Design of Wall-Destructive but Membrane-Compatible Solvents

メタデータ	言語: eng
	出版者:
	公開日: 2019-11-15
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00056103
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Supporting information

Design of Wall-Destructive but Membrane-Compatible Solvents

Kosuke Kuroda*, Heri Satria, Kyohei Miyamura, Yota Tsuge, Kazuaki Ninomiya, Kenji Takahashi

Materials and Methods

Materials

All structures and the abbreviation of ILs and ZIs used in this study are shown in Supplementary Fig. 1. [C₂mim]OAc and [C₂mim][EtOSO₃] was purchased from Iolitech GmbH and used after drying. [C₂mim][MeSO₃] was purchased from Iolitech GmbH and used after passing aluminum oxide as dichloromethane solution and drying. [Ch]OAc¹, C₁imC₃S², C₁imC₄S² and [C₂mim][(MeO)(H)PO₂]³ were synthesized as reported. OE₂imC₃C, C₁imC₃C, [OE₂eim]OAc, [C₈mim]OAc were synthesized as shown below. Methanol, tetrahydrofuran (THF), diethyl ether, acetonitrile, acetic acid, dichloromethane and hexane were purchased from Kanto Chemical Co., Inc. and used as received. Imidazole, sodium hydride (in paraffin liquid) and ethyl 4-bromobutyrate were purchased from Tokyo Chemical Industry Co., Ltd. and used as received. 1-Bromo-2-(2-methoxyethoxy)ethane was purchased from Nakalai tesque Inc. and used as received. 1-Methylimidazole was purchased from Acros Organics and used as received. Amberlite IRN 78A, alminum oxide and dimethyl sulfoxide were purchased from Sigma-Aldrich Co., Llc. and used as received. Commercial cellulase (Cellic[®] CTec2), a complex blend of cellulase and β -glucosidase, was obtained from Novozymes Japan, Ltd. A recombinant *E.coli* (KO11) was purchased from ATCC. Tryptone, NaCl, glucose and chloroamphenicol were purchased from Nacalai Tesque Inc. and used as received. Yeast extract was purchased from Becton, Dickinson and Company and used as received.

Synthesis of OE2imC3C

Under an argon atmosphere sodium hydride in paraffin liquid (15.7 g, 656 mmol as sodium hydride) was suspended in THF (50 mL). Imidazole (13.8 g, 202 mmol), which was dissolved in 50 mL THF, was added to the solution. The mixture was stirred at room temperature for 24 h. Then, 1-bromo-2-(2-methoxyethoxy)ethane (37.0 g, 202 mmol) was added to the solution. After stirring at 70 °C for 6 h, the resulted suspension was filtered under reduced pressure to remove white precipitation. The solvent was removed under reduced pressure. The product was purified

by distillation and a fraction was collected at 125 °C under reduced pressure of 1 mmHg to obtain an imidazole derivative, 1-(2-(2-methoxyethyl))-1H-imidazole (OE₂im). OE₂im (25.5 g, 150 mmol) was washed with hexane several times to remove paraffin. After evaporation of water, OE_2 im was dissolved in 250 mL acetonitrile, and then ethyl 4-bromobutyrate (29.3 g, 150 mmol) was added to the solution under argon atmosphere. The mixture was refluxed at 70 °C for 16 h. The resulting bromide salt was converted to zwitterion by passing an aqueous solution of the bromide salt through a column filled with anion exchange resin (Amberlite IRN 78A). After filtration, resulting liquid was dried under reduced pressure. ¹H NMR (400 MHz; CDCl₃; Me₄Si) δ = 2.13-2.27 (4H, m, CH₂CO and CH₂CH₂CO), 3.37 (3H, s, CH₃O), 3.51-3.65 (4H, m, CH₃OCH₂CH₂), 3.86 (2H, t, J = 3.6 Hz, OCH₂CH₂N), 4.40 (2H, t, J = 6.7 Hz, NCH₂CH₂CH₂COO), 4.66 (2H, t, J = 3.7 Hz, OCH₂CH₂N), 7.29 and 7.49 (2H, t, J = both 1.6Hz, NCHCHN), 11.00 (1H, s, NCHN). ¹³C NMR (100 MHz; CDCl₃; Me₄Si) $\delta = 27.20$ and 34.30 (NCH₂CH₂CH₂COO), 48.94 (OCH₂CH₂N), 49.47 (NCH₂CH₂CH₂COO), 58.65 (CH₃O), 69.19 (OCH₂CH₂N), 69.93 and 71.29 (OCH₂CH₂O), 121.22 and 122.58 (NCHCHN), 138.73 (NCHN), 176.63 (CH₂COO). Elemental analysis: OE₂imC₃C·2.5H₂O (Found: C, 48.0; H, 8.4; N, 9.3. Calc. for C12H25N2O6.5: C, 47.8; H, 8.4; N, 9.3%).

Synthesis of C₁imC₃C

1-Methylimidazole (22.2 g: 270 mmol) and ethyl 4-bromobutyrate (53.7 g: 270 mmol) was added to 20 mL of acetonitrile, and stirred at 50 °C for 5h. The resulting solution was dried under reduced pressure. The solid was washed with excess amount of diethylether for three times. The resulting solid was dried under reduced pressure. The bromide salt was converted to zwitterion by passing an aqueous solution of the bromide salt through a column filled with anion exchange resin. After filtration, resulting liquid was dried under reduced pressure. ¹H NMR (400 MHz; DMSO- d_6 ; Me₄Si) $\delta = 1.77$ (2H, t, J = 6.4 Hz, CH₂CO), 1.86 (2H, J = 7.3 Hz, quin, CH₂CH₂CO), 3.82 (3H, s, CH₃N), 4.13 (2H, t, J = 6.8 Hz, NCH₂CH₂), 7.66 and 7.76 (2H, t, J = both 1.6 Hz, NCHCHN), 9.50 (1H, s, NCHN). ¹³C NMR (100 MHz; DMSO- d_6 ; Me₄Si) δ = 27.80 (CH₂CH₂CO), 35.36 (CH₂CO), 36.10 (CH₃N), 49.61 (NCH₂CH₂), 122.91 and 123.89 (NCHCHN), 137.700 (NCHN), 174.02 (CH₂COO).

Synthesis of [OE2eim]OAc

1-Bromo-2-(2-methoxyethoxy)ethane (25.6 g, 140 mmol) was dissolved into 50 mL of diethyl ether and washed with 25 mL of water for two times to remove stabilizer. After

evaporation of diethylether, molecular sieves were added to remove water. The resulting liquid and 1-ethylimidazole (13.5 g, 140 mmol) was added to 50 mL of THF, and stirred at 80 °C for 4h. The resulting solution showed two phases; the IL phase and the THF phase. The IL phase was dissolved into 10 mL of methanol and dropped into excess amount of diethyl ether. This procedure was repeated four times. After drying under reduced pressure, the bromide anion was converted to hydroxide anion by passing an aqueous solution of the bromide salt through a column filled with anion exchange resin. After filtration, resulting liquid was neutralized by a small excess amount of acetic acid and dried under reduced pressure. To remove the excess acetic acid, the resulting solution was diluted with dichloromethane/methanol solution and passed through a column filled with aluminium oxide. The resulting solution was dried under reduced pressure. ¹H NMR (400 MHz; CDCl₃; Me₄Si) δ = 1.58 (3H, t, J = 7.4 Hz, CH₃CH₂N), 1.98 (3H, s, CH₃CO), 3.37 (3H, s, CH₃O), 3.51-3.67 (4H, m, CH₃OCH₂CH₂), 3.86 (2H, t, J = 4.0 Hz, OCH_2CH_2N), 4.36 (2H, quin, J = 7.4 Hz, CH_3CH_2N), 4.62 (2H, t, J = 5.4 Hz, OCH₂CH₂N), 7.34 and 7.55 (2H, t, J = both 1.6 Hz, NCHCHN), 11.23 (1H, s, NCHN). ¹³C NMR (100 MHz; CDCl₃; Me₄Si) δ = 15.29 (NCH₂CH₃), 25.28 (CH₃COO), 44.67 (NCH₂CH₃),

49.06 (OCH₂CH₂N), 58.90 (CH₃O), 69.22 (OCH₂CH₂N), 70.01 and 71.36 (OCH₂CH₂O), 120.31 and 122.96 (NCHCHN), 139.16 (NCHN), 177.79 (CH₃COO).

Synthesis of [C₈mim]OAc

1-Methyl-3-octylimidazolium chloride was purchased from Sigma-Aldrich Co., Llc. and the chloride anion was converted to hydroxide anion by passing an aqueous solution of the chloride salt through a column filled with anion exchange resin. After filtration, resulting liquid was neutralized by a small excess amount of acetic acid and dried under reduced pressure. To remove the excess acetic acid, the resulting solution was diluted with dichloromethane and then passed through a column filled with aluminium oxide. The resulting solution was dried under reduced ¹H NMR (400 MHz; CDCl₃; Me₄Si) δ = 0.87 (3H, t, *J* = 7.0 Hz, CH₃(CH₂)₇N), 1.2– pressure. 1.4 (10H, m, CH₃CH₂(CH₂)₅CH₂N), 1.88 (2H, m, CH₃CH₂(CH₂)₆N), 2.01 (3H, t, CH₃COO), 4.09 (3H, s, CH₃N), 4.29 (2H, t, J = 6.8 Hz, CH₃(CH₂)₆CH₂N), 7.27 and 7.37 (2H, t, J = both1.8 Hz, NCHCHN), 11.42 (1H, s, NCHN). ¹³C NMR (100 MHz; CDCl₃; Me₄Si) δ = 14.02(CH₂CH₃), 22.52, 26.20, 28.92, 28.97 and 31.61 (NCH₂(CH₂)₅CH₂CH₃), 25.58

(CH₂CH₃), 30.28 (CH₃COO), 36.21 (NCH₃), 49.84 (NCH₂), 121.18 and 122.84 (NCHCHN), 140.45 (NCHN), 178.04 (CH₃COO).

Differential scanning calorimetry (DSC) measurement

DSC (DSC-60A Plus; Shimadzu Co.) was measured to investigate melting point and glass transition temperature with heating/cooling rate of ± 10 °C/min. The lowest temperature in the measurement was -100 °C.

Dissolution of cellulose, hemicellulose and lignin

Cellulose (Avicel PH-101) and lignin (lignin, alkali) were purchased from Sigma-Aldrich Co., Llc. and used as received. Hemicellulose (xylan) was purchased Tokyo Chemical Industry Co., Ltd. and purified by dissolution into dimethylsulfoxide (80 °C) followed by filtration before use. Each compound (1 wt%) was added to 250 mg of OE₂imC₃C under stirring at 100 or 120 °C. When the compounds dissolved, we added another 1 wt% of the compounds, and the procedure was repeated until they did not dissolve. The dissolution was confirmed by visual observation.

Measurement of Kamlet-Taft parameters of OE2imC3C

Measurement of the Kamlet-Taft parameters of a series of ILs and OE₂imC₃C was carried out as follows. The solvatochromic dyes, 2,6-dichloro-4-(2,4,6-triphenyl- 1-pyridinio)phenolate (Reichardt's dye #33, from Fluka), 4-nitroaniline (from Tokyo Chemical Industries Co., Ltd) and *N,N*-diethyl-4-nitroaniline (from Kanto Chemical Co., Inc.) were used as received. The dyes were added to 0.25 g of ILs and OE₂imC₃C as concentrated methanol solutions. The methanol was then carefully removed by vacuum drying. These IL solutions were placed into quartz cells with 0.1 mm light-path length. From the wavelength at the maximum absorption (λ_{max}) determined, the α , β and π^* values were calculated by use of the following equations:

 $v(dye) = 1/(\lambda_{max(dye)} 10^{-4})$

 $E_{\rm T}(30) = 0.9986 \ (28 \ 592/\lambda_{\rm max} \ ({\rm Reichardt's \ dye \ \#33})) - 8.6878$

 $\pi^* = 0.314(27.52 - \nu_{(N,N-\text{diethyl-4-nitroaniline})})$

 $\alpha = 0.0649 E_{\rm T}(30) - 2.03 - 0.72 \pi^*$

 $\beta = (1.035 v_{(N,N-\text{diethyl-4-nitroaniline})} + 2.64 - v_{(4-\text{nitroaniline})})/2.80$

Since [Ch]OAc is solid at room temperature, Kamlet-Taft parameters of [Ch]OAc were measured at room temperature as supercooled state after heating at 80 °C.

Assay of inhibition by ZIs and ILs toward growth of E. coli KO11

ZI or IL solutions (2 mL) at various concentration were prepared by dilution with media (10 g/L of tryptone, 5 g/L of NaCl and 5 g/L of yeast extract). E. coli KO11, which can convert glucose to ethanol, were precultured aerobically at 37 °C in the test tube containing the pure medium free from ZIs and ILs. The cells were obtained by centrifugation and transferred into the medium/IL or ZI mixtures as to be an initial optical density at 600 nm (OD_{600}) of 0.1. The broth was incubated at 37 °C for 24 h using a reciprocal shaker at 160 rpm, and the OD₆₀₀ of solutions was measured. The response to the ILs and ZIs was evaluated based on the relative growth, which is defined as the percentage of the OD₆₀₀ at 24 h of the medium/IL or ZI mixtures relative to that of the pure medium. The half maximal effective concentration based on growth (EC_{50}) was determined as the IL or ZI concentration at which the relative growth was reduced to 50%. LiCl content of LiCl/DMAc is 8 wt%.

Assay of inhibition by ZIs and ILs toward fermentation by E. coli KO11

ZI or IL solutions (10mL, 0.5 mol/L) were prepared by dilution with the media (10 g/L of tryptone, 5 g/L of NaCl, 5 g/L yeast extract, 50 g/L of glucose and 100 mg/L chloroamphenicol). *E. coli* KO11 was precultured aerobically at 37 °C in the test tube containing the pure medium free from ZIs and ILs. The precultured *E. coli* KO11 was transferred into the solutions as to be OD_{600} of 1.0. The broth was incubated at 37 °C for 48 h with stirring. Ethanol concentration of the samples was measured by high performance liquid chromatography (HPLC). LiCl/DMAc solution (0.5 mol/L) denotes 0.5 mol/L of DMAc with 8 wt% LiCl relative to DMAc.

Analysis of glucose, ethanol and other metabolites

The compounds were analysed with HPLC. The HPLC system was as follows: a refractive index detector (Shimadzu Co.), a ICSep ION-300 column (Tokyo Chemical Industry Co. Ltd.). Sulfuric acid aqueous solution (5 mmol/L) was used as the mobile phase. The injected volume of the sample was 10 μ L, and the column was heated at 85 °C. The flow rate of 0.4 mL/min was applied.

Ethanol production from biomass via starch-like process: dissolution, hydrolysis and fermentation in one-pot system

Bagasse (128 mg) was added to 1.28 g of OE_2imC_3C and stirred at 120 °C for 8 h. After dilution of the resulting solution with 200 mmol/L acetate buffer (pH: 5.0) as to be 0.5 mol/L, 50 μ L of cellulase cocktail was added into the solution. The solution was stirred at 50 °C for 48 h to hydrolyse. Neutrients (0.1 g of tryptone, 0.05 g of NaCl, 0.05 g yeast extract and 1 mg chloroamphenicol) without water and the precultured *E. coli* KO11 were added to the resulting solution (initial OD_{600} :1.0). Fermentation was conducted at 37 °C for 48 h, and the concentration of ethanol of the solution was analysed with HPLC.

Figure S1. Mechanism of toxicity of ionic liquid (left) and our non-toxic strategy (middle and

right).

Figure S2. Relation between β values of ILs and OE₂imC₃C and glucose consumption by *E. coli* KO11 in 0.5 mol/L IL or OE₂imC₃C solutions after 48h of fermentation. β values of [C₂mim]OAc, and [C₂mim][(MeO)(H)PO₂] are from the literature⁴.

	II. or 71	\mathbf{EC} (all)	Ethanol	Callulass solubility	
	IL OI ZI	LC 50 (g/L)	concentration (g/L)		
[C ₂ mim]OAc	IL	9	1.0	Soluble	
[C ₂ mim][(MeO)(H)PO ₂]	IL	19	0.0	Soluble	
[C ₂ mim][MeSO ₃]	IL	12	3.2	Insoluble	
[C ₂ mim][EtOSO ₃]	IL	12	18.3	Insoluble	
[OE ₂ eim]OAc	IL	7	0.3	Soluble	
[C ₈ mim]OAc	IL	< 0.01	b	Soluble	
[Ch]OAc	IL	70	3.0	Insoluble	
OE ₂ imC ₃ C	ZI	158	19.4	Soluble	
$C_1 im C_3 C$	ZI	141	20.4	d	
$C_1 im C_3 S$	ZI	>200	21.1	d	
$C_1 im C_4 S$	ZI	>200	20.4	d	
LiCl/dimethylacetamide ^a	_	28	3.8	Soluble	
Dimethyl sulfoxide	_	91	_b	Insoluble	
Ethanol	_	17	_b	Insoluble	
_	_	_	20.3 ^c	_	

organic solvent solutions, and cellulose dissolution ability of the solvents.

^aContent of LiCl is 8 wt%.

^bNot measured.

^{*c*}Ethanol concentration produced via fermentation in pure medium.

^dNot determined because they are solid below 100 °C.

Table S2. Yield of metabolites as by-products after 48h of fermentation by E. coli KO11 in 0.5

	Yield / consumed glucose (mol%)				
Ionic Liquid	Acetic	Formic	Lactic	Succinic	
	Acid	Acid	Acid	Acid	
[C ₂ mim][MeO(H)PO ₃]	a	a	a	a	
[C ₂ mim]OAc	_b	_a	a	0.10	
[C ₂ mim][MeSO ₃]	0.25	a	a	0.14	
[C ₂ mim][EtOSO ₃]	0.29	0.01	a	0.05	
[Ch]OAc	_b	a	a	0.30	
-	0.39	_a	_a	0.05	

mol/L IL solutions.

^{*a*}Not detected in the chromatograms.

^bNot calculated because the signal of acetic acid overlapped with the large signal of acetate anion of ILs.

Reference

- (1) (a) Yu, Y.; Lu, X.; Zhou, Q.; Dong, K.; Yao, H.; Zhang, S. *Chemistry* 2008, *14*, 11174. (b) Ninomiya, K.; Kohori, A.; Tatsumi, M.; Osawa, K.; Endo, T.; Kakuchi, R.; Ogino, C.; Shimizu, N.; Takahashi, K. *Bioresour. Technol.* 2015, *176*, 169.
- (2) Ito, Y.; Kohno, Y.; Nakamura, N.; Ohno, H. Chem. Commun. 2012, 48, 11220.
- (3) Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Green Chem. 2008, 10, 44.
- (4) Jessop, P. G.; Jessop, D. A.; Fu, D. B.; Phan, L. Green Chem. 2012, 14, 1245.