{2 \pi})^{3} n^{-3 / 2}
\end{aligned}
$$

Thus

$$
\mu\left(E_{k, n}\right) \leq n N(2 k / \sqrt{2 \pi})^{3} n^{-3 / 2}
$$

from which we get the result as claimed.

## References

[1] G. B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, John Wiley \& Sons, Inc., 1984.
[2] T. Hida, Brownian Motion (in Japanese), Iwanami Shoten, Publishers, 1975.
[3] K. Ito, Lectures on Stochastic Processes, Tata Institute of Fundamental Research, 1961.
[4] N. Kazamaki, Non-differentiable Functions (in Japanese), a monograph, 2007.
[5] W. Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill, 1986.
[6] N. Wiener, Differential-space, J. Math. Phys. 2 (1923), 131-174.
Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan

E-mail address: shuichi@kenroku.kanazawa-u.ac.jp


[^0]:    Key Words and Phrases. Brownian motion, Wiener probability space.
    The author is partly supported by Grant-in-Aid for Scientific Research (C) No. 16K05195, Japan Society for the Promotion of Science.

    This note was essentially finalized in August 2016.

