Weighted weak type（ 1,1 ）estimates for oscillatory singular integrals with dini kernels

メタデータ	言語：eng
	出版者：
	公開日： $2017-10-03$
	キーワード（Ja）：
	キーワード（En）： 作成者：佐藤，秀一 メールアドレス： 所属：
URL	http：／／hdl．handle．net／2297／26408

WEIGHTED WEAK TYPE $(1,1)$ ESTIMATES FOR OSCILLATORY SINGULAR INTEGRALS WITH DINI KERNELS

Shuichi Sato

Abstract

We consider A_{1}-weights and prove weighted weak type $(1,1)$ estimates for oscillatory singular integrals with kernels satisfying a Dini condition.

1. Introduction

We consider an oscillatory singular integral operator of the form:

$$
T(f)(x)=\text { p. v. } \int_{\mathbf{R}^{n}} e^{i P(x, y)} K(x-y) f(y) d y=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} e^{i P(x, y)} K(x-y) f(y) d y,
$$

where P is a real-valued polynomial:

$$
\begin{equation*}
P(x, y)=\sum_{|\alpha| \leq M,|\beta| \leq N} a_{\alpha \beta} x^{\alpha} y^{\beta}, \tag{1.1}
\end{equation*}
$$

and $f \in \mathfrak{S}\left(\mathbf{R}^{n}\right)$ (the Schwartz space).
Let $K \in C^{1}\left(\mathbf{R}^{n} \backslash\{0\}\right)$ satisfy

$$
\begin{align*}
& |K(x)| \leq c|x|^{-n}, \quad|\nabla K(x)| \leq c|x|^{-n-1} ; \tag{1.2}\\
& \int_{a<|x|<b} K(x) d x=0 \quad \text { for all } a, b \text { with } 0<a<b . \tag{1.3}
\end{align*}
$$

The smallest constant for which (1.2) holds will be denoted by $C(K)$. The following results are known.

Theorem A. (Ricci-Stein [5]) Let $1<p<\infty$. Then, T is bounded on $L^{p}\left(\mathbf{R}^{n}\right)$ with the operator norm bounded by a constant depending only on the total degree of $P, C(K), p$ and the dimension n.

[^0]Theorem B. (Chanillo-Christ [1]) The operator T is bounded from $L^{1}\left(\mathbf{R}^{n}\right)$ to the weak $L^{1}\left(\mathbf{R}^{n}\right)$ space with the operator norm bounded by a constant depending only on the total degree of $P, C(K)$ and the dimension n.

Let w be a locally integrable positive function on \mathbf{R}^{n}. We say that $w \in A_{1}$ if there is a constant c such that

$$
\begin{equation*}
M(w)(x) \leq c w(x) \quad \text { a.e. } \tag{1.4}
\end{equation*}
$$

where M denotes the Hardy-Littlewood maximal operator. The smallest constant for which (1.4) holds will be denoted by $C_{1}(w)$.

It is known that T is bounded from L_{w}^{1} to $L_{w}^{1, \infty}$ (the weak L_{w}^{1} space).
Theorem C. ([8]) There exists a constant c depending only on the total degree of P, $C(K), C_{1}(w)$ and the dimension n such that

$$
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:|T(f)(x)|>\lambda\right\}\right) \leq c\|f\|_{L_{w}^{1}}
$$

where $w(E)=\int_{E} w(x) d x$ and $\|f\|_{L_{w}^{1}}=\int|f(x)| w(x) d x$.
Let K be locally integrable away from the origin. Put, for $r \geq 1,0<t \leq 1$ and $R>0$,

$$
\omega_{r, R}(t)=\sup _{|y| \leq R t / 2}\left(R^{-n} \int_{R \leq|x| \leq 2 R}\left|R^{n}(K(x-y)-K(x))\right|^{r} d x\right)^{1 / r}
$$

We say that the kernel K satisfies the D_{r}-condition if

$$
\begin{gathered}
B_{r}=\int_{0}^{1} \omega_{r}(t) \frac{d t}{t}<\infty \quad \text { where } \quad \omega_{r}(t)=\sup _{R>0} \omega_{r, R}(t) ; \\
C_{r}=\sup _{R>0}\left(R^{-n} \int_{R \leq|x| \leq 2 R}\left|R^{n} K(x)\right|^{r} d x\right)^{1 / r}<\infty .
\end{gathered}
$$

By the usual modifications we can also define the D_{∞}-condition. In this note we shall prove the following results, which will improve Theorems B and C.

Theorem 1. Let $r>1$ and $1 / r+1 / u=1$. Suppose the kernel K satisfy the D_{r}-condition and (1.3), and suppose $w^{u} \in A_{1}$. Then, there exists a constant c depending only on the total degree of $P, B_{r}, C_{r}, C_{1}\left(w^{u}\right), r$ and the dimension n such that

$$
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:|T(f)(x)|>\lambda\right\}\right) \leq c\|f\|_{L_{w}^{1}}
$$

Theorem 2. Suppose that K satisfies the D_{1}-condition and (1.3). Then, there exists a constant c depending only on the total degree of P, B_{1}, C_{1} and the dimension n such that

$$
\sup _{\lambda>0} \lambda\left|\left\{x \in \mathbf{R}^{n}:|T(f)(x)|>\lambda\right\}\right| \leq c\|f\|_{L^{1}}
$$

Every kernel satisfying (1.2) satisfies the D_{∞}-condition. If $K(x)=|x|^{-n} \Omega\left(x^{\prime}\right), x^{\prime}=$ $x /|x|$, and if Ω satisfies the L^{r}-Dini condition on S^{n-1}, then K satisfies the D_{r}-condition.

These theorems will be proved by a double induction as in [5], [1] and [8]. In this note we shall prove only Theorem 1. Theorem 2 can be proved similarly. Let P be a polynomial of the form in (1.1). We assume that there exists α such that $|\alpha|=M$ and $a_{\alpha \beta} \neq 0$ for some β. We write

$$
\begin{equation*}
P(x, y)=\sum_{|\alpha| \leq M} x^{\alpha} Q_{\alpha}(y) \tag{1.5}
\end{equation*}
$$

and define $L=\max \left\{\operatorname{deg}\left(Q_{\alpha}\right): Q_{\alpha} \neq 0,|\alpha|=M\right\}$. Then $0 \leq L \leq N$. We assume that $L \geq 1$ and $\max _{|\alpha|=M,|\beta|=L}\left|a_{\alpha \beta}\right|=1$. Under this assumption on a polynomial P, we define

$$
T_{\infty}(f)(x)=\int_{|x-y|>1} e^{i P(x, y)} K(x-y) f(y) d y
$$

To prove Theorem 1, we shall use the following result in the induction.
Proposition 1. Let $\eta, \rho>0$ and let the kernel K, the weight w and the exponents r, u be as in Theorem 1. Then, there exists a constant c depending only on η, ρ, the total degree of P, r and the dimension n such that if $C_{1}\left(w^{u}\right) \leq \eta, B_{r}, C_{r} \leq \rho$,

$$
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:\left|T_{\infty}(f)(x)\right|>\lambda\right\}\right) \leq c\|f\|_{L_{w}^{1}}
$$

Let $A(f)(x)=$ p.v. $K * f(x)$. We need the following result for the first step of induction for the proof of Theorem 1 .
Proposition 2. Let the kernel K, the weight w and the exponents r, u be as in Theorem 1. Let $\eta, \rho>0$. There exists a constant c depending only on η, ρ, r and the dimension n such that if $C_{1}\left(w^{u}\right) \leq \eta, B_{r}, C_{r} \leq \rho$, then

$$
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:|A(f)(x)|>\lambda\right\}\right) \leq c\|f\|_{L_{w}^{1}}
$$

Since A is bounded on L^{2} (see [6, pp. 25-26]), if A is as in Proposition 2, we see that A is a singular integral operator considered in [6, p. 13]. Hence the conclusion of Proposition 2 will follow from [6, p. 15, Theorem 1.6].

We shall give the outlines of the proofs of Theorem 1 and Proposition 1 in Sections 2 and 4 , respectively. Our proof of Proposition 1 is based on the techniques in Christ [3] for the proofs of the weak $(1,1)$ estimates for rough operators (see also Christ-Rubio [4] and Sato [7]). We also use the geometrical argument of Chanillo-Christ [1]. We have to prove a key estimate (Lemma 8 in §5) in the unweighted case in order to apply the method of Vargas [9] involving an interpolation with change of measure. To prove Lemma 8, we need a geometrical result for polynomials (Lemma 6 in $\S 5$). We shall prove Lemma 6 in $\S 6$ by using the results appearing in the proof of Chanillo-Christ [1, Lemma 4.1]. Lemmas 6 and 8 have been proved in [8]. We include the proofs and some other parts of [8] almost verbatim for the sake of completeness.

2. Outline of proof of Theorem 1

To apply the induction argument of [5] we need some preparation. We may assume that $M \geq 1$ and $N \geq 1$; otherwise Theorem 1 reduces to Proposition 2.

We write a polynomial in (1.1) as follows:

$$
P(x, y)=\sum_{j=0}^{M} \sum_{|\alpha|=j} x^{\alpha} Q_{\alpha}(y)=: \sum_{j=0}^{M} P_{j}(x, y)
$$

We further decompose P_{j} as follows:

$$
P_{j}(x, y)=\sum_{t=0}^{N} \sum_{\substack{\alpha|=j\\| \beta \mid=t}} a_{\alpha \beta} x^{\alpha} y^{\beta}=: \sum_{t=0}^{N} P_{j t}(x, y) .
$$

For $j=1,2, \ldots, M$ and $k=0,1, \ldots, N$, define

$$
\begin{equation*}
R_{j k}(x, y)=\sum_{s=0}^{j-1} P_{s}(x, y)+\sum_{t=0}^{k} P_{j t}(x, y) \tag{2.1}
\end{equation*}
$$

Note that $R_{j N}=\sum_{s=0}^{j} P_{s} \quad(j=1,2, \ldots, M)$.
For $j=1,2, \ldots, M$ and $k=0,1, \ldots, N$, we consider the following propositions.
Proposition $A(j, k)$. Let $\eta, \rho>0$. There exists a constant c depending only on η, ρ, j, N, r and the dimension n such that if $C_{1}\left(w^{u}\right) \leq \eta, B_{r}, C_{r} \leq \rho$ and if $R_{j k}$ is a polynomial of the form in (2.1), then

$$
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:\left|T_{j k}(f)(x)\right|>\lambda\right\}\right) \leq c\|f\|_{L_{w}^{1}}
$$

where

$$
T_{j k}(f)(x)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{\mathbf{R}^{n}} e^{i R_{j k}(x, y)} K(x-y) f(y) d y
$$

Then, Theorem 1 follows from Proposition $A(M, N)$. We shall prove it by double induction. We first note that $A(1,0)$ follows from the boundedness of the operator A.

Next, we observe that if $M \geq 2$ and if $A(j, N)(1 \leq j \leq M-1)$ is true, so is $A(j+1,0)$ since

$$
R_{j+1,0}(x, y)=R_{j N}(x, y)+\sum_{|\alpha|=j+1} a_{\alpha 0} x^{\alpha}
$$

and hence $\left|T_{j+1,0}(f)(x)\right|=\left|T_{j N}(f)(x)\right|$. Thus, to complete the induction starting from $A(1,0)$ and arriving at $A(M, N)$, it is sufficient to prove $A(j, k+1)$ assuming $A(j, k)$ $(0 \leq k<N, 1 \leq j \leq M)$. To achieve this, put $R=R_{j, k+1}, R_{0}=R_{j k}, T_{j, k+1}=S$. We note that

$$
R(x, y)=R_{0}(x, y)+\sum_{\substack{|\alpha|=j \\|\beta|=k+1}} a_{\alpha \beta} x^{\alpha} y^{\beta}
$$

We have only to deal with the case $C_{j k}=\max _{|\alpha|=j,|\beta|=k+1}\left|a_{\alpha \beta}\right| \neq 0$. Then, by a suitable dilation we may assume $C_{j k}=1$. This can be seen as follows. We first note that, for $a>0$,

$$
S(f)(a x)=\mathrm{p} \cdot \mathrm{v} \cdot \int e^{i R(a x, a y)} K_{a}(x-y) f(a y) d y
$$

where $K_{a}(x)=a^{n} K(a x)$. Assume the boundedness of S for the case $C_{j k}=1$. Then, choosing a to satisfy $a^{j+k+1} C_{j k}=1$, and using the dilation invariance of both the class A_{1} and the class of the kernels considered in Theorem 1, we get

$$
\begin{aligned}
w\left(\left\{x \in \mathbf{R}^{n}:|S(f)(x)|>\lambda\right\}\right) & =w_{a}\left(\left\{x \in \mathbf{R}^{n}:|S(f)(a x)|>\lambda\right\}\right) \\
& \leq c \lambda^{-1} \int|f(a x)| a^{n} w(a x) d x \\
& =c \lambda^{-1}\|f\|_{L_{w}^{1}}
\end{aligned}
$$

We split the kernel K as $K=K_{0}+K_{\infty}$, where $K_{0}(x)=K(x)$ if $|x| \leq 1$ and $K_{\infty}(x)=$ $K(x)$ if $|x|>1$. Assuming $C_{j k}=1$, we consider the corresponding splitting $S=S_{0}+S_{\infty}$:

$$
\begin{gathered}
S_{0}(f)(x)=\text { p.v. } \int e^{i R(x, y)} K_{0}(x-y) f(y) d y \\
S_{\infty}(f)(x)=\int e^{i R(x, y)} K_{\infty}(x-y) f(y) d y
\end{gathered}
$$

In the next section, we shall prove

$$
\begin{equation*}
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:\left|S_{0}(f)(x)\right|>\lambda\right\}\right) \leq c\|f\|_{L_{w}^{1}} \tag{2.2}
\end{equation*}
$$

while by Proposition 1 we have

$$
\begin{equation*}
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:\left|S_{\infty}(f)(x)\right|>\lambda\right\}\right) \leq c\|f\|_{L_{w}^{1}} \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3), we shall complete the proof of $A(j, k+1)$, which will finish the proof of Theorem 1.

3. Estimate for S_{0}

In this section, we shall prove, under the assumption made in $\S 2$, that if $C_{1}(w) \leq \eta, B_{r}$, $C_{r} \leq \rho(\eta, \rho>0)$, then S_{0} is bounded from L_{w}^{1} to $L_{w}^{1, \infty}$ with the operator norm bounded by a constant depending only on j, N, η, ρ, r and $n((2.2))$.

First, we shall prove

$$
\begin{equation*}
w\left(\left\{x \in B(0,1):\left|S_{0}(f)(x)\right|>\lambda\right\}\right) \leq c \lambda^{-1} \int_{|y|<2}|f(y)| w(y) d y \tag{3.1}
\end{equation*}
$$

where $B(x, r)$ denotes the closed ball with center x and radius $r>0$.

Lemma 1. Let $w, w^{u}(1 \leq u<\infty) \in A_{1}$. Let T be an operator of the form:

$$
T(f)(x)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{\mathbf{R}^{n}} K(x, y) f(y) d y=\lim _{\epsilon \rightarrow 0} \int_{|x-y|>\epsilon} K(x, y) f(y) d y
$$

for $f \in \mathfrak{S}\left(\mathbf{R}^{n}\right)$. Let $1 / r+1 / u=1$ and consider a non-negative function L on $\mathbf{R}^{n} \backslash\{0\}$ satisfying $J_{r}<\infty$, where

$$
J_{r}=\sup _{R>0}\left(R^{-n} \int_{R \leq|x| \leq 2 R}\left(R^{n} L(x)\right)^{r} d x\right)^{1 / r}
$$

for $r<\infty$ and J_{∞} can be defined by the usual modification. Suppose the kernel K satisfies $|K(x, y)| \leq L(x-y)$. For $\epsilon>0$, put

$$
T_{\epsilon}(f)(x)=\mathrm{p} \cdot \mathrm{v} \cdot \int_{|x-y|<\epsilon} K(x, y) f(y) d y
$$

Suppose

$$
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:|T(f)(x)|>\lambda\right\}\right) \leq c_{w}\|f\|_{L_{w}^{1}}
$$

Then

$$
\sup _{\lambda>0} \lambda w\left(\left\{x \in \mathbf{R}^{n}:\left|T_{\epsilon}(f)(x)\right|>\lambda\right\}\right) \leq c\left(c_{w}+J_{r} C_{1}\left(w^{u}\right)^{1 / u}\right)\|f\|_{L_{w}^{1}}
$$

Proof. The proof is similar to that of Lemma in [5, p. 187]. We shall prove

$$
\begin{align*}
w\left(\left\{x \in B(h, \epsilon / 4):\left|T_{\epsilon}(f)(x)\right|\right.\right. & >\lambda\}) \tag{3.2}\\
& \leq c\left(c_{w}+J_{r} C_{1}\left(w^{u}\right)^{1 / u}\right) \lambda^{-1} \int_{|y-h|<6 \epsilon / 4}|f(y)| w(y) d y
\end{align*}
$$

uniformly in $h \in \mathbf{R}^{n}$. Integrating both sides of the inequality in (3.2) with respect to h, we get the conclusion of Lemma 1.

Split f into 3 pieces: $f=f_{1}+f_{2}+f_{3}$, where $f_{i} \in \mathfrak{S}\left(\mathbf{R}^{n}\right),\left|f_{i}\right| \leq c|f|(i=1,2,3)$; $\operatorname{supp}\left(f_{1}\right) \subset B(h, \epsilon / 2), \operatorname{supp}\left(f_{2}\right) \subset B(h, 11 \epsilon / 8) \backslash B(h, 3 \epsilon / 8), \operatorname{supp}\left(f_{3}\right) \subset\{x:|x-h| \geq 5 \epsilon / 4\}$. Note that if $|x-h| \leq \epsilon / 4$, then $T_{\epsilon}\left(f_{1}\right)(x)=T\left(f_{1}\right)(x)$; since $|y-h| \leq \epsilon / 2$ and $|x-h| \leq \epsilon / 4$ imply $|x-y|<\epsilon$. So by the assumption on T, we have

$$
w\left(\left\{x \in B(h, \epsilon / 4):\left|T_{\epsilon}\left(f_{1}\right)(x)\right|>\lambda\right\}\right) \leq c_{w} \lambda^{-1} \int_{|y-h|<6 \epsilon / 4}|f(y)| w(y) d y
$$

Next, by Chebyshev's inequality, Hölder's inequality and the fact $w^{u} \in A_{1}$ we easily see that

$$
w\left(\left\{x \in B(h, \epsilon / 4):\left|T_{\epsilon}\left(f_{2}\right)(x)\right|>\lambda\right\}\right) \leq c J_{r} C_{1}\left(w^{u}\right)^{1 / u} \lambda^{-1} \int_{|y-h|<6 \epsilon / 4}|f(y)| w(y) d y
$$

Finally, if $|x-h| \leq \epsilon / 4$ and $|y-h| \geq 5 \epsilon / 4$, then $|x-y| \geq \epsilon$, and so $T_{\epsilon}\left(f_{3}\right)(x)=0$. Combining these results, we get (3.2). This completes the proof of Lemma 1.

Now we return to the proof of (3.1). If $|x| \leq 1$ and $|y| \leq 2$, then

$$
\left|\exp (i R(x, y))-\exp \left(i\left(R_{0}(x, y)+\sum_{\substack{|\alpha|=j \\|\beta|=k+1}} a_{\alpha \beta} y^{\alpha+\beta}\right)\right)\right| \leq c|x-y|
$$

where c depends only on k, j and n.
Hence, if $|x| \leq 1$,

$$
\left|S_{0}(f)(x)\right| \leq\left|U\left(\exp \left(i \sum_{\substack{|\alpha|=j \\|\beta|=k+1}} a_{\alpha \beta} y^{\alpha+\beta}\right) f(y)\right)(x)\right|+c I(f)(x)
$$

where
$U(f)(x)=$ p.v. $\int e^{i R_{0}(x, y)} K_{0}(x-y) f(y) d y, I(f)(x)=\int_{|x-y|<1}|x-y| L(x-y)|f(y)| d y$.
Note that $U(f)(x)=U\left(f \chi_{B(0,2)}\right)(x), I(f)(x)=I\left(f \chi_{B(0,2)}\right)(x)$ if $|x|<1$. By the induction hypothesis $A(j, k)$ and Lemma 1, we see that U is bounded from L_{w}^{1} to $L_{w}^{1, \infty}$. On the other hand, it is easy to see that

$$
\int_{|x-y|<1}|x-y| L(x-y) w(x) d x \leq \sum_{j \leq 0} 2^{j} \int_{2^{j-1} \leq|x-y| \leq 2^{j}} L(x-y) w(x) d x \leq c J_{r} M_{u}(w)(y)
$$

where $M_{u}(w)=M\left(w^{u}\right)^{1 / u}$. Thus, by Chebyshev's inequality and the fact $w^{u} \in A_{1}$ we have

$$
w(\{x \in B(0,1): I(f)(x)>\lambda\}) \leq c J_{r} C_{1}\left(w^{u}\right)^{1 / u} \lambda^{-1} \int_{|y|<2}|f(y)| w(y) d y
$$

Combining these results, we get (3.1).
Similarly we can prove

$$
\begin{equation*}
w\left(\left\{x \in B(h, 1):\left|S_{0}(f)(x)\right|>\lambda\right\}\right) \leq c \lambda^{-1} \int_{|y-h|<2}|f(y)| w(y) d y \tag{3.3}
\end{equation*}
$$

where c is independent of $h \in \mathbf{R}^{n}$. To see this, we first note that

$$
S_{0}(f)(x+h)=\text { p.v. } \int e^{i R(x+h, y+h)} K_{0}(x-y) f(y+h) d y
$$

and

$$
R(x+h, y+h)=R_{1}(x, y, h)+\sum_{\substack{|\alpha|=j \\|\beta|=k+1}} a_{\alpha \beta} x^{\alpha} y^{\beta}
$$

We can apply the induction hypothesis $A(j, k)$ to the operator

$$
\text { p.v. } \int e^{i R_{1}(x, y, h)} K(x-y) f(y) d y
$$

to get its boundedness from L_{w}^{1} to $L_{w}^{1, \infty}$. Thus, by the same argument that leads to (3.1) we get

$$
\begin{aligned}
w\left(\left\{x \in B(h, 1):\left|S_{0}(f)(x)\right|>\lambda\right\}\right) & =\tau_{h} w\left(\left\{x \in B(0,1):\left|S_{0}(f)(x+h)\right|>\lambda\right\}\right) \\
& \leq c \lambda^{-1} \int_{|y|<2}|f(y+h)| w(y+h) d y \\
& \leq c \lambda^{-1} \int_{|y-h|<2}|f(y)| w(y) d y
\end{aligned}
$$

where $\tau_{h} w(x)=w(x+h)$, and we have used the translation invariance of the class A_{1}. Integrating both sides of the inequality (3.3) with respect to h, we get (2.2).

4. Outline of proof of Proposition 1

Let $f \in \mathfrak{S}\left(\mathbb{R}^{n}\right)$. By Calderón-Zygmund decomposition at height $\lambda>0$ we have a collection $\{Q\}$ of non-overlapping closed dyadic cubes and functions g, b such that

$$
\begin{gather*}
f=g+b ; \tag{4.1}\\
\lambda \leq|Q|^{-1} \int_{Q}|f| \leq c \lambda ; \tag{4.2}\\
v(\cup Q) \leq c_{v}\|f\|_{L_{v}^{1}} / \lambda \quad \text { for all } v \in A_{1} \tag{4.3}\\
\|g\|_{\infty} \leq c \lambda, \quad\|g\|_{L_{v}^{1}} \leq c_{v}\|f\|_{L_{v}^{1}} \quad \text { for all } v \in A_{1} \tag{4.4}\\
b=\sum_{Q} b_{Q}, \quad \operatorname{supp}\left(b_{Q}\right) \subset Q, \quad\left\|b_{Q}\right\|_{L^{1}} \leq c \lambda|Q| \tag{4.5}
\end{gather*}
$$

Let a polynomial P be as in Proposition 1. We assume as we may that $M \geq 1$ as in the outline of the proof of Theorem 1 in $\S 2$. We write P as in (1.5). Then, let $q(y)=$ $\sum_{|\beta| \leq L} c_{\beta} y^{\beta}$ be the coefficient of x_{1}^{M}. By a rotation of coordinates and a normalization, to prove Proposition 1 we may assume $\max _{|\beta|=L}\left|c_{\beta}\right|=1$ (see [1, p. 151] and Sublemma 2 in $\S 6$).

We take a non-negative $\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ such that

$$
\operatorname{supp}(\varphi) \subset\{1 / 2 \leq|x| \leq 2\}, \quad \sum_{j=0}^{\infty} \varphi\left(2^{-j} x\right)=1 \quad \text { if } \quad|x| \geq 1
$$

Put $K_{j}(x, y)=\varphi\left(2^{-j}(x-y)\right) K_{\infty}(x, y)$, where $K_{\infty}(x, y)=e^{i P(x, y)} K_{\infty}(x-y)\left(K_{\infty}(x)\right.$ is as in $\S 2$) and decompose $K_{\infty}(x, y)$ as $K_{\infty}(x, y)=\sum_{j=0}^{\infty} K_{j}(x, y)$.

Define

$$
V_{j}(f)(x)=\int K_{j}(x, y) f(y) d y \quad \text { for } \quad j \geq 0
$$

and put

$$
V(f)(x)=\sum_{j=1}^{\infty} V_{j}(f)(x)
$$

Then $T_{\infty}=V_{0}+V$. We have only to deal with V since we easily see that V_{0} is bounded on $L_{w}^{1}\left(w^{u} \in A_{1}\right)$.

We set (see $[3,4]$)

$$
B_{i}=\sum_{|Q|=2^{i n}} b_{Q} \quad(i \geq 1), \quad B_{0}=\sum_{|Q| \leq 1} b_{Q}
$$

Put $\mathcal{U}=\cup \tilde{Q}$, where \tilde{Q} denotes the cube with the same center as Q and with sidelength 100 times that of Q. (Throughout this note we consider the cubes with sides parallel to the coordinate axes.)

When $x \in \mathbf{R}^{n} \backslash \mathcal{U}$, we observe that

$$
\begin{align*}
V(b)(x)= & V\left(\sum_{i \geq 0} B_{i}\right)(x) \tag{4.6}\\
= & \sum_{i \geq 0} \sum_{j \geq 1} \int K_{j}(x, y) B_{i}(y) d y=\sum_{i \geq 0} \sum_{j \geq i+1} \int K_{j}(x, y) B_{i}(y) d y \\
& =\sum_{s \geq 1} \sum_{j \geq s} \int K_{j}(x, y) B_{j-s}(y) d y=\sum_{s \geq 1} \sum_{j \geq s} V_{j}\left(B_{j-s}\right)(x) .
\end{align*}
$$

To prove Proposition 1 we need the following results (Lemmas 2, 3 and 4).
Lemma 2. Suppose $w \in A_{1}$. Let $\left\{L_{j}\right\}_{j \geq 1}$ be a family of kernels satisfying

$$
\operatorname{supp}\left(L_{j}\right) \subset\left\{2^{j-6} \leq|x| \leq 2^{j+6}\right\}, \quad\left|L_{j}(x)\right| \leq c_{1}|x|^{-n}, \quad\left|\nabla L_{j}(x)\right| \leq c_{2}|x|^{-n-1}
$$

Let

$$
G_{j}(f)(x)=\int_{\mathbf{R}^{n}} e^{i P(x, y)} L_{j}(x-y) f(y) d y .
$$

Put

$$
E_{\lambda}^{s}=\left\{x \in \mathbf{R}^{n}:\left|\sum_{j \geq s} G_{j}\left(B_{j-s}\right)(x)\right|>\lambda\right\}
$$

Then there exists $\epsilon, \eta>0$ such that, for any positive integer s,

$$
w\left(E_{\lambda c_{\eta} 2^{-\eta s}}^{s}\right) \leq c 2^{-\epsilon s} \lambda^{-1}\|f\|_{L_{w}^{1}}
$$

where c_{η} is a positive constant satisfying $\sum_{s=1}^{\infty} c_{\eta} 2^{-\eta s / 2}=1$.
We shall prove this in $\S 5$.

Lemma 3. Let L_{j} and G_{j} be as in Lemma 2. Then, for $j \geq 1$,

$$
\left\|G_{j}\right\|_{2} \leq c 2^{-j \epsilon} \quad \text { for some } \epsilon>0
$$

where $\left\|G_{j}\right\|_{2}$ denotes the operator norm on L^{2}.
This follows from Ricci-Stein [5]. See also [8] for an alternative proof.
Lemma 4. If $w^{u} \in A_{1}$, then the operator V is bounded on L_{w}^{2}.
Proof. Let

$$
N_{j}(x)=\varphi\left(2^{-j} x\right) K(x), \quad L_{j}(x)=N_{j} * \psi_{2^{-j+\delta j}}(x) \quad(\delta>0)
$$

where $\psi \in C^{\infty}\left(\mathbf{R}^{n}\right)$ which is supported in $\left\{|x|<2^{-10}\right\}$ and satisfying $\int \psi=1$. Then L_{j} satisfies all the conditions of Lemma 2 with $c_{1}=c 2^{n \delta j}, c_{2}=c 2^{(n+1) \delta j}$, and we find

$$
\begin{gather*}
\left\|L_{j}\right\|_{L^{1}} \leq c C_{1} \tag{4.7}\\
\left\|L_{j}\right\|_{L^{r}} \leq c C_{r} 2^{-j n / u} \tag{4.8}
\end{gather*}
$$

Put

$$
R_{j}(x)=N_{j}(x)-L_{j}(x)=\int\left(N_{j}(x)-N_{j}(x-y)\right) \psi_{2^{-j+\delta j}}(y) d y
$$

Then, it is easy to see that

$$
\begin{gather*}
\left\|R_{j}\right\|_{L^{1}} \leq c \omega_{1}\left(2^{-\delta j}\right)+c 2^{-\delta j} \leq c \omega_{r}\left(2^{-\delta j}\right)+c 2^{-\delta j} \tag{4.9}\\
\left\|R_{j}\right\|_{L^{r}} \leq c\left(\omega_{r}\left(2^{-\delta j}\right)+c 2^{-\delta j}\right) 2^{-j n / u} \tag{4.10}
\end{gather*}
$$

Put

$$
U_{j}(f)(x)=\int_{\mathbf{R}^{n}} e^{i P(x, y)} L_{j}(x-y) f(y) d y, \quad W_{j}(f)(x)=\int_{\mathbf{R}^{n}} e^{i P(x, y)} R_{j}(x-y) f(y) d y
$$

First we estimate U_{j}. By Hölder's inequality and (4.7), (4.8) we have

$$
\begin{equation*}
\left\|U_{j}(f)\right\|_{L_{w}^{2}}^{2} \leq c \int\left(\int\left|L_{j}(x-y)\right| w(x) d x\right)|f(y)|^{2} d y \leq c \int|f(y)|^{2} M_{u}(w)(y) d y \tag{4.11}
\end{equation*}
$$

On the other hand, if δ is small enough, by Lemma 3

$$
\begin{equation*}
\left\|U_{j}(f)\right\|_{L^{2}}^{2} \leq c 2^{-\epsilon j}\|f\|_{2}^{2} \quad \text { for some } \epsilon>0 \tag{4.12}
\end{equation*}
$$

Interpolating between the estimates (4.11) and (4.12), we get

$$
\left\|U_{j}(f)\right\|_{L_{w}^{2}}^{2} \leq c 2^{-\epsilon(1-\theta) j} \int|f(y)|^{2} M_{u}(w)(y)^{\theta} d y
$$

for $\theta \in(0,1)$. Substituting $w^{1 / \theta}$ for w, we have

$$
\begin{equation*}
\left\|U_{j}(f)\right\|_{L_{w}^{2}}^{2} \leq c 2^{-\epsilon(s-u) j / s} \int|f(y)|^{2} M_{s}(w)(y) d y \quad \text { for all } s>u \tag{4.13}
\end{equation*}
$$

Next we estimate W_{j}. By Hölder's inequality and (4.9), (4.10)

$$
\begin{align*}
\left\|W_{j}(f)\right\|_{L_{w}^{2}}^{2} & \leq c\left(\omega_{r}\left(2^{-\delta j}\right)+c 2^{-\delta j}\right) \int\left(\int\left|R_{j}(x-y)\right| w(x) d x\right)|f(y)|^{2} d y \tag{4.14}\\
& \leq c\left(\omega_{r}\left(2^{-\delta j}\right)+c 2^{-\delta j}\right)^{2} \int|f(y)|^{2} M_{u}(w)(y) d y
\end{align*}
$$

By (4.13) and (4.14), for all $s>u$,

$$
\|V(f)\|_{L_{w}^{2}} \leq c \sum_{j \geq 1}\left(\omega_{r}\left(2^{-\delta j}\right)+2^{-\delta j}+2^{-\epsilon(s-u) j /(2 s)}\right)\|f\|_{L_{M_{s}(w)}^{2}} \leq c_{s}\|f\|_{L_{M_{s}(w)}^{2}}
$$

From this we get the conclusion of Lemma 4, since $w^{s} \in A_{1}$ for some $s>u$.
Using these results, we can prove Proposition 1. Let N_{j} and ψ be as in the proof of Lemma 4. For a positive integer s let

$$
L_{j}^{(s)}(x)=N_{j} * \psi_{2^{-j+\delta s}}(x) \quad(\delta>0)
$$

Put

$$
R_{j}^{(s)}(x)=N_{j}(x)-L_{j}^{(s)}(x)=\int\left(N_{j}(x)-N_{j}(x-y)\right) \psi_{2^{-j+\delta s}}(y) d y
$$

Then $L_{j}^{(s)}$ is supported in $\left\{2^{j-6} \leq|x| \leq 2^{j+6}\right\}$ and satisfies

$$
\left|L_{j}^{(s)}(x)\right| \leq c 2^{n \delta s}|x|^{-n}, \quad\left|\nabla L_{j}^{(s)}(x)\right| \leq c 2^{(n+1) \delta s}|x|^{-n-1}
$$

Set
$U_{j}^{(s)}(f)(x)=\int_{\mathbf{R}^{n}} e^{i P(x, y)} L_{j}^{(s)}(x-y) f(y) d y, \quad W_{j}^{(s)}(f)(x)=\int_{\mathbf{R}^{n}} e^{i P(x, y)} R_{j}^{(s)}(x-y) f(y) d y$.
Put

$$
F_{\lambda}^{s}=\left\{x \in \mathbf{R}^{n}:\left|\sum_{j \geq s} U_{j}^{(s)}\left(B_{j-s}\right)(x)\right|>\lambda\right\}
$$

Then, if $(n+1) \delta<\eta / 2$ by Lemma 2

$$
\begin{equation*}
w\left(F_{c_{\eta} 2^{-\eta s / 2} \lambda}^{s}\right) \leq c 2^{-\epsilon s} \lambda^{-1}\|f\|_{L_{w}^{1}} \tag{4.15}
\end{equation*}
$$

where ϵ, η and c_{η} are as in Lemma 2. Since $\sum_{s=1}^{\infty} c_{\eta} 2^{-\eta s / 2}=1$, we have

$$
\left\{x \in \mathbf{R}^{n}:\left|\sum_{s \geq 1} \sum_{j \geq s} U_{j}^{(s)}\left(B_{j-s}\right)(x)\right|>\lambda\right\} \subset \bigcup_{s \geq 1} F_{c_{\eta} 2^{-\eta s / 2} \lambda}^{s}
$$

Thus by (4.15)

$$
\begin{align*}
w\left(\left\{x \in \mathbf{R}^{n}:\left|\sum_{s \geq 1} \sum_{j \geq s} U_{j}^{(s)}\left(B_{j-s}\right)(x)\right|>\lambda\right\}\right) & \leq \sum_{s \geq 1} w\left(F_{c_{\eta} 2^{-\eta s / 2} \lambda}^{s}\right) \tag{4.16}\\
& \leq c \lambda^{-1}\|f\|_{L_{w}^{1}} .
\end{align*}
$$

Since

$$
\left\|R_{j}^{(s)}\right\|_{L^{r}} \leq c\left(\omega_{r}\left(2^{-\delta s}\right)+2^{-\delta s}\right) 2^{-j n / u}
$$

by Hölder's inequality and the condition that $w^{u} \in A_{1}$ we find

$$
\left\|\sum_{j \geq s} W_{j}^{(s)}\left(B_{j-s}\right)\right\|_{L_{w}^{1}} \leq c\left(\omega_{r}\left(2^{-\delta s}\right)+2^{-\delta s}\right)\|f\|_{L_{w}^{1}}
$$

Thus, by Chebyshev's inequality we have

$$
\begin{align*}
w\left(\left\{x \in \mathbf{R}^{n}:\left|\sum_{s \geq 1} \sum_{j \geq s} W_{j}^{(s)}\left(B_{j-s}\right)(x)\right|\right.\right. & >\lambda\}) \tag{4.17}\\
& \leq c\left(\sum_{s \geq 1}\left(\omega_{r}\left(2^{-\delta s}\right)+2^{-\delta s}\right)\right) \lambda^{-1}\|f\|_{L_{w}^{1}}
\end{align*}
$$

By (4.6), (4.16) and (4.17) we have

$$
\begin{equation*}
w\left(\left\{x \in \mathbf{R}^{n} \backslash \mathcal{U}:|V(b)(x)|>2 \lambda\right\}\right) \leq c \lambda^{-1}\|f\|_{L_{w}^{1}} \tag{4.18}
\end{equation*}
$$

By (4.3) we see that

$$
\begin{equation*}
w(\mathcal{U}) \leq c_{w} \lambda^{-1}\|f\|_{L_{w}^{1}} . \tag{4.19}
\end{equation*}
$$

By Lemma 4 and (4.4)

$$
\begin{equation*}
w\left(\left\{x \in \mathbf{R}^{n}:|V(g)(x)|>\lambda\right\}\right) \leq c \lambda^{-1}\|f\|_{L_{w}^{1}} \tag{4.20}
\end{equation*}
$$

Combining (4.18), (4.19) and (4.20), we conclude the proof of Proposition 1.

5. Proof of Lemma 2

In this section we shall prove Lemma 2 in $\S 4$. For $k, m \geq 1$, put

$$
\begin{equation*}
H_{k m}(x, y)=\int e^{-i P(z, x)+i P(z, y)} \bar{L}_{k}(z-x) L_{m}(z-y) d z \tag{5.1}
\end{equation*}
$$

Then $G_{k}^{*} G_{m}(f)(x)=\int H_{k m}(x, y) f(y) d y$, where G_{k}^{*} denotes the adjoint of G_{k}.

Lemma 5. Let $k \geq m \geq 1$. Then, $H_{k m}(x, y)=0$ unless $|x-y| \leq 2^{k+7}$; and

$$
\begin{align*}
& \left|H_{k m}(x, y)\right| \leq c 2^{-k n} \tag{1}\\
& \left|H_{k m}(x, y)\right| \leq c 2^{-k n} 2^{-m}|q(x)-q(y)|^{-1 / M} \tag{2}
\end{align*}
$$

Proof. We prove only the estimate of (2) since the other assertions immediately follow from the definition of $H_{k m}$ in (5.1). We first note that

$$
\left(\partial / \partial z_{1}\right)^{M}(P(z, x)-P(z, y))=M!(q(x)-q(y))
$$

Hence, from van der Corput's lemma it follows that

$$
\left|\int_{a}^{b} e^{i(P(z, x)-P(z, y))} d z_{1}\right| \leq c|q(x)-q(y)|^{-1 / M}
$$

for any a and b (see [1, p.152]).
Therefore by integration by parts in variable z_{1} in the formula of (5.1) we get the conclusion.

For the rest of this note, we denote by $P(x)$ a real-valued polynomial on \mathbf{R}^{n}.
Definition 1. For a polynomial $P(x)=\sum_{|\alpha| \leq N} a_{\alpha} x^{\alpha}$ of degree N, define

$$
\|P\|=\max _{|\alpha|=N}\left|a_{\alpha}\right| .
$$

Definition 2. For a polynomial P and $\beta>0$, let

$$
\mathcal{R}(P, \beta)=\left\{x \in \mathbf{R}^{n}:|P(x)| \leq \beta\right\}
$$

Let $d(E, F)$ denote the distance between sets E and F. We now state a geometrical lemma for polynomials, which will be proved in $\S 6$.

Lemma 6. Let k, m be integers such that $k \geq m$. Suppose $N \geq 1$. Then, for any polynomial P of degree N satisfying $\|P\|=1$ and for any $\gamma>0$, there exists a positive constant $C_{n, N, \gamma}$ depending only on n, N and γ such that

$$
\left|\left\{x \in B\left(a, 2^{k}\right): d\left(x, \mathcal{R}\left(P, 2^{N m}\right)\right) \leq \gamma 2^{m}\right\}\right| \leq C_{n, N, \gamma} 2^{(n-1) k} 2^{m}
$$

uniformly in $a \in \mathbf{R}^{n}$.
Let $\lambda>0$ and let $\left\{\mathcal{B}_{j}\right\}_{j \geq 0}$ be a family of measurable functions such that

$$
\begin{equation*}
\int_{Q}\left|\mathcal{B}_{j}\right| \leq \lambda|Q| \tag{5.2}
\end{equation*}
$$

for all cubes Q in \mathbf{R}^{n} with sidelength $\ell(Q)=2^{j}$.
Then we have the following.

Lemma 7. Let the kernels $H_{j i}$ be as in Lemma 5. Then, we can find a constant c such that

$$
\sum_{i=s}^{j} \sup _{x \in \mathbf{R}^{n}}\left|\int \mathcal{B}_{i-s}(y) H_{j i}(x, y) d y\right| \leq c \lambda 2^{-s}
$$

for all integers j and s such that $0<s \leq j$.
Definition 3. For $m \in \mathbf{Z}$ (the set of all integers), let \mathcal{D}_{m} be the family of all closed dyadic cubes Q with sidelength $\ell(Q)=2^{m}$.
Proof of Lemma 7. Fix $x \in \mathbf{R}^{n}$. Let

$$
\mathcal{F}=\left\{Q \in \mathcal{D}_{i-s}: Q \cap B\left(x, 2^{j+2}\right) \neq \emptyset\right\} \quad(0<s \leq i \leq j)
$$

Then clearly $\sum_{Q \in \mathcal{F}}|Q| \leq c 2^{j n}$.
Decompose $\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1}$, where

$$
\mathcal{F}_{0}=\left\{Q \in \mathcal{F}: Q \cap \mathcal{R}\left(q(\cdot)-q(x), 2^{L(i-s)}\right) \neq \emptyset\right\}
$$

and $\mathcal{F}_{1}=\mathcal{F} \backslash \mathcal{F}_{0}$. Then by Lemma 6 we have

$$
\begin{equation*}
\sum_{Q \in \mathcal{F}_{0}}|Q| \leq c 2^{(n-1) j} 2^{i-s} \tag{5.3}
\end{equation*}
$$

By Lemma 5 (1), (5.2) and (5.3), we see that

$$
\begin{align*}
& \sum_{Q \in \mathcal{F}_{0}} \int_{Q}\left|\mathcal{B}_{i-s}(y) H_{j i}(x, y)\right| d y \leq c 2^{-j n} \sum_{Q \in \mathcal{F}_{0}} \int_{Q}\left|\mathcal{B}_{i-s}(y)\right| d y \tag{5.4}\\
& \leq c 2^{-j n} \lambda \sum_{Q \in \mathcal{F}_{0}}|Q| \leq c 2^{-j n} \lambda 2^{(n-1) j} 2^{i-s}=c \lambda 2^{i-j-s}
\end{align*}
$$

Next, by Lemma 5 (2), (5.2) and the estimate $\sum_{Q \in \mathcal{F}_{1}}|Q| \leq c 2^{j n}$, we have

$$
\begin{align*}
& \sum_{Q \in \mathcal{F}_{1}} \int_{Q}\left|\mathcal{B}_{i-s}(y) H_{j i}(x, y)\right| d y \leq c 2^{-j n} 2^{-i} 2^{-L(i-s) / M} \sum_{Q \in \mathcal{F}_{1}} \int_{Q}\left|\mathcal{B}_{i-s}(y)\right| d y \tag{5.5}\\
& \leq c 2^{-j n} 2^{-i} 2^{-L(i-s) / M} \lambda \sum_{Q \in \mathcal{F}_{1}}|Q| \leq c \lambda 2^{-i} 2^{-L(i-s) / M}
\end{align*}
$$

From (5.4) and (5.5) it follows that

$$
\begin{aligned}
\int\left|\mathcal{B}_{i-s}(y) H_{j i}(x, y)\right| d y= & \sum_{Q \in \mathcal{F}} \int_{Q}\left|\mathcal{B}_{i-s}(y) H_{j i}(x, y)\right| d y \\
= & \sum_{\nu=0}^{1} \sum_{Q \in \mathcal{F}_{\nu}} \int_{Q}\left|\mathcal{B}_{i-s}(y) H_{j i}(x, y)\right| d y \leq c \lambda\left(2^{i-j-s}+2^{-i} 2^{-L(i-s) / M}\right)
\end{aligned}
$$

Thus we see that

$$
\sum_{i=s}^{j} \sup _{x \in \mathbf{R}^{n}} \int\left|\mathcal{B}_{i-s}(y) H_{j i}(x, y)\right| d y \leq c \lambda \sum_{i=s}^{j}\left(2^{i-j-s}+2^{-i} 2^{-L(i-s) / M}\right) \leq c \lambda 2^{-s}
$$

This completes the proof of Lemma 7.
By Lemma 7 we readily get the following.

Lemma 8. Let $\left\{\mathcal{B}_{j}\right\}_{j \geq 0}$ be as in Lemma 7. Suppose $\sum_{j \geq 0}\left\|\mathcal{B}_{j}\right\|_{L^{1}}<\infty$. Let G_{j} be as in Lemma 2. Then, for any positive integer s, we have

$$
\left\|\sum_{j \geq s} G_{j}\left(\mathcal{B}_{j-s}\right)\right\|_{L^{2}}^{2} \leq c \lambda 2^{-s} \sum_{j \geq 0}\left\|\mathcal{B}_{j}\right\|_{L^{1}}
$$

Proof. Let $\langle\cdot, \cdot\rangle$ denote the inner product in L^{2}. Using Lemma 7, we see that

$$
\begin{array}{r}
\left\|\sum_{j \geq s} G_{j}\left(\mathcal{B}_{j-s}\right)\right\|_{L^{2}}^{2} \leq 2 \sum_{j \geq s} \sum_{i=s}^{j}\left|\left\langle G_{j}\left(\mathcal{B}_{j-s}\right), G_{i}\left(\mathcal{B}_{i-s}\right)\right\rangle\right| \leq 2 \sum_{j \geq s} \sum_{i=s}^{j}\left|\left\langle\mathcal{B}_{j-s}, G_{j}^{*} G_{i}\left(\mathcal{B}_{i-s}\right)\right\rangle\right| \\
\leq 2 \sum_{j \geq s} \sum_{i=s}^{j}\left\|\mathcal{B}_{j-s}\right\|_{L^{1}}\left\|G_{j}^{*} G_{i}\left(\mathcal{B}_{i-s}\right)\right\|_{L^{\infty}} \leq c \lambda 2^{-s} \sum_{j \geq s}\left\|\mathcal{B}_{j-s}\right\|_{L^{1}}
\end{array}
$$

This completes the proof of Lemma 8.
Definition 4. For each $j \geq 0$, let \mathcal{G}_{j} be a family of non-overlapping closed dyadic cubes Q such that $\ell(Q) \leq 2^{j}$. We suppose that if $Q \in \mathcal{G}_{j}, R \in \mathcal{G}_{k}$ and $j \neq k$, then Q and R are non-overlapping and that $\sum_{j \geq 0} \sum_{Q \in \mathcal{G}_{j}}|Q|<\infty$. Put $\mathcal{G}=\cup_{j \geq 0} \mathcal{G}_{j}$.

Let $\lambda>0$. To each $Q \in \mathcal{G}$ we associate $f_{Q} \in L^{1}$ such that

$$
\int\left|f_{Q}\right| \leq \lambda|Q|, \quad \operatorname{supp}\left(f_{Q}\right) \subset Q
$$

We define $\mathcal{A}_{i}=\sum_{Q \in \mathcal{G}_{i}} f_{Q}$.
Lemma 9. Let G_{j} be as in Lemma 2 and let v be a locally integrable positive function. Then for a positive integer s we have

$$
\left\|\sum_{j \geq s} G_{j}\left(\mathcal{A}_{j-s}\right)\right\|_{L_{v}^{1}} \leq c \lambda \sum_{Q \in \mathcal{G}}|Q| \inf _{Q} M(v)
$$

where $\inf _{Q} M(v)=\inf _{x \in Q} M(v)(x)$.
Proof. We easily see that

$$
\begin{aligned}
\left\|\sum_{j \geq s} G_{j}\left(\mathcal{A}_{j-s}\right)\right\|_{L_{v}^{1}} \leq & \sum_{j} \int\left|\mathcal{A}_{j-s}(y)\right|\left(\int\left|L_{j}(x-y)\right| v(x) d x\right) d y \\
& \leq \sum_{j} \sum_{Q \in \mathcal{G}_{j-s}} \int\left|f_{Q}(y)\right| \inf _{z \in Q} M(v)(z) d y \leq c \sum_{Q \in \mathcal{G}} \lambda|Q| \inf _{Q} M(v)
\end{aligned}
$$

We prove Lemma 2 by the estimates of Lemma 8 and Lemma 9 . We slightly modify the interpolation argument of [9].

Lemma 10. Let \mathcal{F} denote the family of dyadic cubes arising from the Calderón-Zygmund decomposition in $\S 4$. Define a set E_{λ}^{s} as in Lemma 2. Then, for all $t>0$, we have

$$
\begin{equation*}
\int_{E_{\lambda}^{s}} \min (v(x), t) d x \leq c \sum_{Q \in \mathcal{F}}|Q| \min \left(t 2^{-s}, \inf _{Q} M(v)\right) \tag{5.6}
\end{equation*}
$$

where s is a positive integer and v is a locally integrable positive function.
Proof. For $t>0$, set $\mathcal{F}_{t}=\left\{Q \in \mathcal{F}: \inf _{Q} M(v)<t 2^{-s}\right\}$ and $\mathcal{F}_{t}^{*}=\mathcal{F} \backslash \mathcal{F}_{t}$. Put

$$
B_{j}^{\prime}=\sum_{\substack{\ell(Q)=2^{j} \\ Q \in \mathcal{F}_{t}}} b_{Q}, \quad B_{j}^{\prime \prime}=\sum_{\substack{\ell(Q)=2^{j} \\ Q \in \mathcal{F}_{t}^{*}}} b_{Q}(j \geq 1) ; \quad B_{0}^{\prime}=\sum_{\substack{|Q| \leq 1 \\ Q \in \mathcal{F}_{t}}} b_{Q}, \quad B_{0}^{\prime \prime}=\sum_{\substack{|Q| \leq 1 \\ Q \in \mathcal{F}_{t}^{*}}} b_{Q}
$$

Define

$$
E_{\lambda}^{\prime}=\left\{\left|\sum_{j \geq s} G_{j}\left(B_{j-s}^{\prime}\right)\right|>\lambda\right\}, \quad E_{\lambda}^{\prime \prime}=\left\{\left|\sum_{j \geq s} G_{j}\left(B_{j-s}^{\prime \prime}\right)\right|>\lambda\right\}
$$

Then we find $E_{\lambda}^{s} \subset E_{\lambda / 2}^{\prime} \cup E_{\lambda / 2}^{\prime \prime}$, since $B_{j}=B_{j}^{\prime}+B_{j}^{\prime \prime}$, and so

$$
\begin{aligned}
\int_{E_{\lambda}^{s}} \min (v(x), t) d x & \leq \int_{E_{\lambda / 2}^{\prime}} \min (v(x), t) d x+\int_{E_{\lambda / 2}^{\prime \prime}} \min (v(x), t) d x \\
& \leq \int_{E_{\lambda / 2}^{\prime}} v(x) d x+\int_{E_{\lambda / 2}^{\prime \prime}} t d x=: I+I I
\end{aligned}
$$

By Lemma 9 with $\mathcal{A}_{j}=c B_{j}^{\prime}$, we get

$$
I \leq c \sum_{Q \in \mathcal{F}_{t}}|Q| \inf _{Q} M(v)=c \sum_{Q \in \mathcal{F}_{t}}|Q| \min \left(t 2^{-s}, \inf _{Q} M(v)\right)
$$

By Lemma 8 with $\mathcal{B}_{j}=c B_{j}^{\prime \prime}$, we have

$$
I I \leq c t 2^{-s} \sum_{Q \in \mathcal{F}_{t}^{*}}|Q|=c \sum_{Q \in \mathcal{F}_{t}^{*}}|Q| \min \left(t 2^{-s}, \inf _{Q} M(v)\right)
$$

Combining the estimates for I and $I I$, we conclude the proof of Lemma 10.
Now we finish the proof of Lemma 2. Multiplying both sides of the inequality (5.6) by $t^{-\theta}(\theta \in(0,1))$, then integrating them on $(0, \infty)$ with respect to the measure $d t / t$, and using

$$
\int_{0}^{\infty} \min (A, t) t^{-\theta} \frac{d t}{t}=c_{\theta} A^{1-\theta} \quad(A>0)
$$

we get

$$
\begin{align*}
& \int_{E_{\lambda}^{s}} v(x)^{1-\theta} d x \leq c \sum_{Q \in \mathcal{F}}|Q| 2^{-\theta s} \inf _{Q} M(v)^{1-\theta} \tag{5.7}\\
& \quad \leq c \lambda^{-1} 2^{-\theta s} \sum_{Q \in \mathcal{F}} \inf _{Q} M(v)^{1-\theta} \int_{Q}|f(x)| d x \leq c \lambda^{-1} 2^{-\theta s} \int|f(x)| M(v)(x)^{1-\theta} d x
\end{align*}
$$

where the second inequality follows from (4.2).
If $w \in A_{1}$, then $w^{1+\delta} \in A_{1}$ for some $\delta>0$; so substituting $w^{1+\delta}$ for v and taking θ such that $1-\theta=(1+\delta)^{-1}$ in (5.7), we get

$$
\begin{equation*}
w\left(E_{\lambda}^{s}\right) \leq c \lambda^{-1} 2^{-s \delta /(1+\delta)}\|f\|_{L_{w}^{1}} \tag{5.8}
\end{equation*}
$$

Checking the constants appearing in the proof of (5.8) and replacing L_{j} by $c 2^{\eta s} L_{j}$, we get the desired estimate of Lemma 2.

6. Proof of Lemma 6

Our proof is an application of the method for the proof of [1, Lemma 4.1]. We use some tools and results given in [1].
Definition 5. Suppose $n \geq 2$. Let

$$
S_{m}=\left\{Q_{m}+(0,0, \ldots, 0, j): j \in \mathbf{Z}\right\}
$$

where $m=\left(m_{1}, m_{2}, \ldots, m_{n-1}\right) \in \mathbf{Z}^{n-1}$ and $Q_{m}=[0,1]^{n}+\left(m_{1}, m_{2}, \ldots, m_{n-1}, 0\right)$. We call S_{m} a strip.
Definition 6. Suppose $n \geq 2$. For $m \in \mathbf{Z}^{n-1}$, we define

$$
I_{m}=\left\{Q_{m}+(0,0, \ldots, 0, j): j_{1}<j<j_{2}\right\}
$$

where $j_{1}, j_{2} \in \mathbf{Z} \cup\{-\infty, \infty\}$ and Q_{m} is as in Definition 5. We call I_{m} an interval.
Definition 7. For a set $E \subset \mathbf{R}^{n}$, we put

$$
\mathcal{N}(E)=\left\{x \in \mathbf{R}^{n}: d(x, E) \leq 1\right\} .
$$

Let P be a polynomial of degree N as in Lemma 6. We consider $\mathcal{R}(P, \beta)$ for $\beta>0$ (see Definition 2).
Lemma 11. Suppose that $n \geq 2$ and $N \geq 1$. There exists a positive integer $C_{n, N}$ depending only on n and N such that for $i=1,2, \ldots, C_{n, N}$ we can find $U_{i} \in O(n)$ (the orthogonal group) and families of cubes $J_{m, i} \subset S_{m}\left(m \in \mathbf{Z}^{n-1}\right)$ so that
(1) $\mathcal{N}(\mathcal{R}(P, \beta)) \subset \bigcup_{i=1}^{C_{n, N}} U_{i}\left(\mathcal{L}_{i}\right)$, where

$$
\mathcal{L}_{i}=\cup\left\{Q: Q \in \bigcup_{m \in \mathbf{Z}^{n-1}} J_{m, i}\right\} ;
$$

(2) $\operatorname{card}\left(J_{m, i}\right) \leq c$ for some constant c depending only on n, N and β.

Remark 1. If Lemma 11 holds, then we have, for any $\gamma>0$,

$$
\{x: d(x, \mathcal{R}(P, \beta)) \leq \gamma\} \subset \bigcup_{i=1}^{C_{n, N, \gamma}} U_{i}\left(\mathcal{L}_{i}\right)
$$

for some positive integer $C_{n, N, \gamma}$ depending only on n, N and γ, where U_{i} and \mathcal{L}_{i} are as in Lemma 11. This can be proved by considering a finite number of polynomials which are defined by translating P and by applying Lemma 11 to each of them. (See [1, p. 149].)

To prove Lemma 11, we need the following results given in [1].

Sublemma 1. Suppose $n \geq 2$. For any positive integer N, there exists a positive integer $C_{n, N}$ depending only on n and N such that for any strip S, any polynomial P of degree N and any $\gamma>0$

$$
\{Q \in S: Q \cap \mathcal{R}(P, \gamma) \neq \emptyset\}
$$

is a union of at most $C_{n, N}$ intervals. (See Lemma 4.2 of [1].)
Sublemma 2. Suppose $n \geq 2$. For any positive integer N, there exist positive constants $A_{n, N}$ and $B_{n, N}$ depending only on n and N such that

$$
A_{n, N}\|P\| \leq\|P \circ \Xi\| \leq B_{n, N}\|P\|
$$

for all polynomial P of degree N and all $\Xi \in O(n)$, where $P \circ \Xi(x)=P(\Xi x)$.
Sublemma 3. Suppose $n \geq 2$. For any positive integer N, there exists a positive constant $C_{n, N}$ depending only on n and N such that for any polynomial P of degree N we can find $\Theta \in O(n)$ so that

$$
\min _{1 \leq j \leq n}\left\|D_{j}(P \circ \Theta)\right\| \geq C_{n, N}\|P \circ \Theta\|,
$$

where $D_{j}=\partial / \partial x_{j}$.
Now we prove Lemma 11. We use induction on the polynomial degree N. Let $A(N)$ be the assertion of Lemma 11 for polynomials of degree N.

Proof of $A(1)$. Let $P(x)=\sum_{i=1}^{n} a_{i} x_{i}+b$. First, we consider the case $\left|a_{n}\right|=1$. Now we show that if I is an interval such that each cube of I intersects $\mathcal{R}(P, \beta)$, then $\operatorname{card}(I) \leq c$ for some c depending only on n and β. Let $y \in Q \in I$ satisfy $|P(y)| \leq \beta$. We note that

$$
P\left(y+d e_{n}\right)-P(y)=d a_{n} \quad \text { for } \quad d \in \mathbf{R}
$$

where e_{j} is the element of \mathbf{R}^{n} whose j th coordinate is 1 and whose other coordinates are all 0 . Therefore, if $y+d e_{n} \in Q^{\prime} \in I$, we see that

$$
\inf _{z \in Q^{\prime}}|P(z)| \geq\left|P\left(y+d e_{n}\right)\right|-\sum_{i=1}^{n}\left|a_{i}\right| \geq\left|d a_{n}\right|-\beta-\sum_{i=1}^{n}\left|a_{i}\right| \geq|d|-\beta-n
$$

This easily implies that $\operatorname{card}(I) \leq c$.
By this and Sublemma 1, there exists a constant c depending only on n and β such that

$$
\operatorname{card}(\{Q \in S: Q \cap \mathcal{R}(P, \beta) \neq \emptyset\}) \leq c
$$

for all strips S.
Therefore, if we put

$$
J_{m}=\left\{Q \in S_{m}: d(Q, \mathcal{R}(P, \beta)) \leq 1\right\}
$$

then $\operatorname{card}\left(J_{m}\right) \leq c$ for some c depending only on n and β; and $\mathcal{N}(\mathcal{R}(P, \beta)) \subset \mathcal{L}$, where

$$
\mathcal{L}=\cup\left\{Q: Q \in \bigcup_{m \in \mathbf{Z}^{n-1}} J_{m}\right\} .
$$

Next, we consider any polynomial P of degree 1 such that $\|P\|=1$. Then if $P_{1}(x)=$ $P(U x)$ for a suitable $U \in O(n)$, we have $D_{n} P_{1}=1$. Hence, by what we have already proved we get $\mathcal{N}\left(\mathcal{R}\left(P_{1}, \beta\right)\right) \subset \mathcal{L}$. It follows that $\mathcal{N}(\mathcal{R}(P, \beta)) \subset U(\mathcal{L})$ since $\mathcal{N}(\mathcal{R}(P \circ U, \beta))=$ $U^{-1} \mathcal{N}(\mathcal{R}(P, \beta))$. This completes the proof of $A(1)$.

Now we assume $A(N-1)(N \geq 2)$ and prove $A(N)$. For a polynomial P of degree N such that $\|P\|=1$, we take $\Theta \in O(n)$ as in Sublemma 3. Put

$$
E_{0}=\mathcal{R}(P \circ \Theta, \beta) \cap\left(\bigcup_{j=1}^{n} \mathcal{R}\left(D_{j}(P \circ \Theta), \beta\right)\right)
$$

and for $\kappa=\left(\kappa_{1}, \kappa_{2}, \ldots, \kappa_{n}\right) \in\{-1,1\}^{n}$ put

$$
E_{\kappa}=\left\{x \in \mathcal{R}(P \circ \Theta, \beta): \kappa_{j} D_{j}(P \circ \Theta)(x)>\beta \quad \text { for } \quad j=1,2, \ldots, n\right\}
$$

Then

$$
\mathcal{R}(P \circ \Theta, \beta)=E_{0} \cup\left(\bigcup_{\kappa \in\{-1,1\}^{n}} E_{\kappa}\right)
$$

and so

$$
\begin{equation*}
\mathcal{N}(\mathcal{R}(P \circ \Theta, \beta))=\mathcal{N}\left(E_{0}\right) \cup\left(\bigcup_{\kappa \in\{-1,1\}^{n}} \mathcal{N}\left(E_{\kappa}\right)\right) \tag{6.1}
\end{equation*}
$$

We separately treat the $2^{n}+1$ sets of the right hand side.
First, clearly

$$
\begin{equation*}
\mathcal{N}\left(E_{0}\right) \subset \bigcup_{j=1}^{n} \mathcal{N}\left(\mathcal{R}\left(D_{j}(P \circ \Theta), \beta\right)\right) \tag{6.2}
\end{equation*}
$$

Since $C_{j}=\left\|D_{j}(P \circ \Theta)\right\| \sim 1$ (this means that $c^{-1} \leq\left\|D_{j}(P \circ \Theta)\right\| \leq c$ for some $c>1$ depending only on n and $N)$ and $\mathcal{R}\left(D_{j}(P \circ \Theta), \beta\right)=\mathcal{R}\left(C_{j}^{-1} D_{j}(P \circ \Theta), C_{j}^{-1} \beta\right)$, we can apply the induction hypothesis $A(N-1)$ to the right hand side of (6.2).

Next, we fix κ and consider $\mathcal{N}\left(E_{\kappa}\right)$. Take $O_{\kappa} \in O(n)$ such that $O_{\kappa}\left(e_{n}\right)=n^{-1 / 2} \kappa$. Define

$$
\mathcal{D}_{0}^{*}=\mathcal{D}_{0} \backslash\left\{Q \in \mathcal{D}_{0}:\left(\bigcup_{j=1}^{n} \mathcal{R}\left(\left(D_{j}(P \circ \Theta)\right) \circ O_{\kappa}, \beta\right)\right) \cap Q \neq \emptyset\right\}
$$

Since $\left\|\left(D_{j}(P \circ \Theta)\right) \circ O_{\kappa}\right\| \sim 1$ by Sublemmas 2 and 3, we can apply the hypothesis $A(N-1)$ along with Remark 1 to

$$
G=\cup\left\{Q \in \mathcal{D}_{0}:\left(\bigcup_{j=1}^{n} \mathcal{R}\left(\left(D_{j}(P \circ \Theta)\right) \circ O_{\kappa}, \beta\right)\right) \cap Q \neq \emptyset\right\}
$$

to get

$$
\begin{equation*}
\mathcal{N}(G) \subset \cup_{i} U_{i}^{\prime}\left(\mathcal{L}_{i}^{\prime}\right) \tag{6.3}
\end{equation*}
$$

for some $U_{i}^{\prime} \in O(n)$ and for some \mathcal{L}_{i}^{\prime} such that

$$
\mathcal{L}_{i}^{\prime}=\cup\left\{Q: Q \in \bigcup_{m \in \mathbf{Z}^{n-1}} J_{m, i}^{\prime}\right\}
$$

for some $J_{m, i}^{\prime}\left(\subset S_{m}\right)$ satisfying $\operatorname{card}\left(J_{m, i}^{\prime}\right) \leq c$.
Therefore we have only to consider $O_{\kappa}^{-1}\left(E_{\kappa}\right) \cap\left(\cup \mathcal{D}_{0}^{*}\right)$. First, we note that if $O_{\kappa}^{-1}\left(E_{\kappa}\right)$ intersects $Q, Q \in \mathcal{D}_{0}^{*}$, then

$$
\begin{equation*}
\min _{1 \leq j \leq n} \kappa_{j} D_{j}(P \circ \Theta)\left(O_{\kappa} y\right)>\beta \quad \text { for all } \quad y \in Q \tag{6.4}
\end{equation*}
$$

This can be seen as follows. Suppose that there are j_{0} and $y_{0} \in Q$ such that $\kappa_{j_{0}} D_{j_{0}}(P \circ$ $\Theta)\left(O_{\kappa} y_{0}\right) \leq \beta$. Then, since we have $\kappa_{j_{0}} D_{j_{0}}(P \circ \Theta)\left(O_{\kappa} x\right)>\beta$ for some $x \in Q$, by the intermediate value theorem we can find $z \in Q$ such that $\left|D_{j_{0}}(P \circ \Theta)\left(O_{\kappa} z\right)\right| \leq \beta$. This contradicts the fact that $Q \in \mathcal{D}_{0}^{*}$.

By (6.4) we have

$$
\begin{array}{r}
O_{\kappa}^{-1}\left(E_{\kappa}\right) \cap\left(\cup \mathcal{D}_{0}^{*}\right) \subset \cup\left\{Q \in \mathcal{D}_{0}: \min _{1 \leq j \leq n} \kappa_{j} D_{j}(P \circ \Theta)\left(O_{\kappa} y\right)>\beta \text { for all } y \in Q\right. \tag{6.5}\\
\text { and } \left.\mathcal{R}\left(P \circ \Theta \circ O_{\kappa}, \beta\right) \cap Q \neq \emptyset\right\}
\end{array}
$$

For a strip S, put

$$
\begin{aligned}
\mathcal{E}=\left\{Q \in S: \min _{1 \leq j \leq n} \kappa_{j} D_{j}(P \circ \Theta)\left(O_{\kappa} y\right)>\beta\right. & \text { for all } \quad y \in Q \\
& \text { and } \left.\quad \mathcal{R}\left(P \circ \Theta \circ O_{\kappa}, \beta\right) \cap Q \neq \emptyset\right\}
\end{aligned}
$$

We shall show $\operatorname{card}(\mathcal{E}) \leq C_{n, N}$.
We first see that \mathcal{E} is a union of at most $C_{n, N}$ intervals. Put

$$
\begin{aligned}
& \mathcal{E}^{\prime}=\left\{Q \in S: \min _{1 \leq j \leq n}\left|D_{j}(P \circ \Theta)\left(O_{\kappa} y\right)\right|>\beta \quad \text { for all } \quad y \in Q\right. \\
&\text { and } \left.\quad \mathcal{R}\left(P \circ \Theta \circ O_{\kappa}, \beta\right) \cap Q \neq \emptyset\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathcal{E}^{\prime}=\left(\bigcap_{j=1}^{n}\left(S \backslash\left\{Q \in S: \mathcal{R}\left(\left(D_{j}(P \circ \Theta)\right) \circ O_{\kappa}, \beta\right) \cap Q \neq \emptyset\right\}\right)\right. & \\
& \cap\left\{Q \in S: \mathcal{R}\left(P \circ \Theta \circ O_{\kappa}, \beta\right) \cap Q \neq \emptyset\right\} .
\end{aligned}
$$

We observe that the complement of a finite union of intervals in a strip S is also a finite union of intervals, and the intersection of finite unions of intervals is also a finite union
of intervals. Hence, by Sublemma 1 we see that \mathcal{E}^{\prime} is a union of at most $C_{n, N}$ intervals: $\mathcal{E}^{\prime}=\cup_{i} J_{i}$.

Take any J_{i}. Then by the intermediate value theorem we have either

$$
\min _{1 \leq j \leq n} \kappa_{j} D_{j}(P \circ \Theta)\left(O_{\kappa} y\right)>\beta \quad \text { for all } \quad y \in \cup\left\{Q: Q \in J_{i}\right\}
$$

or

$$
\min _{1 \leq j \leq n} \kappa_{j} D_{j}(P \circ \Theta)\left(O_{\kappa} y\right)<-\beta \quad \text { for all } \quad y \in \cup\left\{Q: Q \in J_{i}\right\}
$$

Thus \mathcal{E} is a union of a subfamily $\left\{I_{i}\right\}$ of $\left\{J_{i}\right\}: \mathcal{E}=\cup_{i} I_{i}$.
Let I be any interval in $\left\{I_{i}\right\}$. We need the following (see [1, p. 151]).
Sublemma 4. There exists a constant c_{n} depending only on n such that if $x, y \in I$ and $y_{n}-x_{n} \geq c_{n}$, then

$$
y-x=\sum_{i=1}^{n} \lambda_{i} O_{\kappa}^{-1} e_{i}
$$

for some $\lambda_{i} \in \mathbf{R}$ such that $\kappa_{i} \lambda_{i} \geq 3$.
Proof. We see that

$$
\begin{aligned}
O_{\kappa}(y-x) & =\sum_{i=1}^{n}\left(y_{i}-x_{i}\right) O_{\kappa} e_{i}=\sum_{i=1}^{n-1}\left(y_{i}-x_{i}\right) O_{\kappa} e_{i}+\left(y_{n}-x_{n}\right) n^{-1 / 2} \kappa \\
& =\sum_{i=1}^{n}\left(n^{-1 / 2}\left(y_{n}-x_{n}\right) \kappa_{i}+b_{i}\right) e_{i}
\end{aligned}
$$

for some $b_{i} \in \mathbf{R}$ such that $\left|b_{i}\right| \leq c$, which is feasible since $\left|y_{i}-x_{i}\right| \leq 1$ for $i=1,2, \ldots, n-1$. This readily implies the conclusion.

Put $Y=P \circ \Theta \circ O_{\kappa}$. Then $\nabla Y(x)=O_{\kappa}^{-1}\left(\nabla(P \circ \Theta)\left(O_{\kappa} x\right)\right)$; so, if $x, y \in I$ and $y_{n}-x_{n} \geq c_{n}$, by Sublemma 4 we have

$$
\begin{aligned}
Y(y)-Y(x)= & \int_{0}^{1}\langle y-x,(\nabla Y)(x+t(y-x))\rangle d t \\
= & \int_{0}^{1} \sum_{i=1}^{n} \lambda_{i}\left\langle O_{\kappa}^{-1} e_{i}, O_{\kappa}^{-1}\left(\nabla(P \circ \Theta)\left(O_{\kappa}(x+t(y-x))\right)\right)\right\rangle d t \\
& =\int_{0}^{1} \sum_{i=1}^{n} \lambda_{i} D_{i}(P \circ \Theta)\left(O_{\kappa}(x+t(y-x))\right) d t \geq \sum_{i=1}^{n} \lambda_{i} \kappa_{i} \beta \geq 3 n \beta>3 \beta
\end{aligned}
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product in \mathbf{R}^{n}. Since $\mathcal{R}(Y, \beta) \cap Q \neq \emptyset$ for all $Q \in I$, we can conclude that $\operatorname{card}(I) \leq c_{n}+3$.

Combining the above results, we have $\operatorname{card}(\mathcal{E}) \leq C_{n, N}$ as claimed. From this and (6.5) we easily see that

$$
\begin{equation*}
\mathcal{N}\left(O_{\kappa}^{-1}\left(E_{\kappa}\right) \cap\left(\cup \mathcal{D}_{0}^{*}\right)\right) \subset \mathcal{L}, \tag{6.6}
\end{equation*}
$$

where $\mathcal{L}=\cup\left\{Q: Q \in \bigcup_{m \in \mathbf{Z}^{n-1}} J_{m}\right\}$ for some $J_{m} \subset S_{m}$ with $\operatorname{card}\left(J_{m}\right) \leq C_{n, N}$.

By (6.3) and (6.6) we have

$$
\mathcal{N}\left(O_{\kappa}^{-1}\left(E_{\kappa}\right)\right) \subset \mathcal{N}(G) \cup \mathcal{N}\left(O_{\kappa}^{-1}\left(E_{\kappa}\right) \cap\left(\cup \mathcal{D}_{0}^{*}\right)\right) \subset\left(\cup_{i} U_{i}^{\prime}\left(\mathcal{L}_{i}^{\prime}\right)\right) \cup \mathcal{L}
$$

and so, observing $\mathcal{N}\left(O_{\kappa}^{-1}\left(E_{\kappa}\right)\right)=O_{\kappa}^{-1} \mathcal{N}\left(E_{\kappa}\right)$,

$$
\begin{equation*}
\mathcal{N}\left(E_{\kappa}\right) \subset\left(\cup_{i} O_{\kappa} U_{i}^{\prime}\left(\mathcal{L}_{i}^{\prime}\right)\right) \cup O_{\kappa}(\mathcal{L}) \tag{6.7}
\end{equation*}
$$

Since $\mathcal{N}(\mathcal{R}(P \circ \Theta, \beta))=\Theta^{-1} \mathcal{N}(\mathcal{R}(P, \beta))$, by (6.1), (6.2) with $A(N-1)$ and (6.7) we get $A(N)$. This completes the proof of Lemma 11.
Proof of Lemma 6. We see that $\mathcal{R}\left(P, 2^{N m}\right)=2^{m} \mathcal{R}(\tilde{P}, 1)$, where

$$
\tilde{P}(x)=2^{-N m} P\left(2^{m} x\right)
$$

Note that $\|\tilde{P}\|=1$. (See [1, p. 151].) This observation enables us to assume $m=0$ to prove Lemma 6. Clearly, we may also assume $\gamma=1$.

Thus it is sufficient to show, for $k \geq 0$,

$$
\begin{equation*}
\left|\left\{x \in B\left(a, 2^{k}\right): d(x, \mathcal{R}(P, 1)) \leq 1\right\}\right| \leq C_{n, N} 2^{(n-1) k} \tag{6.8}
\end{equation*}
$$

uniformly in $a \in \mathbf{R}^{n}$.
If $n=1$, (6.8) easily follows from Chanillo-Christ [1, Lemma 3.2] (see also [2]). Suppose $n \geq 2$. Then, (6.8) follows from Lemma 11 with $\beta=1$ and the obvious estimate:

$$
\left|B\left(a, 2^{k}\right) \cap U_{i}\left(\mathcal{L}_{i}\right)\right| \leq c 2^{(n-1) k}
$$

where $U_{i}\left(\mathcal{L}_{i}\right)$ is as in Lemma 11. This completes the proof of Lemma 6.

References

1. S. Chanillo and M. Christ, Weak $(1,1)$ bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155.
2. M. Christ, Hilbert transforms along curves, I: Nilpotent groups, Ann. of Math. 122 (1985), 575-596.
3. M. Christ, Weak type $(1,1)$ bounds for rough operators, Ann. of Math. 128 (1988), 19-42.
4. M. Christ and J.L. Rubio de Francia, Weak type (1,1) bounds for rough operators, II, Invent. Math. 93 (1988), 225-237.
5. F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Func. Anal. 73 (1987), 179-194.
6. J.L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. Math. 62 (1986), 7-48.
7. S. Sato, Some weighted weak type estimates for rough operators, Math. Nachr. 187 (1997), 211-240.
8. S. Sato, Weighted weak type $(1,1)$ estimates for oscillatory singular integrals, Feb. 1996.
9. A. Vargas, Weighted weak type $(1,1)$ bounds for rough operators, J. London Math. Soc. (2) 54 (1996), 297-310.

Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, JAPAN

E-mail address: shuichi@kenroku.kanazawa-u.ac.jp

[^0]: Received September 16, 1999.
 1991 Mathematics Subject Classification. Primary 42B20.
 Key words and phrases. Oscillatory singular integrals, rough operators.

