An Effect of the Restriction of Predictive Coefficients on Linear Prediction Method

メタデータ	言語: jpn
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/9616

線形予測法における予測係数拘束の効果

三 好 義 昭

An Effect of the Restriction of Predictive Coefficients on Linear Prediction Method

Yoshiaki MIYOSHI

1. まえがき

情報社会の到来といわれて久しいが,今日の 高度情報化社会の基盤をなしているのはディジ タル信号処理技術のハード・ソフト両面での飛 躍的な進歩・普及と言える。ディジタル信号処 理は,周知のように高精度処理が可能,品質の 劣化がなく特性が均一かつ安定,時分割処理が 可能などの特徴を有することから,われわれの 身近で主要な情報源である音や映像といった本 来はアナログ(連続量)の情報もディジタル(離散 量)に変換して処理する時代となり,現代はまさ にディジタル信号処理の時代と言える。この ディジタル信号処理の中でも,観測信号の周波 数スペクトルに関する情報が 10 個程度の係数 に集約される線形予測法[1]が特に音声信号処 理に広く活用されている[2][3]。

本論文では,通常の線形予測法における予測 係数とこの予測係数を基に得られる観測系の推 定極の周波数及び帯域幅との関係の考察結果に 基づき,予測係数の自由度を拘束した拘束線形 予測法を提案し,本方法による観測信号の極周 波数推定の有効性を合成音ならびに自然有声破 裂音の特徴抽出に適用して実験的に示す。

以下,2.において,線形予測法の予測係数 と推定極の関係を明らかにし,3.において, 予測係数拘束の効果を示す。そして,4.にお いて,合成音のシミュレーションにより音声の 極周波数であるホルマント周波数の推定精度を 通常の線形予測法と比較して示し,5.では, 実際に自然有声破裂音のホルマント周波数推定 に適用して、本方法の有効性を示す。

2. 線形予測法によるディジタル信号処理

線形予測法とは、任意の時点の観測値をそれ 以前の観測データの線形一次式で予測する手法 である。すなわち、観測信号値列 ($y_1, y_2, ..., y_n, ...$)の第n番目の観測値 y_n (第n標本値)の予 測値 \hat{y}_n をその時点から過去p個の観測値($y_{n-1}, y_{n-2}, ..., y_{n-p}$)の線形一次式,

$$\hat{y}_n = -(\alpha_1 y_{n-1} + \alpha_2 y_{n-2} + \dots + \alpha_p y_{n-p})$$
(1)

で予測できるものとし(ここで負の符号を付け るのは後の式を簡潔にするためである), 観測値 y_n とその予測値 \hat{y}_n の誤差 \mathcal{E}_n ,

$$\varepsilon_n = y_n - \hat{y}_n = y_n - (-\sum_{k=1}^p \alpha_k y_{n-k})$$
$$= y_n + \sum_{k=1}^p \alpha_k y_{n-k}$$
(2)

の自乗平均 $\overline{\epsilon}_n^2$,

$$\overline{\varepsilon}_{n}^{2} = \frac{1}{N} \sum_{n=1}^{N} (y_{n} + \sum_{k=1}^{p} \alpha_{k} y_{n-k})^{2}$$
(3)

最小基準により得られる,

$$\sum_{k=1}^{p} \phi_{ik} \alpha_{k} = -\phi_{0i}$$
(4)
$$\{\underline{B} \ \ , \ \ \phi_{ik} = E\{y_{n-i}y_{n-k}\}, \quad i = 1, 2, \cdots, p$$

平成19年10月1日受理

なる p 元連立一次方程式 (この式を正規方程式 と称する)の解として係数 {*a_i*} *i*=1,2,…*p*を 算出する手法である。ここで,係数 {*a_i*} *i*=1,2,…*p*を予測係数,*p*を予測次数と称する。 ところで,式(2)より,

$$y_n = -\sum_{k=1}^{p} \alpha_k y_{n-k} + \varepsilon_n \tag{5}$$

となる。すなわち、線形予測法は観測系を予測 誤差 \mathcal{E}_n を入力とする全極型モデルで記述した のと等価であり、この観測系の伝達関数H(z)は、 式(5)の両辺のz変換より、

$$H(z) = \frac{Y(z)}{\varepsilon(z)} = \frac{1}{1 + \sum_{k=1}^{p} \alpha_k z^{-k}}$$
(6)

となる。

線形予測法における予測次数pは一般には 10前後が用いられており、比較的少数の予測係 数で、観測信号の特性を精度良く表すことがで き、かつ必要に応じて、この予測係数を係数と するp次方程式(式(6)の分母=0)の根より、観測 系の極情報も推定できることから、今日、線形 予測法がディジタル信号処理に広く活用されて いる。

ここで,予測次数 p が偶数の場合,式(6)は,

なる共役複素極の積の形で記述できる。ただし、 *F_i*:第*i*極の周波数, *B_i*:第*i*極の帯域幅, *T*: 標本化周期である。したがって,式(6)と式(7) の分母が恒等的に等しいことより,

$$\alpha_{1} = \sum_{i=1}^{p/2} a_{i} = -2\sum_{i=1}^{p/2} e^{-\pi B_{i}T} \cos(2\pi F_{i}T) \quad (8)$$

$$\alpha_p = \prod_{i=1}^{p/2} b_i = \prod_{i=1}^{p/2} e^{-2\pi B_i T}$$
(9)

となる。すなわち,通常の線形予測法により得 られる第1予測係数 α_1 は推定極の周波数と帯 域幅の比較的単純な関数となっており,特に第 p予測係数 α_p は推定極の帯域幅のみの関数と なる。

3. 予測係数拘束の効果

今,式(7)の分母=0とおいた第i項 $1+a_iz^{-1}+b_iz^{-2}=0$ の根を z_i とすると $|z_i|=\sqrt{b_i}$ より,

$$b_i = 1$$
 (10)
(11) (11) (12) (10)

すなわち,式(9)より $\alpha_p = 1$ とすれば,H(z)の極 はすべてz平面の単位円上に存在することにな る。この時,式(7)の分母は,

$$\prod_{i=1}^{p/2} (1 + a_i z^{-1} + z^{-2}) = 1 + c_1 z^{-1} + c_2 z^{-2} + \cdots$$

$$+c_2 z^{-p+2} + c_1 z^{-p+1} + z^{-p}$$
 (11)

但し,
$$c_i = f(a_i)$$
, $i, j = 1, 2, 3 \cdots p/2$

と, z_i の係数 $c_i \ge z^{-p+i}$ の係数 c_{p-i} が等しくなる。したがって,式(11)より,式(6)において,

$$\alpha_i = \alpha_{p-i} \tag{12}$$

但し,
$$\alpha_0 = \alpha_n = 1$$
, $i = 0, 1, 2, \dots, p/2$

すなわち、 $\{\alpha_i\}, i=0,1,2,...,p \in p/2 番目の予測$ $係数 <math>\alpha_{p/2}$ を中心とした対称形に拘束すること により、H(z)の極を全てz平面の単位円上に拘 束したことになる。このとき、

$$1 + \sum_{k=1}^{p} \alpha_k z^{-k} = 0 \tag{13}$$

は式(12)より相反方程式となり、式(13)を解く ことは $x=z+z^{-1}$ に関する p/2 次方程式を解 くことと、z に関する 2 次方程式 $z^2 - xz+1=0$ を解くことに帰着する[4]。そして、予測係数 α_i も式(12)のもとで、予測誤差の自乗平均最小の 条件より、 p/2 個の予測係数 { $\alpha_1, \alpha_2, \dots, \alpha_{p/2}$ }の みを求めればよいことになる。

以上のように、予測係数 *a*_i を式(12)に拘束す ることにより、推定極の位置が z 平面の単位円 上に拘束されるため、推定極の帯域幅の情報は 得られないが、正規方程式の次元ならびに高次 方程式の次数をそれぞれ半減することができる。 この数値演算上のメリットもさることながら、 本方法では全ての極の位置が z 平面の単位円上 に拘束されていることから、定性的には推定極 の位置が予測誤差に大きく影響するため、予測 誤差の自乗平均最小の条件より、観測信号の極 情報を担った安定な極推定が可能と言える。こ のことを解析的に明らかにするのは困難である ため、以下、線形予測法が広く活用されている 分野の一つである音声信号処理に適用し、その 有効性を検証する。

4. 合成音によるシミュレーション結果

音声の重要な特徴パラメータであるホルマン ト周波数(声道伝達関数の極周波数)推定におけ る予測係数拘束の効果を,声道(声帯から唇まで の音響的空間)の断面積がほぼ一定で,ホルマン トに極端な偏りのない母音/e/により検証する。 合成条件は,標本化周波数 10kHz,励振源:ピッ チ周期 8ms の Rosenberg 波[5],ホルマント周 波数: $F_1 = 437.5$ Hz, $F_2 = 1812.5$ Hz, $F_3 = 2687.5$ Hz, $F_4 = 3437.5$ Hz, $F_5 = 4437.5$ Hz, 放射特性: 6dB/oct である。

4.1 ホルマント周波数推定精度

本手法により得られる周波数スペクトルを通 常の線形予測法と対比して図1に示す。ただし、 前処理として一階差分後、分析窓長 $T_a = 25.6$ ms, 図1上段は分析次数 p=10,下段は p=12 とし た場合の結果で、図中の破線は合成音の声道特 性である。なお、本方法による推定極は分析次 数の如何に拘わらず全て z 平面の単位円上に

図1 周波数スペクトルの比較(合成母音/e/)

存在するため推定極の帯域幅は零,すなわち線 スペクトルとなる[6][7]。

今の場合,前述の5個のホルマントを用いて 声道特性を設定しているので,声道伝達特性の 次数 $p_0=10$ となる。したがって,分析次数 $p=10(=p_0)$ の場合(図1上段),本手法ならびに 通常の線形予測法ともホルマント周波数を精度 良く推定できており,特に通常の線形予測法は 声道特性もほぼ正確に推定できていると言える。

一方、 $p=12(> p_0)$ とした場合、本手法はz平 面の単位円上に存在する 6 個(=p/2)の共役複 素極として推定するため、図1下段に示されて いるように、2.2kHz付近にホルマントに対応し ない極が推定され、この極の影響で特に第2ホ

ルマントに対応する線スペクトルが低域に、第 3及び第4ホルマントに対応する線スペクトル が高域にそれぞれシフトしていると言える。こ れに対して,通常の線形予測法では p=12(> pn) とした場合でも、 $p=10(=p_0)$ とほぼ同等の周波 数スペクトルが推定されており、本手法のよう な推定極のシフトは起こらず各ホルマント周波 数を精度良く推定できていると言える。ただし、 通常の線形予測法においても p=12(> po)とし た場合,一般には6個(= p/2)の共役複素極が推 定されており、本合成音のホルマントは5個で あることから、ホルマントに対応しない極(擬似 ホルマントと称する)が1個存在するが、この擬 似ホルマントの帯域幅が大きくなることにより 周波数スペクトルへの影響が軽減されているか らである。したがって、 $p > p_0$ とした場合、通 常の線形予測法では、ホルマントに対応する極 の選定問題が生じる。この問題に関しては後述 する。

図1より、本手法のホルマント周波数推定精 度は分析次数 pに大きく依存すると言えるの で、ホルマントの中でも音声認識等において特 に重要となる第1~第3ホルマント周波数推定 誤差 E の分析次数 p 依存性を図2に示す。 た だし、前処理等の分析条件は図1の場合と同じ で、フレームシフト間隔 0.2ms で1周期に渡っ て分析した計40 フレームの平均値で、〇印:本 方法、〇印:通常の線形予測法の結果である.

図2より,分析次数 $p=8(< p_0)$ では,ホルマ ント周波数推定誤差は両方法とも大きくなるが, $p=10(=p_0)$ の場合,通常の線形予測法による 誤差は 0.9%であるのに対して,本方法による誤 差は 1.0%と若干劣るが,本方法でも通常の線形 予測法とほぼ同等の精度でホルマント周波数が 精度良く推定可能であると言える。しかしなが ら,通常の線形予測法は $p \ge 14$ においてホル マント周波数推定誤差が若干増大してはいるが, $p \ge p_0$ であれば,ホルマント周波数推定誤差に 及ぼす分析次数依存性はほとんどないのに対し て,本方法は p>10において,ホルマント周 波数推定誤差が分析次数に依存して変動し,通 常の線形予測法とは大きく異なった特性となる。 すなわち, $p > p_0$ の場合には,両方法ともホル マントに対応しない擬似ホルマントが生じるが, 通常の線形予測法では擬似ホルマントの帯域幅 が一般に大きな値として推定されるため,ホル マントに対応する極への影響が小さく,分析次 数を $p > p_0$ としても、ホルマント周波数推定精 度が急激に悪くなることはないのに対し,本方 法では全ての極の位置がz平面の単位円上に拘 束されているため,擬似ホルマント周波数 推定精度が悪くなると言える。

図2 ホルマント周波数推定誤差 Eの分析分析 次数 p依存性

4.2 極周波数推定値の頑健性

図 2 から明らかなように、分析次数 p e $p < p_0$ となるとホルマント周波数推定誤差が極端に悪化する。原理的には $p = p_0$ に設定するのが適切であるが、実音声の正確な p_0 は未知であることから、一般には少し大きめに設定し $p > p_0$ となるようにしている(標本化周波数を lokHz すなわち周波数帯域を 5kHz までに限定した場合、成人の発声よる実音声にはこの帯域内に 5 個前後のホルマントが存在すると推測できるので、一般に p = 12 が使用されている)。しかしながら、通常の線形予測法において分析次 数 $p \ \epsilon \ p > p_0$ とした場合, 母音定常部にお いても分析位置により,特に擬似ホルマントの 位置が大きく変動するため,得られる極の全て を音声の特徴パラメータとして利用することが できず,ホルマントに対応する極の選定が必要 となる[8]。一方,本方法は3.で述べたように 全ての極の位置が z 平面の単位円上に拘束され ているため,定性的には推定極の位置が予測誤 差に大きく影響し,予測誤差の自乗平均最小の 条件より,母音定常部のようなホルマント周波 数がほぼ一定とみなせる音声区間においては, $p > p_0$ の場合でもホルマントに対応しない極を 含めて極周波数推定値が分析位置等の影響で大 きく変動することはないと言える。

ー例として、前述の合成母音/e/における推定 極の分析位置依存性を図3に示す。ただし、分 析次数 $p=12(> p_0)$ 、フレームシフト間隔 0.3ms とし、その他の分析条件ならびに図中の 記号等は図2と同じである。なお、図3の上段 には本合成音/e/の波形を示す。

図3より,通常の線形予測法による推 定極(△印)の内,ホルマントに対応する 極は分析位置に拘わらずほぼ一定である

(合成母音 /e/)

が, 擬似ホルマントが 1.2kHz 付近(分析 位置: 1ms~2ms の区間), あるいは第2 ホルマント前後(分析位置: 5.5ms 以降), さらにはときおり 5kHz と非常に不安定 に生じているのに対して,本手法による 推定極(〇印)はホルマントに対応する極 であるか否かに拘わらず分析位置依存性 はほとんどないと言える。このことを定 量的に評価するため、本合成母音/e/におい て,分析次数 p=12 として得られる 6 個(= p/2) の極周波数各々の標準偏差を平均した式(14)で 定義する極周波数推定値の平均標準偏差を算出 した結果,従来の線形予測法では 50.4Hz であっ たのに対して、本方法は 3.6Hz と一桁以上改善 していることが明らかとなった。ただし、前処 理として一階差分後,分析窓長T_a = 25.6ms,フ レームシフト間隔 0.2ms で1周期に渡って分 析した計40フレームの内,通常の線形予測法に おいて極周波数推定値が 0Hz または 5kHz と なった8フレームは除外したので、通常の線形 予測法では式(14)の M=32 であるが、本方法で は、そのような分析フレームは生じなかったの でM=40である。

$$\overline{\sigma} = \frac{2}{p} \sum_{i=1}^{p/2} \sqrt{\frac{1}{M} \sum_{j=1}^{M} (F_{ij} - \overline{F_i})^2}$$
(14)
$$\underline{H} \cup, \quad \overline{F_i} = \frac{1}{M} \sum_{i=1}^{M} F_{ij}$$

F_{ij} :第 j 分析フレームの第 i 極周波数 M :分析フレーム数 p :分析次数

5. 自然音声への適用例

前節の結果は、母音定常部のようなホルマン ト周波数が時間的にほぼ一定とみなせる音声区 間においての結果であり、実音声ではホルマン ト周波数は時々刻々変化しており、音韻によっ ては急激に変化している。このような実音声に おいても同様のことが言えるかどうかをホルマ ント周波数が時間的に急変している代表的音声 である自然有声破裂音の極周波数推定に適用し, 本手法の有効性を検証する。

14

成人男性が発声した有声破裂音/de/の極周波 数推定例を図4に示す。ただし、前処理として 一階差分を行い、分析次数 p=12、分析窓長 $T_a = 25.6ms$ 、フレーム間隔 2ms で分析した結果 であり、図中の〇印および△印の意味は図3と 同じである。

(自然有声破裂音 /de/)

図4より、ホルマント周波数が急激に変化す る破裂時点(今の場合、10msの時点)前後での推 定極の時間的変化が通常の線形予測法では不明 確(特に、1.8kHz 付近の推定極の時間的変化)で あるのに対し、本方法では何れの推定極もフ レーム間の連続性を保持した極が推定されてお り、ホルマント周波数の時間的変化をより正確 に追尾していると言える。そして、音声波形的 にはまだ過渡区間ではあるが、ホルマント自体 は時間的にそれほど変化していないと思われる 25ms 以降において、通常の線形予測法では 1.5kHz 以上の推定極のフレーム間安定性に難 点があるのに対し、本方法ではフレーム間の連 続性を保持した安定な極が推定されており、本 手法は実音声の極推定にも有効であると言える。

しかしながら,自然音声では真のホル マント周波数が未知であるので,その誤 差を定量的に評価できない。したがって 以下,破裂時点での第2,第3ホルマン ト周波数を特徴パラメータとしてホルマ ント空間での自然有声破裂音識別を行い, 本方法の有効性を検討する。具体的には, 第2-第3ホルマント周波数空間での/b/, /d/,/g/各クラスの重心からの距離による 識別率ならびに類間分散と類内分散の比 である分散比の良さで評価した。

図 5 に第 2-第 3 ホルマント周波数空 間での/b/, /d/, /g/の分布図を示す。ただ し,前処理として一階差分を行い,分析 次数 p=12, 分析窓長 T_a=25.6ms で破裂時 点を分析して得られる極周波数のうち単 純に小さい順に第2番目及び第3番目の 極をそれぞれ第2ホルマント周波数、第 3 ホルマント周波数と選定した場合の分 布図で、それぞれ図5(a)が通常の線形予 測法,同図(b)が本方法による分布図であ る。そして, 図中の○, △及び□印はそ れぞれ/b/,/d/及び/g/の位置を示す。なお、 音声資料は,電子協日本語共通音声デー タベース中の 20 代及び 30 代の男性 30 人の単音節/be/, /de/, /ge/(ただし, 2回 目の発声)計90個である。

図5より,通常の線形予測法では,第 2ならびに第3ホルマント周波数のバラ ツキが大きいのに対して,本方法により, それらが大幅に改善しており,とりわけ, 第2ホルマント周波数のバラツキが大き く改善していると言える(縦軸のスケー ルは(a)(b)両図とも同じであるが,横軸の スケールが異なることに留意)。

また図(a)より,通常の線形予測法では /g/(□印)の分布にバラツキはあるものの /g/の第3ホルマント周波数が相対的に高 く推定され比較的まとまった分布となっ ているのに対して, /b/(○印), /d/(△印) の分布が相互に重複し, 明確なクラス ターを形成していないと言える(特に, /d/ が/g/の領域にも広がっていると言える)。 これに対して, 本方法では, /g/の分布の まとまりが, より明確になると共に/b/, /g/それぞれの分布の様子が大幅に改善さ れていると言える。

この分布の違いを定量的に評価するため,第2-第3ホルマント空間において,

図5 ホルマント空間における有声破裂音(後 続母音/e/)の分布

/b/, /d/, /g/相互を各重心からのユーク リッド距離により識別した結果を表1に 示す。表1(a)より,通常の線形予測法で は,/g/において音声資料30個中4個が/b/, 別の4個が/d/にそれぞれ誤識別されてい るが,残り22個は/g/と識別され識別率が 73.3%と比較的正しく識別され識別率が 73.3%と比較的正しく識別されている。 しかしながら,上述したように/d/の分布 の広がりが大きいため,正しく/d/と判定 されるのは音声資料30個中4個しかなく, 識別率は13.3%と極端に悪化している。

表 1 有声破裂音の識別結果 (後続母音 /*e*/)

(a) 通常の線形予測法

	/b/	/ d /	/ g /	識別率(%)
/b/	13	5	12	43.3
/ d /	11	4	15	13.3
/g/	4	4	22	73.3
分散比	0.15		平均	43.3

(b) 拘束線形予測法

	/b/	/ d /	/g/	識別率(%)
/b/	20	7	3	66.7
/ d /	11	18	1	60.0
/g/		3	27	90.0
分散比	0.85		平均	72.2

そして, /b/に関しては/d/ほどではないが, 識別率は 43.3%にしかならず, /b//d//g/ の平均識別率は 43.3%に留まっている。 これに対して,本方法により, /g/が/b/に 誤識別されることはなくなり, 30 個中 3 個のみ/d/と誤識別されるだけとなり, /g/ の識別率が 73.3%から 90.0%へと改善す ると共に, /b/, /d/それぞれの識別率も改 善し,特に/d/の識別率が 13.3%から 60.0%に大幅に改善している。その結果, /b//d//g/の平均識別率が 43.3%から 72.2%に大きく改善し,かつ分散比(= 類 間分散/類内分散)も 0.15 から 0.85 に改善 していることから,本方法の有効性が示 されていると言える。

6. むすび

ディジタル信号処理手法として広く活用され ている線形予測法により得られる予測係数と観 測系の極の関係を考察することにより,予測係 数間に簡単な関係を付与すれば,推定極の位置 を z 平面の単位円上に拘束することができ,正 規方程式の次元ならびに高次方程式の次数を通 常の線形予測法の 1/2 に半減できると共に観測 信号の極情報を担った安定な極周波数が得られ ることを示した。

本方法の有効性を合成音ならびに自然 有声破裂音のホルマント周波数推定に適 用して検討した結果,分析次数を適切に設定 する必要があるが,通常の線形予測法とほぼ同 等の精度でホルマント周波数推定が可能である ことが合成音のシミュレーションにより明らか となり,また合成音はもとより自然音声におい ても極の位置の拘束が極周波数推定値の頑健性 にも大きく寄与することが実験的に示された。 そして,自然有声破裂音(成人男性 30 名の 単音節/be//de//ge/計 90 個)の破裂時点で の第 2,第 3 ホルマント周波数による有 声破裂音識別に適用した結果,通常の線 形予測法による識別率が 43.3%であった のが、本方法により、72.2%に向上した。 この大幅な改善は本方法により、音声のホルマ ント構造を担った安定した極周波数が得られる ことを意味し、本方法により得られる極周波数 は音声認識における有効な特徴パラメータとな り得ることが明らかとなった。

文 献

- Makhol: "Linear Prediction: A Tutorial Review", IEEE Proc., 63-4, pp. 561-580(1975).
- [2]板倉,斎藤: "統計的手法による音声スペクトル密 度とホルマント周波数の推定",信学論(A),53-A,1, pp.35-42(1970).
- [3]B. S. Atal and S. L. Hanauer : "Speech analysis and synthesis by linear prediction of the speech wave", J. Acoust. Soc. Amer., 50, pp. 637-655(1971).
- [4]日本数学会偏:岩波数学辞典(第3版), p. 705, 岩 波書店(1990).
- [5]A. E. Rosenberg : "Effect of glottal pulse shape on the quality of natural vowels", J. Acoust. Soc. Am., 49, pp. 583-590(1971).
- [6]嵯峨山, 板倉: "複合正弦波モデルによる音声スペ クトルの分析", 信学論(A), J64-A, 2, pp. 105-112(1981).
- [7] 菅村,板倉: "線形予測係数の線スペクト表現とその統計的性質",信学論(A), J64-A, 4, pp. 323-330(1981).
- [8]粕谷,和田,岡田: "線形予測分析法で得られる極 周波数からのホルマント周波数選択アルゴリズ ム",信学論(A), J66-A,11,pp.1144-1145(1983).