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CHARACTERIZATION OF PARABOLIC HARDY SPACES BY
LITTLEWOOD-PALEY FUNCTIONS

SHUICHI SATO

ABSTRACT. We consider Littlewood-Paley functions associated with non-isotropic
dilations. We prove that they can be used to characterize the parabolic Hardy
spaces of Calderén-Torchinsky.

1. INTRODUCTION

Let P be an n x n real matrix such that
(Px,z) > (xz,xz) forall x=(x1,...,2,) € R,

where (z,y) = z1y1 + - + oY, is the inner product in R*. Let v = trace P.
Define a dilation group {A;};~o on R* by A; = t = exp((logt)P). It is known
that |Az| is strictly increasing as a function of ¢t on Ry = (0, 00) for & # 0, where
|z| = (z,2)'/?. Define a norm function p(z) to be the unique positive real number
t such that |4;-1z| = 1 when z # 0 and p(0) = 0. Then p(A;z) = tp(z), t > 0,
x € R™, pe C°(R" \ {0}) and the following results are known (see [4, 6]):

) plz+y) < p(x) + ply) for all z,y € R";

) p(z) < 1if and only if |z| < 1;
3) if |z| < 1, then |z| < p(x);

) if |z| > 1, then |z| > p(z);

) if t > 1, then |Asz| > t|z] for all z € R”;

(P.6) if 0 < t <1, then |Asz| < t|z| for all z € R™.
Similarly, we can consider a norm function p*(z) associated with the dilation group
{4} }+>0, where A} denotes the adjoint of A;. We have properties analogous to
those for p(z), A; above.

Let

(1) 00 = ([T1rener )"

be the Littlewood-Paley function on R”, where o (z) = t™7¢(A4, 'z) and ¢ is a
function in L'(R™) such that

(1.2) /n o(x)dz = 0.

Mapping properties of g, on LP(R™) for p € (1, 00) can be found in [1, 16, 17] when
P = E (the identity matrix) and g,, is defined by p:(x) =t "p(t'z) in (1.1).
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We say that a tempered distribution f belongs to the parabolic H?, 0 < p < oo,
if [|fllze = |lf*llp < oo, where f*(z) = sup;»q |®¢ * f(z)| and [[f*][, = [[f*[L»,
with ® € $(R"™) satisfying [ ®(z) dz = 1, supp(®) C {|z| < 1} (see [4, 5], [8]). We
have denoted by S(R™) the Schwartz class of rapidly decreasing smooth functions
on R™. It is known that HP coincides with LP when 1 < p < oo and that a different
choice of such ® gives an equivalent norm.

Let o € L'(R"). We consider the non-degeneracy condition:

(1.3) sup |@(Af€)| >0 for all £ #0,
>0
where the Fourier transform is defined as

&) =3 = o F(@)e >4 dg.

In this note we shall prove the following.

Theorem 1.1. Let ¢ be a function in S(R™) satisfying (1.2) and (1.3). Let g, be
as in (1.1). Suppose that 0 < p < 1. Then if f € H?, we have

allfllar < llge(Hllp < callFllae
with some positive constants ci,co independent of f.

The second inequality of the conclusion can be shown by applying a theory of
vector valued singular integrals. The first inequality is more difficult for us to prove,
where we do not assume the condition that the Fourier transform of ¢ is supported
on a compact set not containing the origin; if we have this condition, the result
could be shown much more easily.

We recall some related results when P = E and g, is defined by ¢:(z) =
t="p(t~'z) in (1.1). Then Theorem 1.1 is known (see [22] and also [12] for some
background materials). Let Q(z) = [(0/0t)P(z,t)]t=1, where

t I'((n+1)/2)

P(l‘,t) =Cn 1‘2+t2 (n+1)/2° Cn = W’
(|| )

is the Poisson kernel associated with the upper half space R™ x (0,00) (see [20,
Chap. I]). We note that Q(¢) = —2n|¢|e27lél. Then it is also known that

(1.4) cillfllar <llge(Hllp < coll fllre

for f € HP(R™), 0 < p < 00, with positive constants c¢;,c2 (see [8] and also [22]).
In addition, we would like to mention that in [9, Chap. 7] we can find a relation
between Hardy spaces and Littlewood-Paley functions associated with the heat
kernels in the setting of homogeneous groups.

Uchiyama [22] gave a proof of the first inequality of (1.4) for 0 < p < 1 by
methods of real analysis without the use of special properties of the Poisson kernel
such as harmonicity, a semigroup property. Applying a similar argument, [22] also
proved the first inequality of the conclusion of Theorem 1.1 (when P = E) for
O<p<1lL:

(1.5) 1fllme < cllge(H)llp-
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Meanwhile, for a function F' on R™ and positive real numbers NV, R, if we define
the Peetre maximal function FY'p by

*k |F(1‘ — y)|
TR = 500 T+ B~
(see [14]), then it is known that the maximal function F{¥5 can be used along with
some well-known arguments to prove (1.5) for 0 < p < 1 when ¢ € §(R") satisfies
a non-degeneracy condition and the condition supp(¢) C {a1 < [{| < a2} for some
ai,as > 0.

In [18], (1.5) was proved for f in a dense subspace of H?(R™) and for ¢ in a class of
functions including @ and a general ¢ € S(R"), without the restriction on supp(p)
above, with (1.2) and (1.3), for AF¢ = t&, by applying a vector valued inequality
related to the Littlewood-Paley theory. The proof of the vector valued inequality
is based on an application of the maximal function Fy'p. This application of F{*p
in proving (1.5) was found by [18].

The purpose of this note is to generalize the methods of [18] to the case of the
parabolic Hardy spaces and establish the characterization of the parabolic Hardy
spaces in terms of Littlewood-Paley functions of (1.1) with ¢ € S§(R™) satisfying
conditions described in Theorem 1.1, where we do not require the condition that
supp(p) is a compact set not containing the origin. (See [19] for related results for
the weighted Hardy spaces.)

In Section 2, we shall prove an analogue of a vector valued inequality in [18] for
the general dilation group {A;}, introducing a function space named as B which
includes those ¢ considered in Theorem 1.1 (Theorem 2.2). In Section 3, we shall
consider g, for ¢ € B and prove (1.5) in the setting of the parabolic H? for such ¢
and for f in a dense subspace of H? as an application of Theorem 2.2 (Corollary 3.1).
Theorem 2.2 will be stated more generally than needed for the proof of Corollary
3.1 as weighted vector valued inequalities.

Also, in Section 3, Theorem 1.1 will be derived from Corollary 3.1. Finally,
discrete parameter versions of Theorems 1.1 and 2.2 will be stated (Theorems 3.6
and 3.7).

2. WEIGHTED VECTOR VALUED INEQUALITIES WITH NON-ISOTROPIC DILATIONS

To state our results, we introduce a set B of functions and recall the Muckenhoupt
weight class.

Definition 2.1. Let ¢ be a function in L!'(R") satisfying (1.3). We assume that
» € C®(R™ \ {0}). Then, we say ¢ € B if the following conditions are satisfied:

(21) e C'R"), OpeL'(R*), 1<k<n, whered=0,, =0/0x;

(2.2) |p(&)| < C|¢|° for some € > 0;
(2.3) |0 p(€)] £ Carl€]™7  outside a neighborhood of the origin,
for all @ and 7 > 0 with a constant C, -, where a = (a1, ..., a,) is a multi-index,

a;j €L,a; >0,|a|=ar1+ - +a, andag:ag;...ag:.

If ¢ € §(R™) satisfies (1.2) and (1.3), then clearly ¢ € B.
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We consider a ball in R with center x and radius ¢ relative to p defined by
B(z,t) ={y e R" : p(z —y) < t}.

We say that a weight function w belongs to the class 4,, 1 < p < oo, of Mucken-
houpt if

wla, =sup (181" [ wyas) (181" [ w(xrl/@—”dx)pl < oo,

where the supremum is taken over all balls B in R” and |B| denotes the Lebesgue
measure of B. Let A, = Up>1A4,. Also, we define the class A; to be the family of
weight functions w such that M (w) < Cw almost everywhere. We denote by [w] 4,
the infimum of all such C'. Here, M is the Hardy-Littlewood maximal operator
relative to p

M(f)(z) = sup |B| " / £ dy,

zEB

where the supremum is taken over all balls B in R™ containing z. (See [2, 10].)
For a weight w, we denote by || f||,,» the weighted L norm

([ rereeae)"

Then we have the following result.

Theorem 2.2. Let p € B. Suppose that 0 < p,q < 0o andw € Ay,. Let) € S(R™).
Suppose that 1v = 0 in a neighborhood of the origin. Then

00 th 1/q ) th 1/q
(/0 | f 1 7) (/0 |f * o 7)

for f € 8(R™) with a positive constant C independent of f.

<c

This can be generalized to more general ¢ (see Theorem 2.9 of [18]). Function
classes BL in L'(R") are defined in Definition 2.7 of [18] for 7,1 > 0 with [ € Z. If
¢ € BL, then ¢ satisfies a condition less restrictive than (2.3). Although Theorem
2.2 is formulated by using B for simplicity, it can be stated by using a suitable BL
depending on p, g, w instead of using B. A similar remark applies to Corollary 3.1
below.

Let

*k = su |G(1‘ B y)|
24 GNRE) = S0 G+ Rofu))¥

for a function G on R™ and positive real numbers N, R. To prove Theorem 2.2 we
use the following.

Lemma 2.3. Let 0 < ¢ < 0o, N > 0. Suppose that ¢ € B, f € S(R*). Let
r=+v/N. Then

o *k q dt > r
| reiaer e [ uirsane

We apply the next result to show Lemma, 2.3.

q/rﬁ_
t
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Lemma 2.4. Let N =~/r, r >0 and let ¢ € L'(R"), f € 8(R™). Suppose that ¢
satisfies (2.1). Then

(f * 9N 1 (2) < O NM(|f x u|") (@) + COLf % (V)| ¥ =1 ()

for all 6 € (0,1] with a constant C independent of 6 and t > 0, where Vo =
(01, ..., 0np) and f* (Vp)e = (f % (O10)t, -, [ * (Onp)e).

To prove Lemma 2.4, we use the following.
Lemma 2.5. Let G € C*(R") and R >0, N =~v/r, r > 0. Then
Gx1(x) < CoNM(G|") (@) + COIVGIR., (v)
for all 6 € (0,1] with a constant C' independent of §, where G p is as in (2.4).

Proof. Let JCB(z,t) fy)dy = |B(z,t)|7! fB(w)f(y) dy. Then, for § € (0,1],r > 0
and z,z € R” we write

1/r
Gl —2)| = (ﬂ INCURCESER G(y»r“dy) |

This is bounded by

1/r 1/r
c, (][ |G<y>|rdy> e (f Gl - 2) - G(y)de) ,
B(z—z,6) B(xz—2z,0)

where C, = 1if r > 1 and C, = 271/ if 0 < r < 1. Thus we have

1/r
|G<x—z>|scr<]{9( 5)|G<y>|rdy> +Crswp o=z =yl|VG)]

yip(z—z—y)<
Iflz—z—y| <1, |z —2z—y| <p(xr—2z—y) by (P.3). So, we see that

1/r
IG(y)I’"dy> +C, (sup S|VG(y)l.
yip

p(e—z—y)<4d

(2.5)  |G(z—2)| <LC. <][

B(z—z,6)
Ifp(x—2z—y) <0, plr —y) <6+ p(z). Therefore
VG + (y — )
(1+p(z —y)"
< |VGIR @)1+ + p(2)™
< 2V VG, (2)(1+ pl2).

IVG(y)| < (L+30+p(2)™

Thus
(2.6) sup  O|VG(y)| < 2VOIVGEIN ()1 + p(2)V.

yip(e—z—y)<s

On the other hand,

1/r 1/r
(2.7) ][ Gwldy) < 6*7(6+p<z)>”][ Gl dy
B(xz—2z,6) B(z,6+p(2))

<86+ pl2) MG (@)
<L+ p(2) MG ()
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By (2.5), (2.6) and (2.7), we have

|G (@ = 2)| < C.o™ "1+ p(2))/"M(|G") (@) + 2N L8| VG  (2) (1 + p(2)N.
Thus, if N = v/r, we see that

|G(1'— )| —N 1/7‘ N Kk

Taking the supremum in z over R, we get the desired estimate. O
Proof of Lemma 2.4. Let (T;f)(z) = f(Aix). Then we note the following.

(T.1) (T,GF g)(@) = (TGN 1 (x)-

(T.2) T,(f * g)(x) =" (T, f) * (Trg) ().

(T.3) Tu(M(f))(x) = M(T.f) ().
By (T.1) and (T.2) we have

Ti((f * )N 1) (2) = (Tof * ©)N 1 (2)-
Using Lemma 2.5, we see that
(2.8) (Tof * )N (@) < CONM(|Tof * o) ()7 + CO|T, f % V|31 ().
Applying Ty-1 to (2.8), we have
(29) (fxed)N (@)
<O NI (M(TLf %)) (@)7) + CT (T2 f % V|31 ()

From (T.2) and (T.3), it follows that

(2.10) Tyt (M(ITof % o|")(@)'/7) = M(|f % oo ") ()"
Also, (T.1) and (T.2) imply
(2.11) T (T f * Veln ) (@) = |f + (V)i -1 (2)-

Using (2.10) and (2.11) in (2.9), we get the conclusion of Lemma 2.4.
g

To prove Lemma 2.3 we also need Lemma 2.7 below. To state it, here we have
some preliminaries. We first establish a partition of unity on R \ {0} associated
with ¢ € L1 (R™) satisfying (1.3).

Lemma 2.6. Suppose that ¢ is a function in L*(R"™) satisfying (1.3). We assume
that € C°(R" \ {0}). Then, there exist by € (0,1) and ri,ry > 0, r; < ra, such
that for any b € [by, 1) there exists a function n with the following properties:
(1) n e C=(R");
(2) ) € C°(R™) and suppn C {r1 < p*(&) <r2};
(B) Xojm e @A ON(AE) =1 for & € R\ {0}
When P is the identity matrix, this is in [21, Chap. V]; see also [4].

Proof of Lemma 2.6. Let S™1 = {£ : |¢| = 1}. Since ¢ is continuous, by a com-
pactness argument we can find a finite family {I, }£_, of compact intervals in (0, 00)
such that

inf  max inf |@(A7€)]* > ¢
ceSn-11<h<LtEl,
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with a positive constant c.

We observe that there exists by € (0,1) such that if b € [b,1), ¢ > 0 and
1 < h < L, then we have b/t € I, for some j € Z (the set of integers). This can be
seen by taking by = maxi<n<r(an/by), where I, = [an, bs].

Consider an interval [m, H] in (0,00) such that UL_ I, C [m, H] and choose
0 € C5°(R) such that § =1 on [m, H|, suppf C [m/2,2H], § > 0. Define

- Y AN O

j=—00

Then ¥(£) > ¢ > 0 for £ # 0. Note that W(A;,. &) = ¥(&) for k € Z. Let

(&) = 0(p"(€)p()L(E) ™" for £ #0

and 7(0) = 0, where ¢(&) denotes the complex conjugate. Then, 5 satisfies all the
properties stated in the lemma. This completes the proof. a

Let ¢ € B. Then (2.1) implies that
(2.12) F(Orp)(§) =Er(©)@(§), 1<k<n,
where 25, (§) = 2mi&,. Let b € [bo, 1) and 5 be as in Lemma 2.6. Define
=1- Z(‘D AZ] AZ] )

j>0

Then supp(() C {p* ( )<}, (=1in {p*( ) <71} and by (2.12) we have
F(Okp) (&) = Y F(Or) (©)R(A5; O)N(A€) + (()F (Orp) (€)

j>0

=3 (AL OF () (45,0) + HOF (B (©),

j>0

where o)) (2) = (Bkp)p-5 * n(x) and F(Bu)(€) = C(E)Zk(©)-

Thus we have
(213)  [F(Oup, 1)@, 0] < Y [Flafy) @, )@, V)] + [F(Bu * ¢, f)(,1)]
7>0
for f € $(R™). Here and in the sequel we also write F (3, f)(z, ) f * Yy (z) for
)

appropriate functions v, f; further, we shall write F(¢, f)(z,t) = Fy(z,t) when f
is fixed.

Let
(214)  C@,t, L) = (1+ pa e2mie) de |

for ¢ € L}(R") with ¢ > 0, L > 0. Then

Ia s ) (@) = COup, b, L, A 2)s (14 p(a)/5)*
for j € Z. Similarly,
|6(k)s(x)| = D(EIWL)AS_II:)S_'Y(]' + p(m)/s)_L,
with

(2.15) D(E4, Lya) = (1 + p(a OZ()e>™ 0 e |
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Define
(2.16) C(,j,L) = C(p,V,L,x)dx, jET,
Rn

for an appropriate function  in L'(R");

(2.17) D(Eg, L) = D(Ey, L, z) dx.
R7
We have D(Z,L),C(dkp,j,L) < oo for all j, L, which are easily shown by a
straightforward computation and can be seen from Lemma 2.9 below. We also
write C'(¢,4,L) = C,(¢,4,L), D(Zk, L) = D,(Eg, L) to indicate that these quan-
tities are based on ¢.
We also need the following result in proving Lemma 2.3.

Lemma 2.7. Let p € B, b € [bo,1), N > 0. Then we have
F(ak(pa f)(7 t)}(\;:t*1 (.’E) S C Z CAP (8]6()07.7.7 N)b_]NF((p, f)(7 bjt))]k\);,(bjt)*l (CU)
>0
+ CD, (B, N)F (o, f) (-, 1) N -1 (2)
for 1 <k <n, where f € §(R").
Proof. By (2.13) we have

|F3k4@(z)t)|

<CY " [ |F,(y, bt 14 PE=Y) _NC(a b, N, A (2 —y) (b7 t) 7 d

= S o\Y, b]t k¥ ’ »“hpit z Y Y
7>0

t

Multiplying both sides of the inequality by (1 + p(z — 2)/t)~" and noting that

L e\ T e =N g (g P T

bit t = AN bit
for any x,y,z € R® and ¢ > 0 when b/ < A, we have
|Foo (2, )| (1 + pla — 2) /1)~
Nj j ple—y)\ " ; ) :

<> v [ IR ) (1 ¥ —) COup, b\ N, A} (= = 1) (b8 dy

‘ bit
j>0

N
0 [ IR0 (14 252) DN, A7 = )y

-N
+C [ IR0 (1 ¥ u) D(Ek, N, Ay (= — 1)t dy.

<CY bNIF, (V)R iy (2) / C(Orp, b, N, Ay (z — ) (1) ™7 dy

>0
T+ COF ()3 s (2) / D(E4, N, A7 (2 — y))t 7 dy

<CY  ColOk, 4, N M, (V) (311 () + CDy (i, N)Fy (-, 1) 31 ().
320

Taking the supremum in z over R”, we reach the conclusion. a
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Let ¢ € B. Then we have

(2.18) sup O, (Ve, j, L)b™™ < oo,
>0

for all L,7 > 0, where we write C,(Vp , L) = >, Cp(Orp,j, L), recalling
(8k§07]7 ) (8k§07]7 ) (See (2 14)7 ( )) and

(2.19) D, (L) <

for all L > 0, where D,(L) = Y ,_, D,(Zk, L); recall D,(Zx,L) = D(Ey, L) and

see (2.15), (2.17). Let ¢ € S(R™). Then we also note that

(2.20) sup C’V,(w,j,L)b*”‘ < oo forany L,7 >0,
jibi <ra

where ry is as in Lemma, 2.6. These results, which will be used in what follows, are
easily shown and can be found in Lemma 2.9 below.

Proof of Lemma 2.3. Lemma 2.4 implies that

(221) F(p, f)()x -1 (@) < OO NM(If %00 ") (@) "7 + C8|f % (V)i [N =1 (),
where r = y/N. Applying Lemma 2.7, we have

[f# (Vo) -1 ()
<CY Co(Vep, i NIOINE (0, 1) (VDN (13101 (@) O D (N)F (0, £) (5 ) ¥ g1 (@)
i>0

Thus by (2.21) and Hdlder’s inequality when ¢ > 1 we have

(2.22) F(p, /)00, ()7 < CONIM(|f % 1|7 ()"
+ 001 Co(Vep, j, N) b TN I Fp, f) (-, V) (i1 ()"

j=0
+ C(qutP(N)qF(SO: f)(7 t)?\;,t—l (x)q,

where 7 > 0, ¢, = 1 when ¢ > 1 and ¢; = 0 when 0 < ¢ < 1. Integrating both sides
of the inequality (2.22) over (0, 00) with respect to the measure dt/t and applying
termwise integration on the right hand side, we see that

(2.23) /fF(ga,f)(-,tm,t_l() & < o5 NQ/ M(1f o) @) (@) &

) _iNgi— dt
408 | 3 oV g, NN aeeud 4 D (V)1 | [ B 0% (07 -
i>0 0
By (2.18) the sum in j on the right hand side of (2.23) is finite. By (2.2) and (2.3)
with o = 0 we easily see that the last integral on the right hand side of (2.23) is
finite with f € $(R™). Thus, along with (2.19) we see that the second term on

the right hand side of (2.23) is finite. So, choosing ¢ sufficiently small, we get the
conclusion. O

To prove Theorem 2.2, we also need the following version of the vector valued
inequality for the Hardy-Littlewood maximal operator of Fefferman-Stein [7] with
non-isotropic dilations and weights.
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Lemma 2.8. Let 1 < p,v < 00 and w € A,. Then we have

“uEer )" <c o )" ey do
( ) LA )

for appropriate functions F(x,t) on R™ x (0,00) with Ft(x) = F(x,t).

1/v

The case P = E is stated in [18]. See [11, pp. 265-267] for a proof, where
(H-valued case is handled; the proof may be available also in the present situation
(see [15] for related results).

Proof of Theorem 2.2. By a change of variables we may assume that 1/3 = 0 on
{1¢] < 1} = {p*(§) < 1}. We apply Lemma 2.6 for ¢ of Theorem 2.2 and use
similar notation as above. Define

O =1- > @A500(A459).

Jibi <ry

Then supp(¢) C {p*(§) < 1}, { = Lin {p*(&) < r1/ra}. Since ¢ = 0 on {|¢] < 1},
we have

h(E) = (&) p(AL )i(As;€)

where a(¥) (z) = (¢)y-s * ().
Thus by an easier version of arguments for the proof of Lemma 2.7 we see that

F@ D@D SC Y Colnd, NIF(p, DV OR gy (@)

jibi <ry

for any IV > 0, from which it follows that

|F(1/}7f)(m7t)|q S ¢ Z Ctp’('ﬁbvjaN)qbircqu(Qovf)('7bjt)}‘\;‘,(bjt)—l(m)qa

jibi <ry

where 7 > 0 and ¢, is as in (2.22). Integrating with the measure dt/t over (0, c0),
we have

e2) [T @ T

<c @
- t

S Cowi N)‘Ib-fw] / TR, ) (0

j:bi<ro

By (2.20) the series on the right hand side of (2.24) converges. Let 0 < p,q < o0
and w € A, If N is sufficiently large so that r = v/N < ¢,p and w € A, y/-, from
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(2.24) and Lemma 2.3 it follows that

oo 1/‘1 /
e |([Tieenr )T <e|( [T marsamn@rT)
| r/q 17/1:
e (/ M(f o) ()" )
p/raw

<c|([ U*¢4>|f)/

where the last inequality follows form Lemma 2.8. This completes the proof of
Theorem 2.2. O

)

p,w

To conclude this section, we give a proof of the following results mentioned above.

Lemma 2.9. Let ¢ € B. Suppose that ¢ € L*, ¢ € C(R™ \ {0}) and we have
the estimates (2.3) with ¢ in place of ¢ for all multi-indices o and all 7 > 0. Let
L,J>0. Then
(1) supjpi<y Cy,(¢,7,L)b~I™ < oo for any T > 0, where C,, (4, j, L) = C(¢, 4, L)
is as in (2.16).
(2) Dy(E, L) < 00,1 <k < n, where 24 (§) = 2mi&, as above and D, (Zy, L) =
D(Zk, L) is as in (2.17).
Proof. To prove part (1), since 1 + p(z) < ¢(1 + |z|) by (P.4), we have
(14 |z A C @, t, L, )

<C ‘/@ZJ )e2mile:e) df‘-{—C’ sup
|a|=L+[n/2]+1

[ o [pai ] =i

where C(¢,t, L, x) is as in (2.14) and [a] denotes the largest integer not exceeding
a. We recall that 7 € C°(R") with support in {r; < p*(§) < ro}, which is in
Lemma 2.6. It is known that ||A;_,|| < ¢7* for ¢ € (0,1] with some x > 1. Thus
(2.3) for ¢ implies

08 [9(47:9(©)]| < Camnat™, 0 <<,
for any M >0, if |o| = L+ [n/2] + 1 or a = 0. Thus
C(h,t,L,x) < C(1+|a|) "I 1G(x)

with some G € L? such that ||G||2 < Ct7, and hence, the Schwarz inequality implies
(2.26) C,t,L,x)de < Ct7,
RTL

since [n/2]+1 > n/2. From (2.26) with ¢t = b’ we obtain the conclusion of part (1).
Similarly, we can see that

D(Ey, L, z)dx < o0,
Rn

where D(Z, L, z) is as in (2.15). This completes the proof of part (2). O
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3. LITTLEWOOD-PALEY FUNCTIONS AND PARABOLIC HARDY SPACES
As an application of Theorem 2.2 we have the following.
Corollary 3.1. Let 0 < p < 1. Suppose that p € B. Then we have

Ifllze < Collgo ()l
for f € HP(R™) N S(R™) with a positive constant C, independent of f.

Let 3 be the Hilbert space of functions u(t) on Ry such that [Jul|sc = (f; |u(t)|? dt/t)l/2 <
oo. Let L3 (R™) be the Lebesgue space of functions h(y,t) with the norm

1/q
Iilla.sc = ( / ||hy||%cdy) ,
Rn
where h¥(t) = h(y,t).

Let 0 < p < 1. We consider the parabolic Hardy space of functions on R™ with
values in H, which is denoted by HY (R™). Choose ® € §(R") as in the definition
of H? in Section 1. Let h € L3(R"). We say h € Hy(R") if [|h||gz. = [[h*||zr < 00

with
o0 dt\ '/
h*(w):sup</ |<I>s*ht(a:)|2?> ,
0

s>0
where we write hf(z) = h(x,t).
To prove Corollary 3.1 we need the following.

Lemma 3.2. Let ¢ be a function of S(R™) with support in {1 < p*(§ < 2}.
Suppose that

| ier F =1 forate#o.

Let F(y,t) = f % (y) with f € HP(R*) N 8(R™), 0 < p < 1. Then F € H} (R™)
and

1 lla» < ClIFllps, .

In what follows, we write
> dt
B@ = [ [ e
0 R™

where h € L2, and hiey(y,t) = h(y,t)X(e,c-1)(t), 0 < € < 1, and % is an appropriate
function. Here xs denotes the characteristic function of a set S.
We apply the following result in proving Lemma 3.2.

Lemma 3.3. Suppose that ¢ € $(R™) and suppz/; C {1 < p*(€) <2}. Then
szlopl) NES (M) lae < CllAllgz, 0<p<L

€€
Let a be a (p,00) atom in Hf (R"):

i) (57 la(z, b)) dt/t)l/2 < |B|~'/?, where B is a ball in R” with respect to p;
(ii) supp(a(-,t)) C B for all t > 0, where B is as in (i);
(iii) [gna(z,t)z* de =0 for all £ > 0 and «a such that |a| < [y(1/p — 1)], where
a=(a,...,q,) is a multi-index with % =27 ... z%".

n

To prove Lemma 3.3 we use the following atomic decomposition.
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Lemma 3.4. Let h € L3.(R"). Suppose that h € HY.(R™). Then we can find a
sequence {ar} of (p,00) atoms in HY.(R™) and a sequence {\} of positive numbers
such that h = Y7 Apay in HY (R™) and in L3 (R™) and such that Y oo, Ap <
C“h“%gc with a constant C' independent of h.

We can find in [13] a proof of the atomic decomposition for H?(R™) (see also [3],
[10] and [21]). The vector valued case can be treated similarly.

Proof of Lemma 3.3. Let a be a (p,o00) atom in HJ.(R™) supported on the ball B
of the definition of the atom. We choose a C'*° function ® on R™ supported on
{lz| < 1} with [ ®(z)dz =1 as above. We prove

(3.1) / sup |®, * Ej (a)(x)|” dz < C.
R™ s>0

To show this, by applying translation and dilation arguments, we may assume that
B = B(0,1). Let B = B(0,2). Then 2p(y) < p(z) ify € B and z € R* \ B. Let
Ut = ®sx1y, 5,t > 0. We note that ®,x9), = (®,/,%1); and @, 1, u > 0, belongs
to a bounded subset of the topological vector space 8(R™), which can easily be seen
by noting that F(®, x1)(&) = ®(A%€)(€) and recalling that ) (€) is supported on
{1<p"(¢) <2}

Let P,(y) be the Taylor polynomial in y of order M = [y(1/p — 1)] at O for
@,/ x(x —y). Then, if p(x) > 2p(y), we have

s/ % (z —y) = Puly)] < ClyM™* (1 + p(2) 77,

where L is a sufficiently large positive number, which will be specified below, and
the constant C' is independent of s,t, x,y. This implies

[Wsi(@ —y) =177 Pa,_a(Ai-1y)] < Ot AayM T A+ p(2) /) 7"

Thus, using the properties of an atom and the Schwarz inequality, for z € R” \ﬁ
we see that

(3.2)

|, * B} (a) |—‘// st(z=y) =t Pa,_ 2 (A-1y)) ag (y, 1) dy—‘

<[ ([t v- a8 ([Cawor )

a2 [ ([T e s sty ﬂ)/ dy.

t

Now we show that
(33 Hewi= [ (1AM L pa) /) h) G < Cpta) 20
0

forye B,z € R™\ B, if L is sufficiently large. We first see that

_ < a2 dt
B Iww) = o@ [ (T M ) T
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By (P.6) we have

o0 dt
(3:5) /( ) (Ao 1yM (1 + 27178 n
p(z)~1

< C|y|2(M+1)p(x)72(M+l) /( . t72(7+M+1)(1 _+_t71)
p(z)~

< Cly M p(g) M+
fL>y+M+1. If s >1, |Asy| < Cs”y| for some x > 1. Thus

2 de

p(z) 7"
6O [ T ) g

C
< Oy () 72D /p 20 R(MED) (1 +t—1)—2L%
0
< C|y|2(M+1)p(x)72n(M+1)’

if L >~vy+ (M +1). By (3.4), (3.5) and (3.6) we obtain (3.3). From (3.2) and
(3.3) we have
| @, * B (a)(z)] < Cp(a)~OFMH)

for z € R* \ B.

Since p > v/(y+ M + 1), it follows that
(3.7 / sup | @, * Ey, (a)(m)|p de < C p(x)POFMAD) 4o < O

R\ B s>0 R\ B

(see [6]).

Using [ [(A;€)|? dt/t < C, by duality we can easily see that

sup [|E5 ()]l < CllkllLz,,  h € Li(R").

e€(0,1)

So, by Holder’s inequality and the properties (i), (ii) of a, we get

(3.8) /~sup | @ * Efp(a)(a:)|p dz < C </]§ |M(E;,(a))(x)]? dm) v

B s>0
o p/2
<o [ awor S a)
BJo t
<C.

Combining (3.7) and (3.8), we have (3.1). By Lemma 3.4 and (3.1) we can prove
/ sup |<I>s * Efp(h)(m)|p dr < C||h||1;lp .
R s>0 H
This completes the proof. a
Proof of Lemma 3.2. By using the atomic decomposition for H?(R™), we can prove
the fact that F' € HY (R™) similarly to the proof of Lemma 3.3 (see [22, Lemma

3.6)).
We note that

B = [ [ v ti-0d S = [ ¥90-216d
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where g(z) = g(—x) and

e~ ! B d
3 (z) :/ [ i) dy%.

We have

. o o dt
/ HLOF-0 T = [ WP T o
as € = 0 for £ # 0. This and Lemma 3.3 imply
1fllze < Climinf |ES (F)||ae < C||F||gz, -
e—0 P H

We also need the following result to prove Corollary 3.1.

Lemma 3.5. Let n € $(R"™) satisfy supp()) C {1/2 < p*(§) < 4} and 7(§) =1
on {1 < p*(€) < 2}. Let o be as in Lemma 3.2. Suppose that & € S(R"™) satisfies
fR" z)dz =1 and supp(®) C B(0,1). Then for p,q >0 and f € S(R™) we have

o0 A
e
0 s>0 t

Proof. Since ®(A*E))(AFE) = B(AXE)D(AFE)H(ALE), we have

@5 %y fla)| < (f xm) N1 (2) /Rn | e (w) (1 + " p(w))N dw

> dt\ '
scH(/ e 1)
0
P

= (FrmNes(@) [ [ 01+ plw) du
< ON(f #m)5 41 (2)

for any N > 0, where Cy is independent of s,¢. This follows from the observation
that ®,,, * 1, s,t > 0, belongs to a bounded subset of the topological vector space
S8(R™), as in the proof of Lemma 3.3. Thus

0o d 1/q o d 1/q
69 ([ swiovos@r ) <o ([Tremio@r )

y (3.9) and Lemma 2.3 with 5 in place of ¢, we have

where N = ~/r. This and Lemma 2.8 prove Lemma 3.5 as in (2.25). O

Proof of Corollary 3.1. Let n be as in Lemma 3.5. Applying Lemma 3.2 and Lemma
3.5 with ¢ = 2 and p € (0, 1], we see that

1fllme < Cllgn (NI, [ e H(R") NS(R™),

which combined with Theorem 2.2 with ¢ = 2, p € (0,1], w = 1 and with 7 in place
of 1 proves Corollary 3.1.
O
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Proof of Theorem 1.1. Let ¢ be as in Theorem 1.1. Let 0 < p < 1. The inequality

g (Nlp < CllF Nl 7

can be proved similarly to the proof of the statement F € H¥ (R") in Lemma 3.2
for f € HP(R™) N §(R™) by using the atomic decomposition for H?(R™). This and
Corollary 3.1 imply

cillfllae < llge(Hllp < eallfllm

for f € HP(R") N §(R™), from which the conclusion of Theorem 1.1 follows by
arguments similar to the one in [22, pp. 149-150], since HP(R™) N §(R™) is dense
in H?(R"™) (see [5]). O

It is not difficult to see that we have discrete parameter versions of Theorems
1.1 and 2.2. To conclude this note we remark the following results.

Theorem 3.6. Let ¢ be as in Theorem 1.1 and 0 < p < 1. Let a positive number
b be as in Lemma 2.6. Then, there exist positive constants cy,cs such that

1/2
(o]

allfller < || Y 1f xoul < e\ f |l

j=—oco
p

for f € HP(R").

Theorem 3.7. Let 0 < p,qg < 0o and w € A,,. Suppose that @ and ¢ fulfill the
hypotheses of Theorem 2.2. Then we have, for f € $(R™),

1/q 1/q

(o) (o)

> Uf <O D 1fxewl ;
p,w p,w

where b is as in Lemma 2.6.
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