Weighted weak type (1,1) estimates for oscillatory
singular integrals with dini kernels
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WEIGHTED WEAK TYPE (1,1) ESTIMATES FOR
OSCILLATORY SINGULAR INTEGRALS WITH DINI KERNELS

SHUICHI SATO

ABSTRACT. We consider A;-weights and prove weighted weak type (1, 1) estimates for oscil-
latory singular integrals with kernels satisfying a Dini condition.

1. INTRODUCTION

We consider an oscillatory singular integral operator of the form:

T(f)() = p.v. / ¢PED K (z — ) f(y) dy = lim &P K (z — ) f(y) dy,

n e—0 ‘$_y‘>€

where P is a real-valued polynomial:

(1.1) Plz,y)= Y aapz®y’,
lal<M 18I <N

and f € 6(R™) (the Schwartz space).
Let K € C'(R™\ {0}) satisfy

(1.2) |K ()| < clz] ", VK (2)] < cla| ™71

(1.3) / K(z)dz =0 forall a,b with 0 < a < b.
a<l|z|<b

The smallest constant for which (1.2) holds will be denoted by C(K). The following results
are known.

Theorem A. (Ricci-Stein [5]) Let 1 < p < oo. Then, T is bounded on LP(R™) with the
operator norm bounded by a constant depending only on the total degree of P, C(K), p
and the dimension n.
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Theorem B. (Chanillo-Christ [1]) The operator T is bounded from L'(R™) to the weak
LY(R™) space with the operator norm bounded by a constant depending only on the total
degree of P, C(K) and the dimension n.

Let w be a locally integrable positive function on R™. We say that w € A; if there is
a constant c such that

(14) Mw)(z) < cw(z) a.e.

where M denotes the Hardy-Littlewood maximal operator. The smallest constant for
which (1.4) holds will be denoted by C4(w).
It is known that T is bounded from L} to L1 (the weak L. space).

Theorem C. ([8]) There exists a constant ¢ depending only on the total degree of P,
C(K), Cy(w) and the dimension n such that

sup dw ({z € R" : [T(f)(z)] > A}) < cllfllLy,
A>0

where w(E) = [pw(x)dz and ||f||p = [|f(x)|w(z)de.

Let K be locally integrable away from the origin. Put, for r > 1,0 <t <1 and R > 0,

1/r

wrr(t) = sup R / |IR" (K(z —y) — K(z))|" dz
ly|<Rt/2
R<|a|<2R

We say that the kernel K satisfies the D,.-condition if

1
dt
B, = / wr(t) — < 00 where w,(t) = sup wy g(t);
0 t R>0

1/r
C.=sup | R°" / |R"K (z)|" dx < 0.

R>0
R<|z|<2R

By the usual modifications we can also define the D..,-condition. In this note we shall
prove the following results, which will improve Theorems B and C.

Theorem 1. Letr > 1 and 1/r+1/u = 1. Suppose the kernel K satisfy the D,.-condition
and (1.3), and suppose w* € A;. Then, there exists a constant ¢ depending only on the
total degree of P, B,., C,, Ci(w"), r and the dimension n such that

sup Aw ({z e R" T (f)(2)] > A}) < cl[flley,-
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Theorem 2. Suppose that K satisfies the Dy-condition and (1.3). Then, there ezists a
constant ¢ depending only on the total degree of P, By, Ci and the dimension n such that

supA|{z € R : [T(f)(@)] > A} < ellf |-
A>0

Every kernel satisfying (1.2) satisfies the Dy-condition. If K(z) = |z|7"Q(z'), ' =
z/|z|, and if Q satisfies the L™-Dini condition on S™!, then K satisfies the D,-condition.

These theorems will be proved by a double induction as in [5], [1] and [8]. In this note
we shall prove only Theorem 1. Theorem 2 can be proved similarly. Let P be a polynomial
of the form in (1.1). We assume that there exists a such that |a| = M and ang # 0 for
some 3. We write

(1.5) P(z,y) = Y 2°Qaly)

lo| <M

and define L = max{deg(Qq) : Qu # 0,|a] = M}. Then 0 < L < N. We assume that
L > 1 and max|q|=p,3|=L |a@ap| = 1. Under this assumption on a polynomial P, we define

L@ = [ K ) ) dy

To prove Theorem 1, we shall use the following result in the induction.

Proposition 1. Let n, p > 0 and let the kernel K, the weight w and the exponents r,
u be as in Theorem 1. Then, there exists a constant ¢ depending only on n, p, the total
degree of P, r and the dimension n such that if Cy(w*) <n, B,, C; < p,

sup w ({o € R™ : [Too () (2)] > A}) < el fll1y,-
>

Let A(f)(xz) = p.v. K f(x). We need the following result for the first step of induction
for the proof of Theorem 1.

Proposition 2. Let the kernel K, the weight w and the exponents r, u be as in Theorem
1. Let i, p > 0. There exists a constant ¢ depending only on n, p, r and the dimension n
such that if C1(w*) <1, B, C, < p, then

Sup Aw ({z € R" : [A(f) ()] > A}) < cllflley -

Since A is bounded on L? (see [6, pp. 25-26]), if A is as in Proposition 2, we see that A
is a singular integral operator considered in [6, p. 13]. Hence the conclusion of Proposition
2 will follow from [6, p. 15, Theorem 1.6].

We shall give the outlines of the proofs of Theorem 1 and Proposition 1 in Sections 2
and 4, respectively. Our proof of Proposition 1 is based on the techniques in Christ [3] for
the proofs of the weak (1, 1) estimates for rough operators (see also Christ-Rubio [4] and
Sato [7]). We also use the geometrical argument of Chanillo-Christ [1]. We have to prove
a key estimate (Lemma 8 in §5) in the unweighted case in order to apply the method of
Vargas [9] involving an interpolation with change of measure. To prove Lemma 8, we need
a geometrical result for polynomials (Lemma 6 in §5). We shall prove Lemma 6 in §6 by
using the results appearing in the proof of Chanillo-Christ [1, LEMMA 4.1]. Lemmas 6
and 8 have been proved in [8]. We include the proofs and some other parts of [8] almost
verbatim for the sake of completeness.
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2. OUTLINE OF PROOF OF THEOREM 1

To apply the induction argument of [5] we need some preparation. We may assume
that M > 1 and N > 1; otherwise Theorem 1 reduces to Proposition 2.
We write a polynomial in (1.1) as follows:

M M
= Z Z zQa(y) =: ij(way)-
7=0 |a|=j 3=0

We further decompose P; as follows:

N N
=2 > aepr®y? =) Piry)
t=0 |a|=j t=0

|8]=t

For j=1,2,...,M and k =0,1,..., N, define

j—1 k
(21) Rjk(xvy) :ZPS(.T,:U)‘FZPjt(m,y)-

Note that Rjy =Y _ Py (j=1,2,..., M).
For j=1,2,...,M and k =0,1,..., N, we consider the following propositions.

Proposition A(j,k). Letn, p > 0. There exists a constant ¢ depending only on n, p, j,
N, r and the dimension n such that if C1(w*) <n, By, C, < p and if Rji is a polynomial
of the form in (2.1), then

sup Aw ({z € R" : [Tji (f)(2)| > A}) < cl|fllpy,
A>0

where

n

Tin(f)(@) = p.v. / D I (2 — ) f(y) dy.

Then, Theorem 1 follows from Proposition A(M,N). We shall prove it by double
induction. We first note that A(1,0) follows from the boundedness of the operator A.
Next, we observe that if M > 2 and if A(j, N) (1 <j < M —1)istrue,sois A(j+1,0)
since
Rjpio(x,y) = Rin(2,9) + D adaoz”
la|=j+1

and hence |Tjy10(f)(x)] = |Tin(f)(z)]. Thus, to complete the induction starting from
A(1,0) and arriving at A(M,N), it is sufficient to prove A(j,k + 1) assuming A(j, k)
(0 <k < N,1<j< M) Toachieve this, put R = Rjr+1, Ro = Rjk, Tjr+1 = S. We
note that

R(z,y) = Ro(z,y) Z aapr®y”?

|a|=j
|B|=k+1
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We have only to deal with the case Cjx = max|q|—j, 8|=k+1 |@as| # 0. Then, by a suitable
dilation we may assume Cj, = 1. This can be seen as follows. We first note that, for
a >0,

S(f)(az) = p.v. / eFara I (i — y) f(ay) dy,

where K,(z) = a"K(az). Assume the boundedness of S for the case Cj; = 1. Then,
choosing a to satisfy a/T*+1C}, = 1, and using the dilation invariance of both the class
A; and the class of the kernels considered in Theorem 1, we get

w({z € R" :|S(f)(2)| > A}) = wa ({z € R" :|S(f)(az)| > A})
< cxl/|f(am)|a"w(am) da
= A flly,-
We split the kernel K as K = Ko + Koo, where Ko(z) = K(z) if |z| < 1 and Ko (z) =

K(z) if |z| > 1. Assuming Cj; = 1, we consider the corresponding splitting S = Sp + Seo:

So(f)(#) = p.v. / D Iy (2 — y) £ (y) dy,

S(N)@) = [ DKo~ )1 0) dy
In the next section, we shall prove

(2.2) sup Aw ({z € R™ : [So(f)(2)] > A}) < ¢ellfllry,,
A>0

while by Proposition 1 we have

(2.3) sup Aw ({z € R ¢ [Swo (£)(@)] > A}) < cll Il -
A>0

Combining (2.2) and (2.3), we shall complete the proof of A(j, k+ 1), which will finish the
proof of Theorem 1.

3. ESTIMATE FOR Sy

In this section, we shall prove, under the assumption made in §2, that if Cy (w) <1, B,.,
Cr < p (n, p>0), then Sy is bounded from L} to LL:>° with the operator norm bounded
by a constant depending only on j, N, n, p, r and n ((2.2)).

First, we shall prove

(3.1) w({z € B0,1) : |So(f)()] > A}) < A / £ @) w(y) dy,

ly|<2

where B(z,r) denotes the closed ball with center  and radius r > 0.
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Lemma 1. Let w,w*(1 <u < o0) € A;. Let T be an operator of the form:

T(f)(z) =p.v. | K(z,y)f(y)dy = lim K(z,y)f(y)dy

R" e—0 ‘z—y‘>e

for f € 6(R™). Let 1/r + 1/u = 1 and consider a non-negative function L on R™ \ {0}
satisfying J,. < oo, where

1/r

J.=sup | R7" / (R"L(z))" dx
R>0
R<|¢|<2R

forr < 0o and J, can be defined by the usual modification. Suppose the kernel K satisfies
|K(z,y)| < L(x —y). Fore >0, put

T.(f)(x) = p.v. / K(z,9)f(y) dy.

|e—y|<e

Suppose
Sup A ({z € R™ A [T(f)(@)| > A}) < cullfllry -
>
Then

Sup M ({z € R™ ¢ [Te(f)(2)] > A}) < e(ew + J:Ca(w) )| f Iz, -

Proof. The proof is similar to that of LEMMA in [5, p. 187]. We shall prove
(3.2) w({z € B(h,e/4) : [Tc(f) ()] > A})

< c(cw + JoCr (w*) /)N~ |F()w(y) dy
ly—h|<6e/4

uniformly in h € R™. Integrating both sides of the inequality in (3.2) with respect to h,
we get the conclusion of Lemma 1.

Split f into 3 pieces: f = fi + fo + fa, where f; € G(R™), |fi| < clf| (i = 1,2,3);
supp(fi1) C B(h,€/2), supp(f2) C B(h,11¢/8)\B(h,3¢/8),supp(fs) C {z : |z—h| > 5¢/4}.
Note that if | — h| < €/4, then T.(f1)(z) = T(f1)(z); since |y —h| < €¢/2 and |z — h| < €/4
imply |x —y| < €. So by the assumption on 7', we have

w({z € B(h,e/4) : [T.(f1)(@)] > A}) < cod ! / £ () w(y) dy.

|ly—h|<6e/4

Next, by Chebyshev’s inequality, Holder’s inequality and the fact w* € A; we easily
see that

w({z € B(h,e/4) : |T.(f2)(x)] > A}) < e, Co(w™) /A7 <o [f()lw(y) dy.
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Finally, if |z — h| < €¢/4 and |y — h| > 5¢/4, then |z — y| > €, and so T¢(f3)(x) = 0.
Combining these results, we get (3.2). This completes the proof of Lemma 1.
Now we return to the proof of (3.1). If |z| < 1 and |y| < 2, then

exp (iR(z,y) —exp | i | Ro(a.y) + 3 aapy™™ | || <cle—yl,
|a|=j

|6]=k+1

where ¢ depends only on k,j and n.
Hence, if |z]| < 1,

1So(f)(x)] < |U | exp | i Z aasy™ | f(y) | (@)] + eI (f) (),
\ﬁ‘liljil

where
U(f)(x) =p-V-/e"RO(w’y)Ko(w—y)f(y) dy, I(f)(x) :/I— > |z — y|L(z — y)|f(y)| dy.

Note that U(£)(@) = U(fxm02)(@), I(H)@) = I(fxmom)() if 2] < 1. By the
induction hypothesis A(j, k) and Lemma 1, we see that U is bounded from Ll to LL°°.
On the other hand, it is easy to see that

/I i< |z — y|L(z — y)w(w)de <2 / L(z — y)w(z) dz < cJ, My (w)(y),

j<0 2971 < e —y| <29

where M, (w) = M(w*)'/*. Thus, by Chebyshev’s inequality and the fact w* € A; we
have

w({z € B(0,1) : I(f)(2) > A}) < e, Cr(w") /A7 [f()lw(y) dy.

Combining these results, we get (3.1).
Similarly we can prove

(3-3) w({z € B(h,1) : [So(f)(2)| > A}) < eA™! [fW)lw(y) dy,

ly—h|<2

where c¢ is independent of h € R™. To see this, we first note that

So(f)( +h) = p.v. / RN I (2 — ) f(y + B) dy

and
R(z+h,y+h) =Ri(z,y,h) + > aapzy’.

lor|=3

|Bl=k+1
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We can apply the induction hypothesis A(j, k) to the operator

pm/amw%“Ku—ywwMy

to get its boundedness from L. to LL,*. Thus, by the same argument that leads to (3.1)
we get

w({z € B(h,1) : |So(f)(2)] > A}) = mnw ({z € B(0,1) : [So(f)(z + h)| > A})

sa*/' £y + h)w(y + h) dy
ly|<2

AL d
<t [ )

where T,w(xz) = w(x + h), and we have used the translation invariance of the class A;.
Integrating both sides of the inequality (3.3) with respect to h, we get (2.2).
4. OUTLINE OF PROOF OF PROPOSITION 1

Let f € 6(R™). By Calderén-Zygmund decomposition at height A > 0 we have a
collection {@} of non-overlapping closed dyadic cubes and functions g, b such that

(4.1) f=g+b

(42) i@ [ i< e

(4.3) v(UQ) < cv||f||L11J/)\Q for all v € Ay;

(4.4) lolle <eA llgllzy < collfllzy forall ve Ay;

(45) b=Ybo, supp(ba) €@, Ilballi < QL.
Q

Let a polynomial P be as in Proposition 1. We assume as we may that M > 1 as in
the outline of the proof of Theorem 1 in §2. We write P as in (1.5). Then, let ¢(y) =
> 15<z ¢8Y” be the coefficient of z{’. By a rotation of coordinates and a normalization,
to prove Proposition 1 we may assume max|g|=r, |cg| = 1 (see [1, p. 151] and Sublemma 2
in §6).

We take a non-negative ¢ € C5°(R™) such that

supp(p) C {1/2< |2 <2}, D o@7z)=1 if |z >1.
j=0

Put K;(2,y) = 929 (& — ) Koo (2,), where Koo(z,y) = P9 Ko (z — y) (Koo(2)
is as in §2) and decompose K (z,y) as Koo (z,y) = E;io K;(z,y).
Define

WUWOZ/Kﬂ%wﬂw@ for >0
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and put

Then T, = Vo + V. We have only to deal with V' since we easily see that Vj is bounded
on L%u (w“ € Al)
We set (see [3, 4])

Bi= > bg (i>1), By= ) bo.

|Q|=2in Q<1

Put ¢ = UQ, where Q denotes the cube with the same center as Q and with sidelength
100 times that of ). (Throughout this note we consider the cubes with sides parallel to
the coordinate axes.)

When © € R™ \ U, we observe that

46) V(B)(2)=V > Bi| ()

i>0
- ¥ [ KwoBmd =X 3 [ Kb d
i>0 j>1 i>0 j>it1
=D )3 RSERIEINOTIED B) DAL NI}
s>1 j>s s>1 j>s

To prove Proposition 1 we need the following results (Lemmas 2, 3 and 4).

Lemma 2. Suppose w € Ay. Let {L;};>1 be a family of kernels satisfying
supp(Ly) C {2/7° <[a| <277°},  |Lj(@)| < eale| ™, |VLj(x)| < cola| ™

Let

Ei=<zeR": ZGj(Bj_s)(m) > A

i>s

Then there exists e,n > 0 such that, for any positive integer s,
w (o) < 27N fln,s

where ¢, is a positive constant satisfying 3 o ¢,271%/% = 1.

We shall prove this in §5.
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Lemma 3. Let L; and G be as in Lemma 2. Then, for j > 1,
1Gjll2 <277 for some € > 0,

where ||G;||2 denotes the operator norm on L*.

This follows from Ricci-Stein [5]. See also [8] for an alternative proof.
Lemma 4. If w* € Ay, then the operator V is bounded on L2 .
Proof. Let

Nj(z) = (277 2)K(x), Lj(x) = Nj*thy—sssi(x) (6> 0),

where ¢ € C>°(R") which is supported in {|z| < 27'°} and satisfying [¢ = 1. Then L;
satisfies all the conditions of Lemma 2 with ¢; = ¢2"% | ¢y = ¢2("*1%  and we find

(4.7) ILjllrr < eCh,
(4.8) |Lj||r < cCp27im/v,
Put

R;j(x) = Nj() - Li(x) = / (N;(2) — N (& — 1) tps05 () dy.

Then, it is easy to see that

(4.9) IR;|lzr < cwi(27%9) +¢27% < cw, (27%) 4 c27%,
(4.10) IR |- < clwn(27%7) + c2799)27In/v,
Put

U (f) () = / EPENL e ) f)dy,  Wi(f) () = / PENR (2 — ) f(y) dy.

n n

First we estimate U;. By Holder’s inequality and (4.7), (4.8) we have

@) 100l <e [ ([ 156 - plu@de) 1) < e [ 110PMw)0) b
On the other hand, if § is small enough, by Lemma 3

(4.12) NU; (A2 < 27| f|I3 for some e > 0.

Interpolating between the estimates (4.11) and (4.12), we get
0,2, <207 [ 1P Muw)w)" dy.
for 6 € (0,1). Substituting w'/? for w, we have

@13) U < @ [P M @)y foralls >
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Next we estimate W;. By Holder’s inequality and (4.9), (4.10)

(4.14)
W5l < clontz) 427 [ ([R5t = ot de) 176 dy

< c(wn(279) + c2759)? / £ )P Mo (w) (y) dy.
By (4.13) and (4.14), for all s > u,

V(g <ed (@r(277) +27%9 427 CIC)f] 2 <l fl2

Mg (w) — Mo(w)”
j>1

From this we get the conclusion of Lemma 4, since w® € A; for some s > u.

Using these results, we can prove Proposition 1. Let N; and 9 be as in the proof of
Lemma 4. For a positive integer s let

LY (@) = Nj * ysvas (x) (6> 0).

R (x) = Nj(x) — L} (2) = /(Nj(iﬂ) — Nj(@ —y)) tha-i+s: (y) dy.
Then Lg-s) is supported in {2976 < |z| < 2976} and satisfies
L @) < e2"le] ™, VL (@)] < 2™t
Set
U@ = [ TN @ @) dy, W@ = [ TR @) 1) d.

Put
Fi={zeR": |3 UM (B;_,)(x)| > A
Jj>s
Then, if (n + 1)§ < /2 by Lemma 2
(4.15) w (F2 s nrny) 2N fllny,

where €, n and ¢, are as in Lemma 2. Since .27 ¢,27"/2 = 1, we have

zeR: NS UL B )@)|>Ap € FL ey

s>1 j>s s>1
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Thus by (4.15)

(4.16)
w(deeR: (S UOB) @] >N | < w (L ,epe)
s>1 j>s s>1
< e M| flloy
Since

RSNl < elwn(270) + 27002700/,

by Hélder’s inequality and the condition that w* € A; we find

SWIB)| Se (w2 +27)

jzs quﬂ

Thus, by Chebyshev’s inequality we have

(4.17) w ({m eR": NS Wi (B)(@)| > A})

s>1 j>s

s>1

<c (Z (wr(27%) + 2_65)) ATy,

By (4.6), (4.16) and (4.17) we have
(4.18) w({z € R\U: [VB) (@) > 201 < A~ [l
By (4.3) we see that
(4.19) wUd) < oI fllzy,-
By Lemma 4 and (4.4)
(4.20) w({z € R : [V(g)(@)| > AD) < A fllry.
Combining (4.18), (4.19) and (4.20), we conclude the proof of Proposition 1.

5. PROOF OF LEMMA 2

In this section we shall prove Lemma 2 in §4. For k,m > 1, put
(5.1) Hym(z,y) = /efip(z’“”)ﬂp(z’y)fk(z — )L (z —y) dz.

Then G;Gn(f) (%) = [ Him (2, y) f(y) dy, where G denotes the adjoint of Gj,.
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Lemma 5. Let k > m > 1. Then, Hyp(z,y) = 0 unless |z —y| < 28*7; and
(1) |Hkm(m7y)| S 027kn’
(2) | Him (2,y)| < 27727 q(z) — q(y)|7/M.

Proof. We prove only the estimate of (2) since the other assertions immediately follow
from the definition of Hy,, in (5.1). We first note that

(0/021)M (P(z,2) — P(2,y)) = M!(q(z) — q(y)).

Hence, from van der Corput’s lemma it follows that

b
/ CPCR=PED) 2| < clg(a) — qly)| =™,

for any a and b (see [1, p.152]).
Therefore by integration by parts in variable z; in the formula of (5.1) we get the
conclusion.

For the rest of this note, we denote by P(x) a real-valued polynomial on R™.

Definition 1. For a polynomial P(z) =}, <y aaz® of degree N, define

IPll = masx |aal.
a|=N

Definition 2. For a polynomial P and 3 > 0, let

R(P,) = {z € R" : |P(2)] < B).

Let d(E, F) denote the distance between sets E and F. We now state a geometrical
lemma for polynomials, which will be proved in §6.

Lemma 6. Let k, m be integers such that k > m. Suppose N > 1. Then, for any
polynomial P of degree N satisfying ||P|| = 1 and for any v > 0, there exists a positive
constant C, N, depending only onn, N and v such that

o € Bl0.2) 1 d (5. RP,2V™) <727} | < Coy 20 V02

uniformly in a € R™.

Let A > 0 and let {B;};>0 be a family of measurable functions such that
62) IR

for all cubes @ in R™ with sidelength £(Q) = 27.
Then we have the following.
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Lemma 7. Let the kernels Hj; be as in Lemma 5. Then, we can find a constant c such
that

sup
zeR™

i=s

for all integers j and s such that 0 < s < j.

/Bls Hji(z,y)dy| <ecX2™°

Definition 3. For m € Z (the set of all integers), let D,,, be the family of all closed dyadic
cubes @ with sidelength £(Q) = 2™.

Proof of Lemma 7. Fix x € R™. Let
F={Q€D;:QNB(x,27"?) £0} (0<s<i<j).
Then clearly o7 Q| < c27™.
Decompose F = Fy U F1, where
Fo={QeF:QnRg() - q(@),2507)) # 0}
and Fy = F \ Fo. Then by Lemma 6 we have
(5.3) > 1QI < 2 Higive,
QEFo
By Lemma 5 (1), (5.2) and (5.3), we see that
(54) 3 / Bi o) ()| dy < 2 3 / Bia ()] dy
QEFo QeFo
<c2mA Y Q) < 2 it a2 iR = exgi e,
QEFo
Next, by Lemma 5 (2), (5.2) and the estimate ), 5 |Q] < ¢27", we have

(5.5) Z/wm \Hji(a,y)| dy < 2797272~ L<”/MZ/|BH )| dy

QEF1 QEF1
< (-ing=ig=L(i=s)/M \ Z Q| < exg—ig—Llima)/M
QEF
From (5.4) and (5.5) it follows that

/Ist Hji(x,y)| dy = /Ist Hji(z,y)| dy
QeF

—ZZ/I& s szy)ldy<c>\(2” s 4 g ig-Lli- S)/M)

v=0QEF,

Thus we see that

Z seué)n/|l’)’Z s(W)Hji(z,y)| dy<c>\z:(2Z j=s 4 9—ig=L(i= s)/M) <ec\27®

This completes the proof of Lemma 7.
By Lemma 7 we readily get the following.
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Lemma 8. Let {B;};>o be as in Lemma 7. Suppose <, ||Bjllr1 < oo. Let G; be as in
Lemma 2. Then, for any positive integer s, we have

2

S @B < S Bl

i>s L2 >0

Proof. Let (-,-) denote the inner product in L?. Using Lemma 7, we see that

2

GBI <2) Y UGB o), GiBi ) <2) ) (B, GiGi(Bi))]

j>s L2 j>s i=s j>s i=s

j
<2Y > B sl G Gi(Bis)llne < X2 > 1B sllpr.
i>s i=s i>s

This completes the proof of Lemma, 8.

Definition 4. For each j > 0, let G; be a family of non-overlapping closed dyadic cubes
Q such that £(Q) < 27. We suppose that if Q € G;, R € Gy and j # k, then @ and R are
non-overlapping and that } -, > oeg, |Q| < 00. Put G =U;>00;.

Let A > 0. To each Q € G we associate fo € L! such that

/ ol <AQL  supp(fo) C Q.

We define A; = >, fo-

Lemma 9. Let G; be as in Lemma 2 and let v be a locally integrable positive function.
Then for a positive integer s we have

DG <ex Y |Qlinf M(v),

j>s I Qeg

where infg M (v) = inf,eq M (v)(z).
Proof. We easily see that

S 6| <X [l ([ 1z -l ) a
i>s o

<Y 5 [ lol) inf M@ dy < ¢ 3 NQint Mo,

J QEGj—s QEg

We prove Lemma 2 by the estimates of Lemma 8 and Lemma 9. We slightly modify
the interpolation argument of [9].
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Lemma 10. Let F denote the family of dyadic cubes arising from the Calderén-Zygmund
decomposition in §4. Define a set ES as in Lemma 2. Then, for all t > 0, we have

(5.6) min(v(z),t)dz < ¢ Z |@Q] min (t? s infM( ))

BX QeF
where s is a positive integer and v is a locally integrable positive function.
Proof. For t > 0, set F; = {Q € F :infg M (v) < t27°} and F; = F \ F;. Put

Yo b, Bj= > bg (j21); By= > bo, Bi= Y bo

0(Q)=27 0(Q)=2’ |QI<1 |QI<1
QEF: QEF, QEF: QeFy

Define
By=q> G (Bj )|>Xp, EX=X|DG; (B} ,)|>\
Jj>s j>s
Then we find ES C EY , U EY ,, since B; = B + B}, and so
min(v(z),t) dz < / min(v(z),t) dx +/ min(v(z),t) dx

E' 1"

E3 X/2 /2

S/ (CU)dCE+/ tde =: T+ 1I1.
2 2

By Lemma 9 with A; = cBj, we get

I<CZ|Q|1ng —CZ|Q|m1n<t2 s1nfM( ))

QEF: QEF:

By Lemma 8 with B; = cBY, we have

IT<ect2? Z Q| =c Z |Q|m1n<t2 i 1nfM( )>

QeF; QeF;
Combining the estimates for I and I, we conclude the proof of Lemma 10.

Now we finish the proof of Lemma 2. Multiplying both sides of the inequality (5.6) by
~% (0 € (0,1)), then integrating them on (0,00) with respect to the measure dt/t, and
using

/ min (A, t)t~° % =cpA'7?! (4 >0),
0

we get

(5.7) /s v(z)'~ 0dw<cz |Q|2_051nfM( )

QeF

<oA1 Y inf M (0) /Q |F(@)] da < eA~t2 0 / (@) M(0) ()" d,

QEF
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where the second inequality follows from (4.2).
If w € Ay, then w'*? € A; for some § > 0; so substituting w!*? for v and taking 6
such that 1 — 0 = (1+8)~"! in (5.7), we get

(5.8) w () <A™ 27 O £l
Checking the constants appearing in the proof of (5.8) and replacing L; by ¢2"°L;, we get
the desired estimate of Lemma 2.

6. PROOF OF LEMMA 6

Our proof is an application of the method for the proof of [1, LEMMA 4.1]. We use
some tools and results given in [1].

Definition 5. Suppose n > 2. Let
Sm ={Qm +(0,0,...,0,7) : j € Z},

where m = (my,ma,...,m, 1) € Z" ! and Q,, = [0,1]" + (m1,m2,...,mp_1,0). We
call S,, a strip.

Definition 6. Suppose n > 2. For m € Z" !, we define
Im = {Qm+ (070)"')07j) :jl <j <j2}7

where ji, jo € ZU{—00,00} and @, is as in Definition 5. We call I,,, an interval.

Definition 7. For a set E C R", we put
N(E)={zeR":d(z,E) <1}.

Let P be a polynomial of degree N as in Lemma 6. We consider R(P, 3) for 8 > 0 (see
Definition 2).

Lemma 11. Suppose that n > 2 and N > 1. There exists a positive integer Cp, N de-
pending only on n and N such that for i = 1,2,...,C, ~v we can find U; € O(n) (the
orthogonal group) and families of cubes Jy, ; C Sm (m € Z"') so that

(1) N(R(P,B)) C UZC:"I'N Ui(L;), where

Li=UqQ:Q¢€ U Imyi 3

mEZ"71
(2) card(Jm,;) < c for some constant ¢ depending only on n, N and 3.

Remark 1. If Lemma 11 holds, then we have, for any v > 0,

Con N
{1‘ : d(va(Pv ﬁ)) < '7} - U Ul(‘cz)
i=1
for some positive integer C, n, depending only on n, N and v, where U; and £; are as in
Lemma 11. This can be proved by considering a finite number of polynomials which are
defined by translating P and by applying Lemma 11 to each of them. (See [1, p. 149].)
To prove Lemma 11, we need the following results given in [1].
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Sublemma 1. Suppose n > 2. For any positive integer N, there exists a positive integer
Ch,N depending only on n and N such that for any strip S, any polynomial P of degree
N and any v >0

{QeS:QNR(Py) # 0}

is a union of at most C,, n intervals. (See LEMMA 4.2 of [1].)
Sublemma 2. Suppose n > 2. For any positive integer N, there exist positive constants
A, N and B, n depending only on n and N such that

An NP < [P o E|| < Bnn|IP

for all polynomial P of degree N and all = € O(n), where P o Z(z) = P(Ex).

Sublemma 3. Suppose n > 2. For any positive integer N, there exists a positive constant
Ch,N depending only onn and N such that for any polynomial P of degree N we can find
© € O(n) so that

min ||D;(P o ©)|| > Cn n||P o O,

1<j<n

where D; = 0/0zx;.

Now we prove Lemma 11. We use induction on the polynomial degree N. Let A(N) be
the assertion of Lemma 11 for polynomials of degree N.

Proof of A(1). Let P(z) =Y., a;x; +b. First, we consider the case |a,| = 1. Now we
show that if I is an interval such that each cube of I intersects R(P,3), then card(I) < ¢
for some ¢ depending only on n and 3. Let y € Q € I satisfy |P(y)| < 8. We note that

P(y +de,) — P(y) =da, for deR,

where e; is the element of R™ whose jth coordinate is 1 and whose other coordinates are
all 0. Therefore, if y + de,, € Q' € I, we see that

nf [P(2)] > |P(y + den)]| — > lail > |dan| = 8= lai| > |d| — B —n.
=1 =1

This easily implies that card(I) < e.
By this and Sublemma 1, there exists a constant ¢ depending only on n and 3 such
that

card({Q € S: QNR(P,B) #0}) < c

for all strips S.
Therefore, if we put

Im ={Q € Sm : d(Q, R(P, §)) < 1},

then card(J,,,) < c for some ¢ depending only on n and 3 ; and N (R(P,3)) C L, where

,c:u{Q:Qe U Jm}.

meZn—1
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Next, we consider any polynomial P of degree 1 such that ||P|| = 1. Then if P,(z) =
P(Uz) for asuitable U € O(n), we have D, P, = 1. Hence, by what we have already proved
we get N(R(Py,8)) C L. It follows that N(R(P,3)) C U(L) since N(R(PoU,B)) =

“IN(R(P,3)). This completes the proof of A(1).

Now we assume A(N — 1) (N > 2) and prove A(N). For a polynomial P of degree N

such that ||P|| = 1, we take ©® € O(n) as in Sublemma 3. Put

Hy=R(P0®,)nN (UR ﬁ));

and for k = (k1,K2,...,kn) € {—1,1}" put

E.={z€R(P00O,8):k;Dj(Po®)(z)>p for j=1,2,...,n}.

Then
R(P0®©,3) = FyU ( U En)
ke{—1,1}"
and so
(6.1) N(R(Po®,83)) =N(Ey) U ( U N(ER)) .
ke{—1,1}"

We separately treat the 2™ + 1 sets of the right hand side.
First, clearly

(6.2) N (By) ¢ |JN (R(D;(P00),3)).

i=1

Since C; = ||D;(P o ©)]| ~ 1 ( this means that ¢=' < ||D;(P 0 ©)]| < ¢ for some ¢ > 1
depending only on n and N) and R(D;(P ¢ ©),3) = R(C; 'D;(Po0®),C 1B) we can
apply the induction hypothesis A(N — 1) to the right hand 51de of (6.2).

Next, we fix # and consider N'(E,). Take O, € O(n) such that O, (e,) = n~/?k.

Define
Dgzpo\{QeDO:(UR )oOmﬁ))ﬂQ#V)}.

Since [|(D;j(P o ©)) o O4|| ~ 1 by Sublemmas 2 and 3, we can apply the hypothesis
A(N —1) along with Remark 1 to

G:U{QEDO:(U’R )oOmﬂ))ﬂQ#@}

(6.3) N(G) c uili(L;)
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for some U] € O(n) and for some £ such that

,c;:u{Q:Qe U J,’w.}

mEZ"71

for some J), ; (C Sp) satisfying card(J}, ;) < c.
Therefore we have only to consider O (E,) N (UDg). First, we note that if O 1(E,)
intersects @, @ € Df, then

(6.4) min k;Dj(Po®)(Ogy) >pB forall yeQ.

1<j<n
This can be seen as follows. Suppose that there are jo and yo € @ such that x;, D;, (P o
©)(Okyo) < B. Then, since we have kj,D;j, (P o ©)(Oxz) > B for some z € @, by the
intermediate value theorem we can find z € @ such that |D;, (P o ©)(O.z)| < . This

contradicts the fact that @ € Dg.
By (6.4) we have

(6.5) O (E.)N(UD;) CcuU { Q€ Dy: 1r<m£1 k;Dj(Po®)(Ozy) >3 foral yeQ
<j<n
and R(POOOON,ﬂ)ﬂQ#@}.
For a strip S, put

& :{ QeS: 1rn_'g kiD;j(Po®)(Osy) >8 forall ye@

<j

and ’R(Po@oOmﬂ)ﬂQ#@}-

We shall show card(€) < Cy, n.
We first see that £ is a union of at most C), n intervals. Put

5’2{@65: min |[D;(Po®)(Oyy)| > B forall ye@
1<j<n
and ’R(Po@oOmﬂ)ﬂQ#@}-

Then

=1

£ = (ﬂ (S\{Q e S:R((Dj(Po®))oOm6)ﬂQ#w}))

N{QReS:R(Po®o0,,3)NQ #£0}.

We observe that the complement of a finite union of intervals in a strip S is also a finite
union of intervals, and the intersection of finite unions of intervals is also a finite union



OSCILLATORY SINGULAR INTEGRALS 21

of intervals. Hence, by Sublemma 1 we see that £’ is a union of at most C), y intervals:
& =U,;J;.
Take any J;. Then by the intermediate value theorem we have either

min k;D;(Po®)(Oygy) > p foral yeu{Q:QeJ}

1<j<n
or
mjg kiD;j(Po®)(Oky) < —f forall yeU{Q:Q € J}.

1<j<n

Thus £ is a union of a subfamily {I;} of {J;} : £ = U;I;.
Let I be any interval in {I;}. We need the following (see [1, p. 151]).

Sublemma 4. There exists a constant c,, depending only on n such that if z,y € I and
Yn — Tn Z Cn, then

n
y—x= Z NO e
i=1

for some \; € R such that k;\; > 3.
Proof. We see that

n n—1

Okly — ) = Z(yi —2;)Ore; = Z(Z/i — 2;)0n€i + (yn — zn)n %k
=1 =1
- zn: (n_1/2(yn — Tn)ki + bi) €;
=1

for some b; € R such that |b;| < ¢, which is feasible since |y; —z;| < 1fori=1,2,...,n—1.
This readily implies the conclusion.

Put Y = Po©®oO,. Then VY(z) = O;'(V(P o ©)(O.x)); so, if z,y € I and
Yn — T > Cn, by Sublemma 4 we have

Y(y) - Y(z) = / (-2, (YY) (& + ty — 2))) dt

0
= | Z i <O;1€i, O;l (V(Po®©)(Ok(x+t(y — 1‘))))> dt

= /1 Zn:AiDz(P °©)(On(z +t(y —z))dt > anmﬂ > 3n8 > 38,
0 =1

i=1

where (-, ) denotes the inner product in R™. Since R(Y,8) N Q # 0 for all Q € I, we can
conclude that card(I) < ¢, + 3.

Combining the above results, we have card(€) < C,, n as claimed. From this and (6.5)
we easily see that
(6.6) N (0" (E.) N (UDy)) C L,

K

where £ = U {Q Q€ Umeznq Jm} for some J,,, C Sy, with card(J,,) < Cp N
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By (6.3) and (6.6) we have

N (0 Y(E,)) CN(G)UN (0.1 (E.) N (UDG)) C (WUL(LY)) U L;

and so, observing N (O (Ey)) = O 'N (Ey),
(6.7) N (Ey) C (UiOxU; (£L7)) U Oy (L).
Since N (R(P 0 ©,8)) = 07N (R(P,3)), by (6.1), (6.2) with A(N — 1) and (6.7) we
get A(N). This completes the proof of Lemma 11.
Proof of Lemma 6. We see that R(P,2NV™) = 2™R(P, 1), where

P(z) =2"NmP(2™z).

Note that ||P|| = 1. (See [1, p. 151].) This observation enables us to assume m = 0 to
prove Lemma 6. Clearly, we may also assume vy = 1.
Thus it is sufficient to show, for & > 0,

(6.8) [{z € B(a,2*) : d(z, R(P,1)) < 1}| < C, 2"~k
uniformly in a € R™.
If n =1, (6.8) easily follows from Chanillo-Christ [1, LEMMA 3.2] (see also [2]). Suppose

n > 2. Then, (6.8) follows from Lemma 11 with 8 =1 and the obvious estimate:

|B(a,2") N U(L:)] < 27D,

where U;(L;) is as in Lemma 11. This completes the proof of Lemma 6.
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