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We present calculation of electronic structure of muonium in silicon in particular

anomalous muonium which has been extensively studied but there is still unre-

solved problems in first-principles calculations. We perform calculations by using

spin-polarized density functional theory within the general gradient approxima-

tion or the local density approximation. We check the size effect of supercells

and find that we need to use large sizes of supercells to get reliable results. Some

quantitative disagreement between the experimental and theoretical values in pre-

vious studies may be due to the use of insufficient sizes of supercells. We clarify

that the negative Fermi contact interaction constant (FCIC) is induced by the

electron correlation effect; By using the Hubbard model, we find that the FCIC is

zero when we neglect the correlation effect and the negative value of the FCIC is

induced by the correlation effect.
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Purposes of This Study

The muonium in silicon is the benchmark for study of muonium in semiconductor

[1-13]. It has been recognized that the muonium in silicon can be located at bond-

center or at the tetrahedral site. The muonium located at the bond-center site

is commonly recognized as an anomalous muonium. The anomalous muonium

has been already observed by experiment [4]. Unfortunately, theoretical studies

have not explained yet, in particular for anomalous muonium. Therefore in this

study we provide reliable calculation by using density functional theory (DFT)

and successfully explain the origin of the small and negative value of muonium

which is considered as an unresolved problem.

We focus our study about firs-principles study of muonium in silicon using DFT in

particular muonium at bond center (BC). In this thesis we focus on the study of

the hyperfine parameters, in particular FCIC. We try to determine the calculation

parameters and vary the size of supercells, where we try to increase the accuracy of

the calculation results because there is discrepancy between result of experiment

and theoretical calculation in the past [8,9,12]. We also explain the origin of small

and negative value of FCIC in the case of anomalous muonium in silicon, which is

considered as an unresolved problem. We consider to use the Hubbard model by

using three linear hydrogen to explain that the origin of the small and negative

values in anomalous muonium, of the electron correlation.

Calculation Method

First-principles calculations based on the spin-polarized density-functional theory

are carried out by using PHASE/0 code [14-17]. In this calculation, we use a

supercell approximation to study muonium in silicon crystals [1,18]. The norm-

conserving pseudopotential developed by Troullier and Martins is used for both

atoms [19]. We set the cut off energies of 25 Rydberg and 100 Rydberg, re-

spectively, for the wavefunctions and charge density. We use the local density

approximation (LDA) and the generalized gradient approximation (GGA) for the

exchange-correlation energy. The LDA calculation is based on the method devel-

oped by Perdew and Wang [20] and we use the Perdew-Burke-Ernzerhof formalism

for the GGA calculations [21].
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The lattice parameter of the unit cell is set to be 5.431 Å which is deduced from

experimental data [22-24]. We vary the size of the supercell, and then we check

the convergence of the FCIC. We adopt the Γ k point sampling for supercell

calculations. We optimize the atomic geometries and in the optimized geometry,

the atomic forces are less than 10−3 Hartree/Bohr and the total energy is converged

within 10−10 Hartree/cell. By using the k points of the 4×4×4 mesh grid, we

apply the tetrahedron method to the calculations of density of states (DOS) and

projected density of states (PDOS).

Results and Discussion

Figure 1: (a) Calculated η̃. The black solid line represents η deduced
from experimental data[3]. We present the fitting curves for the LDA
and GGA calculational results. (b) Calculated FCIC. The experimental
value is deduced from Ref. 3 and is represented by the black solid line.
The horizontal axis represents N which means that the supercell size is

N ×N ×N .

We first determine the stable position of muonium and confirm that the BC site

is the most stable. We next calculate the FCIC (Fig. 1(a) and (b)). The constant
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reaches the convergence by using the supercell of the 4×4×4 size: the supercell

gives the value close to these calculated by using from the 5×5×5 and 6×6×6

supercells. We find that the following function well fits to the above mentioned

FCIC and η̃:

YFCIC = A+B exp(−αN), (1)

Yη̃ = A′ +B′ exp(−α′N). (2)

where N is the supercell parameter, which means that the supercell size is N ×
N ×N . All fitting parameters can be seen in Table 1.

Table 1: Fitting parameters in Eq. (1) and Eq. (2)

Exchange Energy A(MHz) B(MHz) α A′ B′ α′

GGA -55.6 -175.6 0.65 -0.012 -0.039 0.651
LDA -18.0 -81.1 0.57 -0.004 -0.018 0.577

Figure 2: The magnetic moment of electrons based on the Hubbard model
of three linear hydrogen molecule.

Our calculation shows that the FCIC is negative, which is due to the fact that

the spin density at the muon site is negative. We here discuss the origin of this

negative spin density at the muon site. We introduce the Hubbard model for linear

tri-hydrogen molecule, which is considered to be a simplified model of the present

system [25]. We numerically solve the Hubbard model in the case of t
U
→ 0, and

find that the magnetic moments at the middle site and the side sites have the

opposite signs; The magnetic moment at the middle site and the edge sites are
1
3
µB and -2

3
µB, respectively (see Fig. 2 and Fig. 3), which means that the spin

density at the middle site is negative. We perform GGA calculation by taking
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a large bond length(lH−H = 2.0 Å), which corresponds to a small t
U

case in the

Hubbard model (see Fig. 3). The calculated spin density distribution is similar

to that in the Hubbard model in the limit, t
U

→ 0. As t
U

becomes large, the

magnitude of the spin density at the middle site is expected to decrease and get

close to zero as is expected based on the tight binding model. This tendency of

the spin density expected based on the Hubbard model is reproduced by our GGA

calculation. We perform calculations for the bond lengths of 0.82 Å, 0.95 Å and

2.00 Å and find that the magnitude of the spin density at the middle site becomes

small as the bond length decreases(Fig. 3). Finally, by considering the analogy

between the linear tri-hydrogen molecule and the present system, we attribute the

negative FCIC to the electron correlation effect.



5

Figure 3: Spin densities of the linear tri-hydrogen molecule (the
red and the green colors represent positive and negative value of iso-
surfaces, respectively) for the cases of lH−H= 0.82 Å (the isosur-
face value is 9.11×10−2 spin/bohr−3), lH−H=0.95 Å (the isosurface
value is 4.11×10−2 spin/bohr−3), and lH−H=2.0 Å (the isosurfacevalue
is 4.11×10−2 spin/bohr−3)(The spin density was drawn using VESTA
[26,27]). We also show the magnetic moment at each site calculated based
on the Hubbard model. Two limiting cases (t >> U and t << U) are

considered.
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