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Electronic Structure Calculation of Muonium in Silicon

by Muhamad Nasruddin Manaf

We present calculations of the electronic structure of muonium in silicon, in partic-

ular, muonium at the bond center (BC) site. Muonium at the BC site in silicon is

commonly recognized as anomalous muonium (AM) due to the fact that the spin

density at muonium site has a negative value instead of a positive one. The spin

density corresponds to experimentally observed parameter which is recognized as

Fermi Contact Interaction Constant (FCIC). Previous studies reported the result

of first-principles calculations. However, the FCIC shows significant deviations

from the experimental value. The origin of the negative value of FCIC has not

been explained yet. Therefore, in this study, we present reliable calculations to get

reliable results. We calculate AM in silicon using spin-polarized density functional

theory based on general gradient approximation or local density approximation.

We carry out accurate calculations of the FCIC by increasing the size of supercell.

The disagreement between the previously reported values and the experimental

one is found to be the sizes of the supercells, which is not sufficient: the distance

between muoniums is too small due to the small sizes of the supercells. Therefore,

the effect of interaction between muoniums can not be excluded. We also clarify

that the origin of the negative value of FCIC is the correlation effect. By consider-

ing the Hubbard model of linear three-hydrogen molecule, we find the correlation

effect induces the negative FCIC value at muonium site. On the other hand, the

FCIC is zero when we do not include the correlation effect.

Keywords: silicon, muonium, supercells and electron correlation effect
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4.11×10−2 spin/bohr−3), and lH−H=2.0 Å (the isosurfacevalue is
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Chapter 1

Introduction

1.1 Background

Semiconductor materials have been widely used for modern devices such as light

emitting diodes (LED) and transistors. Pristine semiconductors, which are com-

monly recognized as an intrinsic semiconductors have no useful applications. Mean-

while, defects and impurities can modify the electronic properties and increase the

carrier concentration of the electron or hole; and enable fabrication of n-type and

p-type semiconductors. The n-type and p-type semiconductors are commonly rec-

ognized as a extrinsic semiconductors. The extrinsic semiconductors are valuable

and applicable for electronic devices; for example in 2014, Shuji Nakamura, Isamu

Akasaki and Hiroshi Amano won the noble prize due to the invention of the blue

LED which is the breakthrough for the achievement of white LED; the lighting

with the low and efficient consumption of energy[1-8]. They succeeded in fab-

ricating the p-type gallium nitride (GaN); which was practically difficult to be

achieved. They achieved the p-type GaN by using magnesium as a dopant and

eliminated hydrogen impurities. Therefore, the study of defect and impurities in

materials is essential.

Silicon has been studied for the last few decades. Silicon has a vital impact for the

development of the transistors; this corresponds to the central part of the proces-

sor in the personal computer. Although recently developed of 2D materials have a

potential to be applied for the semiconductor industry, the transistor made from

bulk semiconductors have more benefits due to low-cost production. The history

of a transistor was started in 1947; the germanium point-contact transistor was

1
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invented[9]. Several years later a silicon-based transistor was launched. Then, the

silicon replaced the germanium as a material for transistor due to the fact that

silicon can works at room temperatures, whereas germanium transistors operate

in low temperatures. The development of metal oxide semiconductors field effect

transistor (MOSFET) follows the pattern of Moore’s Law. Silicon is semiconduc-

tors that commonly used for MOSFET. Recently, the development of MOSFET

has been growing so fast. This achievement obtains due to the reduction of the

scale of the transistor into the nanometer size.

Important impurities in semiconductors are hydrogen[10]. The hydrogen atom as

an impurity in materials can induce favorable or unfavorable effect due to the elec-

tronic properties. Therefore, the study of hydrogen in materials sciences has been

attracting a lot of interest. In the wide band-gap semiconductors such as ZnO and

GaN, hydrogen may activate the shallow impurities, which can be considered as a

favorable effect[10-14]. Recently, some reports explain that the shallow impurities

are promising for the proposal of quantum computing[15,16]. On the other hand,

hydrogen also can behave as a deep donor, which is classified as an unfavorable

effect[10]. Electron Paramagnetic Resonance (EPR) is one of the useful tools to

study the dynamics of hydrogen. Another method that can predict the dynamics

of hydrogen and muon spin resonance or commonly abbreviated as µSR is one of

the promising tool[17,18]. Instead of using hydrogen, µSR use muonium, which

is a particle that mimics like hydrogen consist of sub-particle muon and electron.

Muon has the same electric charge as a proton. Even though the mass is 1/9 of

that of the proton, the behavior of muon is similar to the proton. The muonium

is implanted into the material, then the muon decay into positron in which can be

detected. The information about the dynamics of muonium in materials can be

extracted from the detected positron. Therefore, µSR has been used for several

decades to determine the dynamics of hydrogen in materials sciences in particular

semiconductors. In µSR, hyperfine parameters (HP), in particular, the Fermi con-

tact interaction constants (FCIC) are observed. Analysis of these parameters give

useful information; for example, it provides information on the site of muonium,

which is expected to be the stable site of hydrogen.
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1.2 Purposes of This Study

The muonium in silicon is the benchmark for the study of muonium in semicon-

ductors [22-34]. It has been recognized that the muonium in silicon can be located

at bond-center or in the tetrahedral site; commonly recognized as an anomalous

muonium and normal muonium, respectively. The anomalous muonium already

observed in experiments[25]. Unfortunately, the accurate and the reliable theoret-

ical calculations have not been conducted, in particular in the case of anomalous

muonium. Therefore in this study we provide reliable calculation and explain the

origin of the small absolute value and negative sign of FCIC at muonium site which

is considered to be an unresolved problem.

We carry out first-principles calculations of muonium in silicon using density func-

tional theory (DFT). In this thesis we focus on the study of the hyperfine parame-

ters, in particular FCIC. We try to determine the calculation parameters and vary

the size of supercells, so that we try to increase the accuracy of the calculation and

can reproduce the experimental data which has not been achieved in the previous

reports[29,30,33]. We explain the origin of small absolute and negative value of

FCIC in the case of anomalous muonium in silicon, which is considered to be an

unresolved problem. We use the Hubbard model to analyze three linear hydrogen

in purposed to explain the origin of the small and negative values in anomalous

muonium, and discuss possibility that the electron correlation is the origin of the

negative value.

1.3 Outline of Thesis

This thesis consists of four chapters. In Chapter I, the background of this research

is introduced. Then we explain some fundamental concepts of DFT in chapter II.

In Chapter III, we explain the first-principles study of an anomalous muonium in

silicon. We explain the origin of the small absolute and negative value of FCIC .

We successfully explained that the small and negative value are due to the electron

correlation. We use Hubbard model of linear three hydrogen molecule to explain

this phenomena. In the last Chapter which is Chapter IV we explain the summary

of our research.



Chapter 2

Theoretical Background

In this chapter, we briefly present some theory, which is related to the fundamen-

tal concepts of DFT and Hyperfine Structure (HS), in particular Fermi Contact

Interaction Constant (FCIC). Firstly, we give a brief explanation of DFT from the

section 2.1 to the section 2.4. We also explain the Hubbard model in section 2.5

due to the fact that the origin of small and negative value of FCIC comes from

the electron correlation effect. The method to calculate HS, in particular FCIC

will be explained in section 2.6.

2.1 Schrödinger Equation and Born-Oppenheimer

Approximation

A full interaction of a Schrödinger eigenvalue equation for the complex system

which is involving many-body interactions between electrons and nuclei can be

expressed as follow:

ĤΨ(r1,R1, r2,R2, ...) = EΨ(r1,R1, r2,R2, ...), (2.1)

where Ĥ and E are represent Hamiltonian and the eigenvalue respectively. The

wave function Ψ has dependent with two variables, which are ri and Rj; where ri

and Rj represent the positions of i-th electron and j-th nucleus in the real space,

respectively. The Hamiltonian operator in the Eq.(2.1) above can be expressed as

below:

Ĥ = T̂e + T̂n + V̂ee + ˆVnn + V̂en, (2.2)

4
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where T̂e is the kinetic energy operator of the electrons, T̂n is the kinetic energy

operator of the nucleus, V̂ee is the energy operator of electron-electron interaction,

ˆVnn is the energy operator of nucleus-nucleus interaction and V̂en is the energy op-

erator of electron-nucleus interaction. The Halmitonian above (Eq. (2.2)) consists

of two parts which is classified as the kinetic energy operator and the interaction

energy part. The kinetic energy part which are represented by T̂e and T̂n can be

expressed as below:

T̂e = −1

2

N∑
i=1

∇2
i (ri), (2.3)

and

T̂n = −1

2

N∑
j=1

1

Mj

∇2
i (Rj), (2.4)

whereMj is the mass of j-th nucleus. The interaction energy operator are expressed

by V̂ee, ˆVnn and V̂en which are can be expressed as follow:

V̂ee =
1

2

∑
i ̸=j

1

|ri − rj|
, (2.5)

ˆVnn =
1

2

∑
i ̸=j

ZiZj

|Ri −Rj|
, (2.6)

and

V̂en = −
∑
i,j

Zj

|ri −Rj|
, (2.7)

where Zj is the atomic number. The equation (2.1) is defined by 3M+3N param-

eter in real space and it is a complex equation which is hardly solve.

By considering the significant difference of mass between electron and nucleus in

which as a consequence that we can neglect the motion of the nucleus; remove the

T̂n and the ˆVnn, then the Hamiltonian in the Eq.(2.2) can be simplified as follow:

Ĥ = T̂e + V̂ee + V̂en. (2.8)

The Schrödinger equation then can be expressed as follow:

ĤΨ =

[
−1

2

N∑
i=1

∇2
i (ri) +

1

2

∑
i ̸=j

1

|ri − rj|
−
∑
i,j

Zj

|ri −Rj|

]
Ψ = EΨ. (2.9)
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This approximation is called Born-Oppenheimer approximation. This approxima-

tion can be adapted to solve from simple problem such as hydrogen atom to the

problem for complex system such as bulk materials and surface. Even though the

Eq.(2.9) is simple compare with the Eq. (2.1), however this equation is still hard

to solve. Therefore we can reduce our problem for finding solution of the ground

states. Consequently, we have to introduce additional approximation which is

commonly recognized as a variation principle and Hatree-Fock approximation.

2.2 The Variation Principle

It is really hard to find the eigenfunction of the Hamiltonian for the complex

system which is involving a many body interaction. Even though, we can use

the trial many body interaction of eigenfunction that we have already known.

Therefore, we can use the trial wavefunction with the same number electron and

we can expand it in the Eq. (2.10) with the assumption that this eigenfunction is

complete:

|Ψ⟩ =
∑
i=1

ci|ϕi⟩, (2.10)

where ci are the expansion coefficients and the eigenstates ϕi are assumed to be

orthonormal. The wavefunction (Eq.(2.10)) is assume to be normalized, therefore

the expectation value for the energy is given by the equation below:

E = ⟨Ψ|Ĥ|Ψ⟩

=
∑
i,j

c∗jci⟨ϕj|Ĥ|ϕi⟩

=
∑
i

|c2i |Ei

≥ E0

∑
i

|c2i | = E0.

(2.11)

where E0 is the minimum energy which is commonly recognized as the ground

state energy. The expectation value of the energy of the trial wavefunction can be

higher or equal with the ground state energy. Then equation (2.11) exhibit the

important information which is we can find the ground state by using some trial

wavefunctions. The computational cost of the calculation to find the ground state

wavefunction by using trial wavefunction is depend on the accuracy of the trial
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wavefunction. If the trial wavefunction is relatively close to the real wavefunction,

it will reduce the computational cost.

The trial wavefunction for a given system can be expressed as a particular set of

a plane wave, in which we can express as below:

ϕ =
N∑
j

cjexp(−ik · rj), (2.12)

The trial wavefunction above (Eq.(2.12)) should has normalized and due to the

ground state energy, the wavefunction must satisfies the minimum condition:

∂

∂c∗j
⟨ϕ|Ĥ|ϕ⟩ = 0, (2.13)

for all cj. Then we can introduce a new parameter which is by introducing a new

quantity as follow:

K = ⟨ϕ|Ĥ|ϕ⟩ − λ[⟨ϕ|ϕ⟩ − 1]. (2.14)

Minimizing Eq. (2.14) with respect to cj and λ, than we can obtain

∂K

∂c∗j
=
∂K

∂λ
= 0, (2.15)

where λ is called Langrange Multiplier. By inserting Eq. (2.12) to Eq. (2.14) than

we can obtain

∑
j

cj

(
⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩ − λ⟨exp(−ik · ri)|exp(−ik · rj)⟩

)
= 0.

(2.16)

Then we can write the eigenvalue equation as follow:

∑
j

Hijcj = λδij, (2.17)

whereHij = ⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩ and δij = ⟨exp(−ik · ri)|exp(−ik · rj)⟩,
respectively. We can solve this equation with (j = 1, 2, ..., N) by calculating the

matrix element Hij and δij. By multiplying Eq. (2.17) with c∗j and summing over

j, we can get the expression below:

λ =

∑
i,j c

∗
i cj⟨exp(−ik · ri)|Ĥ|exp(−ik · rj)⟩∑

i,j c
∗
i cj⟨exp(−ik · ri)|exp(−ik · rj)⟩

, (2.18)
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where λ and ϕ correspond to a different expectation value and the eigenfunction

with the smallest eigenvalue, respectively. The smallest eigenvalue is correspond

to the ground state.

2.3 Hartree-Fock Approximation

The main problem to solve the many-body Schrödinger equation is the repre-

sentation of the many-body wavefunction. In 1928, Douglas Hartree developed

approximation which is simplify the problem of electron-electron interactions by

assuming the many-body electron wavefunction is expressed as a product of single

electron wavefunction; this approximation is commonly recognized as a Hartree

approximation[35]. Using this approximation and also involving the variation prin-

ciple, we can solve the many-body Schrödinger equation as a N -single electrons

system. The wavefunction for Hartree approximation can be expressed as follow:

ΨH(r1, r2, · · · , rN) =
1√
N
ϕ(r1), ϕ(r2), · · · , ϕ(rN), (2.19)

where ΨH(ri) consists of the spatial wavefunction ϕi.

However, in 1930, John Clarke Slater and Vladimir Aleksandrovich Fock inde-

pendently proved that the Hatree approximation can not explain the principle

of antisymmetry for the wavefunction of electrons[36-38]. The Hartree approx-

imation does not consider the exchange interaction since Eq. (2.19) does not

satisfy Pauli’s exclusion principles. Then Slater introduced the determinant of

many-body electrons which is satisfy the antisymmetry property and suitable for

variation principles. Therefore, in 1935, Douglas Hatree reformulated the method

and then recognized this as a Hatree-Fock (HF) approximation[39]. As already

mentioned before that HF use Slater determinant which is can represent the N-

electron wavefunctions as follow:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) . . . ϕN(r1)

ϕ1(r2) ϕ2(r2) . . . ϕN(r2)
...

... . . .
...

ϕ1(rN) ϕ2(rN) . . . ϕN(rN)

∣∣∣∣∣∣∣∣∣∣∣
(2.20)
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with additional orthonormal constraint∫
ϕ∗
i (r)ϕj(r)dr = ⟨ϕi|ϕj⟩ (2.21)

By using above Slater determinant, we can determine the HF energy from the

expectation value of Hamiltonian, which is can be expressed as follow:

E = ⟨ΨHF |Ĥ|ΨHF ⟩ = 2
N∑
i

hi +
N∑
i

N∑
i

(2Ji,j −Ki,j). (2.22)

The first term in Eq.(2.22) is represents the kinetic energy of electrons and the

interaction between energy and nuclei. On the other hand, in second term is

expresses the interaction between two electrons which is commonly recognized as

a Coulomb interaction energy and also exchange integrals. The first and second

term can be expanded as the expression as follow:

hi =

∫
ϕ∗
i (r1)ĥϕi(r1)dr1, (2.23)

Ji,j =

∫ ∫
ϕ∗
i (r1)ϕi(r1)

1

|r1 − r2|
ϕ∗
j(r2)ϕj(r2)dr1dr2, (2.24)

Ki,j =

∫ ∫
ϕ∗
i (r1)ϕj(r1)

1

|r1 − r2|
ϕ∗
j(r2)ϕi(r2)dr1dr2. (2.25)

The term Ji,j and Ki,j are commonly recognized as the Coulomb integral and the

exchange integral, respectively. To explain simple way to solve many-body interac-

tion by using HF approximation, then we can introduce which VHF is considered

as HF potential. This potential describe the repulsive interaction between one

electron with the other N − 1 electrons in average, in which consists of Ĵ and K̂

which are represent as a Coulomb and an exchange operator, respectively. Both

operator can be expressed as follow:

Ĵϕ(r) =

∫
dr2

|Ej(r2)|2

|r1 − r2|
Ei(r1), (2.26)

K̂ϕ(r) =

∫
dr2

E∗
j (r2)Ei(r2)

|r1 − r2|
Ej(r1). (2.27)

Then we conclude that the HF is constructed by the effective wavefunction and the

effective potential. We give the initial input HF wavefunction which is corresponds

to Slater determinant. After that, we construct the potential operator by consid-

ering the electron-electron interaction and also considering self interaction. Next
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iteration is calculated based on the previous calculations until the convergence is

achieved. This method commonly recognized as self-consistent field (scf)[36].

2.4 Density Functional Theory (DFT)

The main idea of Density Functional Theory (DFT) is represented the interact-

ing system as an electron density instead of wavefunction. The electron density

equation can be expressed as follow:

n(r) = N
∑
s1

· · ·
∑
sN

∫
· · ·

∫
|Ψ(r1, s1, · · · , rN , sN)|2dr1dr2· · ·drN, (2.28)

and ∫
n(r)dr = N. (2.29)

The DFT construct by two fundamental theorems state by Walter Kohn and

Pierre Hohenberg in 1964[40]. In the following subsections will be explained this

two theorems and also the Kohn-Sham equation.

2.4.1 Hohenberg-Kohn Theorems

The work of Walter Kohn and Pierre Hohenberg can be summarized as two fun-

damentals theorem which is commonly recognized as the fundamentals concept of

DFT. The first theorem as follow:

Theorem 2.1 (Hohenberg-Kohn I, 1964). The ground state density n(r) of many

body quantum system in some external potential Vext determines this potential

uniquely.

Proof: The first theorem can be proved by reductio ad absurdum. Let assume

we have two different external potential; V
(1)
ext and V

(2)
ext in which have the same

of ground state density n0(r). This two external potential have two different

Hamiltonian for example Ĥ(1) and Ĥ(2), also they have two different ground state

wavefunction such as ψ(1) and ψ(2). Hypothetically, this two wavefunction have

the same ground state electron density n0(r) but different ground state of energy.

Since ψ(2) correspond to Ĥ(2) and it does not related with Ĥ(1), therefore we can
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obtain:

E(1) =
⟨
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

⟩
<

⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
. (2.30)

The last term in Eq.(2.30) above can be expressed as follow:⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
=

⟨
ψ(2)

∣∣∣Ĥ(2)
∣∣∣ψ(2)

⟩
+
⟨
ψ(2)

∣∣∣Ĥ(1) − Ĥ(2)
∣∣∣ψ(2)

⟩
= E(2) +

∫
d3r

[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r),

(2.31)

then we can obtain

E(1) < E(2) +

∫
d3r

[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r). (2.32)

Using the same method we can find similar expression like Eq.(2.32) for E(2), as

below:

E(2) < E(1) −
∫

d3r
[
V

(1)
ext (r)− V

(2)
ext (r)

]
n0(r). (2.33)

Then we add Eq. (2.32) and (2.33) than this summation obtain the inconsistency:

E(1) + E(2) < E(1) + E(2). (2.34)

Therefore this theorem has proven by reductio ad absurdum.

Theorem 2.2 (Hohenberg-Kohn II, 1964). A universal functional for the energy

E[n] in terms of the density n(r) can be defined, valid for any external potential

Vext(r). For any particular Vext(r), the exact ground state energy of the system is

the global minimum value of this functional and the density n(r) that minimizes

the functional is the exact ground state density n0(r).

Proof : Since all properties can be seen as a functional of n(r); including total

energy functional, therefore we can obtain:

EHK [n(r)] = T [n(r)] + Eint[n(r)] +

∫
Vext(r)n(r)d

3r+ ENN (2.35)

where ENN is the interaction energy between nuclei. We can express the kinetic

and internal potential energies as a universal functional of the charge density

F [n(r)]; due to the fact that both are the same for all system. Therefore we can

write the Eq.(2.35) above as follow:

EHK [n(r)] = F [n(r)] +

∫
Vext(r)n(r)d

3r+ ENN (2.36)
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Let assume we have ground state electron density n(1)(r) which is correspond V 1
ext:

E(1) = EHK [n
(1)(r)]

=
⟨
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

⟩
.

(2.37)

Then we introduce new electron density, n(2)(r); in which correspond to the wave-

function ψ2:

E(2) =
⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
. (2.38)

From Eq.(2.37) and Eq.(2.38) we can obtain that:⟨
ψ(1)

∣∣∣Ĥ(1)
∣∣∣ψ(1)

⟩
<

⟨
ψ(2)

∣∣∣Ĥ(1)
∣∣∣ψ(2)

⟩
. (2.39)

Then we can minimizing the energy E(2) with respect to electron density n(r) and

express the total energy as a function of electron density until obtain the ground

state energy, which is correspond to the correct density minimizing the energy.

2.4.2 The Kohn-Sham Equation

The Kohn-Sham (KS) equation correspond to the concept introduced in 1965 by

Walter Kohn and Lu Jeu Sham as the fundamental concept due to the application

of DFT[41,42]. The KS uses the Hohenberg-Kohn theorem which has already

explained in the previous subsection. The KS equation explain that the total

energy of the system depends on the electron density of the system where this

statement can be expressed as follow:

E = E[n(r)]. (2.40)

The idea is mapping an interacting electrons system into an auxiliary system of

a non-interacting electrons with the same ground state of electron density n(r).

For a system of non-interacting electrons, the ground state of electron density is

represented as a sum of all electron orbitals which is can be expressed as follow:

n(r) =
N∑
i

|ϕi(r)|2, (2.41)

where i is calculated from 1 to N/2 if we consider double occupancy of all states

and also we have to multiplied the sum by 2. The electron can be varied by
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changing the trial wavefunction of the system. If the electron density correspond

to the minimum energy, the whole system is a ground state. Therefore, by solving

KS equation then we can find the ground state density and also ground state

energy. The accuracy of the calculation results are depend on the exchange and

the correlation interaction.

The KS approach replaces the interacting electron system into a non interacting

case, in which we introduce the new potential, commonly is called effective po-

tential. The effective potential consists of external potential, Coulomb interaction

between electrons, the exchange interaction and correlation effect. Therefore, the

KS equation can be expanded as follow:

EKS = T [n(r)] + EH [n(r)] + EXC [n(r)] +

∫
drVextn(r). (2.42)

The first term in Eq. (2.42) represents the kinetic energy of a non-interacting

electrons:

T [n(r)] = − ~2

2m
2
∑
i

Ψ∗(r)∇2Ψ(r)dr, (2.43)

The second in Eq. (2.42) is correspond to the Hartree energy containing the

electrostatic interaction between cloud of charge:

EH [n(r)] =
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′. (2.44)

All effects related to exchange and correlation are grouped into exchange-correlation

energy which commonly expressed as EXC . Then, after we determine the EXC

part, we can find the ground state electron density and also the ground state of

total energy in which represent the system.

We can solve KS equation by functional derivatives with respect to the electron

density n(r) as follow:

δEKS

δΨ∗
i (r)

=
δT [n(r)]

δΨ∗
i (r)

+

[
δEext[n(r)]

δn(r)
+
δEH [n(r)]

δn(r)
+
δEXC [n(r)]

δn(r)

]
δn(r)

δΨ∗
i (r)

−
δ(λ

∫
n(r)dr−N)

δn(r)

[
δn(r)

δΨ∗
i (r)

]
= 0,

(2.45)

where λ correspond to Lagrange multiplier which is already mentioned in previous

subsections, VXC is the exchange and correlation potential where can be expressed
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as below:

VXC =
δEXC [n(r)]

δn(r)
. (2.46)

The last term is the Lagrange multiplier for handling the constraint, we get a

non-trivial solution. The first, second and third terms in Eq. (2.45) are given by:

δT [n(r)]

δΨ∗
i (r)

= − ~2

2m
2∇2Ψi(r), (2.47)

[
δEext[n(r)]

δn(r)
+
δEH [n(r)]

δn(r)
+
δEXC [n(r)]

δn(r)

]
δn(r)

δΨ∗
i (r)

= 2(Vext(r) + VH(r) + VXC(r)),

(2.48)

δ(λ
∫
n(r)dr−N)

δn(r)

[
δn(r)

δΨ∗
i (r)

]
= 2ϵiΨi(r). (2.49)

Inserting Eq. (2.47), (2.48) and (2.49) to Eq. (2.45), then we can prove that the

Kohn-Sham equation reliable with the many body Schodinger equation[
1

2
∇2 + VKS(r)

]
Ψi(r) = ϵiΨi(r), (2.50)

where

VKS = Vext(r) + VH(r) + VXC(r), (2.51)

or

VKS = Vext(r) +
e2

2

∫
n(r′)

|r− r′|
dr′ + VXC(r). (2.52)

If the independent-particle system has the same ground state as the real interact-

ing system, then many-body electron problem can be reduced into one-electron

problem. Therefore, we can write

VKS = Veff . (2.53)

The kinetic energy T [n(r)] is given by

T [n(r)] =
∑
i

ϵi −
∫
n(r)Veffdr. (2.54)
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By subtituting this formula in Eq. (2.42), then we can obtain the total energy

given by:

EKS[n(r)] =
∑
i

ϵi +
1

2

∫
n(r)n(r′)

|r− r′|
drdr′ + EXC [n(r)]−

∫
n(r)Veffdr. (2.55)

Figure 2.1: Self consistent scheme of Kohn-Sham equation.

Since the Hatree term and VXC depend on n(r), which is depend on Ψi, the KS

equation should be solved in an interative self-consistent way. Starting from an

inital guess for electron density n(r) and then calculating the corresponding VXC

and VH . The KS equation for the Ψi, can be solved by producing new electron

density that will be used for new initial guess in the next interactive step. This

proceduce is repeated until the convergence is reached. This interative procedure

can be drawn as flow chart in Fig. (2.1).
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2.5 Hubbard Model

In the case of strong electron-electron interactions, the average interaction energy

becomes larger than the kinetic energy can give drastic changes of the properties

of the system. The electron have tendency to localize which is to minimize their

repulsion and also increase the kinetic energy[42]. Materials with this phenomena

which is play important role for the electronic properties become the center of

the research both in the theoretical study and experimental study for the last few

decades. In this thesis we also explain that the origin of the negative value of

FCIC is due to the existence of electron correlation phenomena in the anomalous

muonium in silicon.

The method that commonly used in the case of strong electron-electron interac-

tions is a Hubbard model which is tight-binding model with only one site inter-

actions. We consider the system with a fixed lattice and nondegenerate band. In

real space the model can be expressed as follow [43]:

H = −t
∑
⟨i,j⟩,σ

c†iσcjσ + U
∑
i

ni↑ni↓. (2.56)

where niσ = c†iσcjσ and the summation in the first term in goes over nearest

neighbors ⟨i, j⟩. The negative sign in Eq. (2.56) is chosen for convenience due

to the bottom of corresponding tight-binding band will be at k = 0. In more

complicated cases the signs of different hopping matrix elements have to be fixed

which is it can modify the results.

2.6 The Calculation Methods

2.6.1 Spin-polarized density functional calculations

First-principles calculations based on the spin-polarized density-functional the-

ory are carried out by using PHASE/0 code[40,41,44,45]. In this calculation, we

use a supercell approximation to study muonium in silicon crystals[22,46]. The

norm-conserving pseudopotential developed by Troullier and Martins is used for

both atoms[47]. We set the cut off energies 25 Rydberg and 100 Rydberg, re-

spectively, for the wavefunctions and charge density. We use the local density
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approximation (LDA) and the generalized gradient approximation (GGA) for the

exchange-correlation energy. The LDA calculation is based on the method devel-

oped by Perdew and Wang[48] and we use the Perdew-Burke-Ernzerhof formalism

for the GGA calculations[49].

The lattice parameter of the unit cell is set to be 5.431 Å which is deduced from

experimental data[50-52]. We vary the size of the supercell, and then we check

the convergence of the FCIC. We adopt the Γ k point sampling for supercell

calculations. We optimize the atomic geometries and in the optimized geometry,

the atomic forces are less than 10−3 Hartree/Bohr and the total energy is converged

within 10−10 Hartree/cell. By using the k points of the 4×4×4 mesh grid, we

apply the tetrahedron method to the calculations of density of states (DOS) and

projected density of states (PDOS).

2.6.2 Fermi contact interaction

The hamiltonian for the hyperfine interaction is expressed as:

H = SeASI , (2.57)

where Se,SI and A are electron spin, nuclear spin and hyperfine tensor, respec-

tively. The hyperfine tensor consists of two parts, i.e., the isotropic part As and

anisotropic partAp. In this work, we focus on the isotropic part,which is expressed

as:

As =
2µ0

3
~γeγIρspin(0)1, (2.58)

where 1 is the 3×3 unit matrix. Equation (2.58) is expressed in the unit of MHz,

where µ0 (4π×10−7 T2m3J−1) is the permeability of vacuum, ~ (1.05457168(18)×
10−34 J s) is the reduced Plank constant, γe (1.76085974(15)×1011 T−1 s−1) is the

electron gyromagnetic ratio and γI (133.81 MHz/T)39) is the gyromagnetic ratio

of nucleus. The ρspin(0) is the spin density of electron at the nuclear position. The

isotropic part of hyperfine tensor can be expressed as follows:

As = As


1 0 0

0 1 0

0 0 1

 , (2.59)
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where As in Eq.(2.59) is the FCIC. For the free atom, the FCIC is expressed as

follows:

Afree
s =

2µ0

3
~γeγI |ϕs(0)|2, (2.60)

where |ϕs(0)|2 is the electron spin density at the free muonium site, which origi-

nates from the s orbital. Since the electron density is equal to 1/π, the value of

Afree
s is equal to 4472 MHz.

We follow the method by Van de Walle and Blöch to evaluate the FCIC by us-

ing the psedudopotential calculations. To evaluate ρspin(0), we use the following

approximation [19,30]:

ρspin(0) = ρ̃spin(R⃗)
|ϕs(0)|2

|ϕ̃s(0)|2
, (2.61)

where ρ̃spin(0) is a pseudo-spin density at the muonium site and |ϕ̃s(0)|2 is a

pseudo-spin density of free muonium. Then the FCIC is given by[19,30]:

As =
ρ̃spin(0)

|ϕ̃s(0)|2
Afree

s . (2.62)

To evaluate the reliability of the above approximation in the next section, we here

introduce two quantities[19]:

η̃ =
ρ̃spin(0)

|ϕ̃s(0)|2
, (2.63)

where η̃ is the ratio of pseudo-spin density at the muonium site in silicon and

pseudo-spin density of free muonium and

η =
ρspin(0)

|ϕs(0)|2
, (2.64)

where η is the ratio of spin density at the muonium site in silicon from experimental

data and spin density of free muonium.



Chapter 3

First-Principles Study of

Anomalous Muonium in Silicon

3.1 Introduction

Muonium in silicon is one of the most extensively studied systems [18-34]. Theoret-

ical calculations indicate that the muonium stopping site in silicon is the tetrahe-

dral and bond-center sites; commonly recognized as normal muonium and anoma-

lous muonium respectively. Anomalous muonium was detected and was clearly

identified as the muonium located at the bond-center (BC) site, which is consid-

ered to be the most stable site [28](see Fig.(3.1)). This anomalous muonium was

first time reported experimentally by Patterson et al [22]. They clarified that the

muonium is located at [111] direction of silicon crystal, but the precise position

was still unclear. Later the location was identified by Kiefl et al [25] who combined

the level crossing resonance and µSR methods. They confirmed that the muonium

is located at the BC site by analyzing the HP, in particular FCIC.

The HP of anomalous muonium in silicon was calculated by several studies. Unfor-

tunately, previous results largely deviated from the experimental data [19,22,25,30,33].

This discrepancy was possibility due to the small sizes of supercell used in previous

reports. Therefore, in this study we consider to use large supercell to provide reli-

able calculation. Furthermore, the origin of the novel FCIC has not been clarified

yet; the FCIC of the anomalous muonium is negative and the absolute value is

extremely small.

19
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Figure 3.1: Geometries of pristine silicon (a) and muonium impurity at
the BC site (b). θ0 = 109.50 and l0=2.35 Å respectively. The silicon and
muonium atoms are denoted by the light brown sphere and black sphere,

respectively.

In this chapter, we attempt to perform reliable first-principles calculations of the

anomalous muonium. We perform spin polarized DFT calculations by using su-

percell models to simulate the impurity in silicon. It is found that we need to

check the convergence of the supercell size; the conventionally used supercell sizes

are found to be insufficient to get reliable results. We clarify the origin of the

small absolute value of the FCIC and discuss its negative sign.
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Table 3.1: Calculated geometry (angle) of the muonium impurity at the
bond-centered (BC) site. The explanation of the geometrical parameters

are given in Fig. 3.1.
Supercell size Number of θ1 (degree) θ2 (degree)

the silicon atoms LDA GGA LDA GGA
2×2×2 64 99.9 99.9 180 180
3×3×3 216 99.7 99.8 180 180
4×4×4 512 99.8 99.8 180 180
5×5×5 1000 99.9 99.9 180 180
6×6×6 1728 99.9 99.9 180 180

Table 3.2: Calculated geometry (distance between atoms) of the muo-
nium impurity at the bond-centered (BC) site. The explanation of the

geometrical parameters are given in Fig. 3.1.

Supercell size Number of l1 (Å) l2 (Å) l3 (Å)
the silicon atoms LDA GGA LDA GGA LDA GGA

2×2×2 64 1.619 1.619 3.238 3.237 2.312 2.313
3×3×3 216 1.624 1.619 3.247 3.239 2.320 2.321
4×4×4 512 1.614 1.614 3.228 3.227 2.322 2.322
5×5×5 1000 1.610 1.610 3.220 3.220 2.320 2.320
6×6×6 1728 1.607 1.606 3.214 3.212 2.320 2.320

3.2 Results and Discussion

We first determine the stable position of muonium and confirm that the BC site

is the most stable. We carry out the calculation by moving the muonium slightly

perpendicular from the BC site and set the minimum force as 10−3 Hatree/Bohr;

as a result the muonium is located at the BC site in the optimized geometry.

Figure 3.1 shows the geometry of the present system. Table 3.1 and 3.2 tabulate

calculation results of the geometry of the muonium impurity at the BC site in

silicon. We vary the size of supercell and find that the 4×4×4 supercell gives a

well converged result; the bond lengths are slightly varied within 0.01 Å when we

use the supercell of the 5×5×5 and 6×6×6 sizes. We confirm that the Si–Mu–Si

bond is linear and the distance between the nearest two silicon atoms is 3.2 Å.

The distance between the first nearest and the second nearest host atoms is close

to the bond length of the perfect crystal, i.e., the difference is within 0.001 Å

We next calculate the FCIC (Fig. 3.2(a) and 3.2(b)). The constant reaches the

convergence by using the supercell of the 4×4×4 size: the supercell gives the value

close to those from the value from the 5×5×5 and 6×6×6 supercell calculations;

the difference in the FCIC between 4×4×4 and these two supercells is small (in
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Figure 3.2: (a) Calculated η̃ given in Eq.(7). The black solid line repre-
sents η in Eq. (2.64) deduced from experimental data[25]. We present the

fitting curves for the LDA and GGA calculational results.
(b) Calculated FCIC. The experimental value is deduced from Ref. 25 and is
represented by the black solid line. The horizontal axis represents N which

means that the supercell size is N ×N ×N .

the case of the GGA calculation the differences are 5.5 MHz and 6.9 MHz for

5×5×5 and 6×6×6 supercells respectively). We find the deviations are following

function well fits to the above mentioned FCIC

YFCIC = A+B exp(−αN), (3.1)

where N is the supercell parameter, which means that the supercell size is N ×
N ×N . We find that the converged values for the GGA and LDA are -55.6 MHz

and -18.0 MHz, respectively. The determined value of A, B, and α are tabulated
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in Table 3.3.

Table 3.3: Fitting parameters in Eq. (3.1) and Eq. (3.2)

Exchange Energy A(MHz) B(MHz) α A′ B′ α′

GGA -55.6 -175.6 0.65 -0.012 -0.039 0.651
LDA -18.0 -81.1 0.57 -0.004 -0.018 0.577

Table 3.4: FCIC of muonium at the BC site. We show our calculational
results for the 512, 1000, 1728 supercells and the value of FCIC from fitting

is estimated by using Eq. (3.1).

References Method Exchange Number of FCIC
energy silicon atoms (MHz)

Present Pseudopotential GGA 512 -67.1
Present Pseudopotential GGA 1000 -61.6
Present Pseudopotential GGA 1728 -60.2
Present(Fitting) Pseudopotential GGA -55.6
Porter et.al[33] All electron GGA 16 -89.3
Porter et.al[33] All electron LDA 16 -27.1
Luchsinger et.al[30] Pseudopotential GGA 64 -81
Luchsinger et.al[30] Pseudopotential LDA 64 -26
Van de Walle and Blöchl[19] Pseudopotential LDA 32 -35
Experiment[25] -67.3

The value calculated from the GGA calculation is found to be close to the experi-

mental value [25]. The deviation of the above-mentioned converged value from the

experimental one is 11.7 MHz (17.4%). This deviation is, in general, smaller than

those in previous calculations (Table 3.4). The deviations are 22.0 MHz-41.3 MHz

(33%-61%). One of the reasons for the discrepancy between the experimental and

calculational results in the past studies is expected to be due to the fact that small

sizes of supercells were used.

We also evaluate the value of η̃ in Eq. (2.63) from calculational results and intro-

duce the following fitting expression which is similar to Eq. (3.1):

Yη̃ = A′ +B′ exp(−α′N). (3.2)

The determined parameters are tabulate in Table 3.3. The converged value, A′

(-0.012), is close to the value of η (-0.015) in Eq. (2.64) deduced from experimental
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Figure 3.3: DOS (a) and PDOS of the nearest silicon atoms (b) and of
the muonium (c). The vertical dashed lines indicate the Fermi level in the

supercell calculations.

data (Fig. 3.2). This result suggests the validity of the approximation mentioned

in the previous section which was introduced in Ref. 19 and Ref. 29.

We here calculate the DOS, PDOS (Fig. 3.3) and spin density (Fig. 3.4(a)). As

the DOS (Fig. 3.3(a)) shows, the spin density mainly originates from the spin

polarized impurity level which is located below the conduction band bottom. By
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Figure 3.4: (a) Spin density where the absolute value of the isosurfaces
is 1.50×10−3 bohr−3. The positive and negative spin densities are repre-
sented by red and green colors, respectively. The spin density was drawn
using VESTA [54,55]. (b) Wavefunction of the impurity level. The red and
blue colors represent positive and negative values, respectively. (c and d)
Schematic view of two muonium related wavefunctions. The red and the

blue colors represent the positive and negative values, respectively.

analyzing PDOS (Figs. 3.3(b) and 3.3(c)), we find that the impurity level mainly

consists of the s and p orbitals of the nearest Si atoms and do not include the

muonium s orbital component. As a result, the spin density is mainly distributed

at the nearest two Si sites and the spin density is very small at the muonium site

(Fig. 3.4(a)). This is the reason why the absolute value of FCIC is very small

in this system: The observed FCIC of the anomalous muonium is -67.3 MHz[25],

whose magnitude is much smaller than that of the free muonium (4463 MHz)[46].

Our calculation shows that the FCIC is negative, which is due to the fact that

the spin density at the muon site is negative. We here discuss the origin of this

negative spin density at the muon site. As was mentioned above, the impurity

level does not contribute to the spin density at the muon site. Therefore, the spin

density at the muon site is expected to originate from muon related states which

are embeded in the valence band. Actually, the PDOS of the muon s orbital shows
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Figure 3.5: Spin densities of the linear tri-hydrogen molecule (the
red and the green colors represent positive and negative value of iso-
surfaces, respectively) for the cases of lH−H= 0.82 Å (the isosurface
value is 9.11×10−2 spin/bohr−3), lH−H=0.95 Å (the isosurface value
is 4.11×10−2 spin/bohr−3), and lH−H=2.0 Å (the isosurfacevalue is
4.11×10−2 spin/bohr−3). We also show the magnetic moment at each
site calculated based on the Hubbard model. Two limiting cases (t >> U

and t << U) are considered.

two strong peaks around -4 eV and -8 eV (Fig. 3.3(c)). The minority spin DOS

at these peaks are found to be larger than those of the majority spin DOS. This

difference causes the negative spin density at the muonium site.

We here introduce a simplified model to explain the above results concerning

the negative spin density. In Fig. 3.4, we consider two wavefunctions. In the

wavefunction in Fig. 3.4(c), the nearest Si orbitals and muonium s orbital have

the same phases (bonding) and it is embeded in the deep of valence band. In the

other wavefunction in Fig. 3.4(b) (schematic view is showed in Fig. 3.4(d)), the
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Figure 3.6: Schematic diagram of energies of the linear tri-hydrogen
molecule on the lefthand side and wavefunctions on the righthand side
where the red and blue colors represent positive and negative amplitudes,

respectively.

two Si p orbitals have anti-phase, therefore there is a node at the muonium site.

Since the former wavefunction has a relatively low energy and it has an amplitude

at the muonium site, it contributes to the small but finite value of the FCIC. On

the other hand, since the latter wavefunction has a relatively higher energy, it is

included in the impurity level (Fig. 3.4(b)) and does not contributes to the FCIC.

To clearly understand the novel FCIC, we here introduce the linear tri-hydrogen

molecule, which is considered to be a simplified model of the present system (Fig.

3.5). First, we consider a tight binding model including a hopping parameter t

between the nearest atomic sites. Two electrons having majority and minority

spins occupy the lowest energy level, ϕ1 = 1
2
(χ1 +

√
2χ2 + χ3), where χ1 and χ3

are the atomic orbitals at the two side sites and χ2 is the orbital at the middle

site. This wavefunction corresponds to that in Fig. 3.4(c). A single majority spin

electron occupies the second lowest level, ϕ2 =
1√
2
(χ1 − χ3), which corresponds to

that in Fig. 3.4(d). Therefore, the tight binding approximation leads to the result
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Figure 3.7: (a) Spin density of the linear tri-hydrogen molecule. We
carry out calculations by changing the bond length from the equilibrium
bond length (lH−H=0.95 Å) (b) FCIC of anomalous muonium in silicon.
The calculations are performed by changing the bond length from the

equilibrium one (lSi−Mu=1.61 Å).

that the spin density at the middle site is zero and the spin density appears at the

both side sites (Each side site has the magnetic moment of 0.5 µB and the middle

site has no magnetic moment) (see Fig. 3.5).

We perform a GGA calculation on the linear tri-hydrogen molecule by taking the

equilibrium bond length (lH−H=0.95 Å) and obtain results which are similar to

those based on the tight binding model; as Fig. 3.6 shows, low energy levels

occupied by majority and minority spin electrons have wavefunctions similar to

ϕ1 and a high energy level occupied by a single majority spin electron has a

wavefunction similar to ϕ2. However, there is a slight difference between the ϕ1
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Figure 3.8: The magnetic moment of electrons based on the Hubbard
model of three linear hydrogen molecule.

type wavefunctions occupied by majority spin and minority spin electrons. As a

result, the middle site has a small amount of the spin density which is negative.

This small value of the spin density cannot be explained based on the tight binding

model which leads to the zero value of the spin density, so we expect that the

nonzero value originates from the electron correlation effect.

We hence introduce the Hubbard model including the on-site Coulomb repulsion

U as well as t[43]. We numerically solve the Hubbard model in the case of t
U
→ 0,

and find that the magnetic moments at the middle site and the side sites have the

opposite signs; The magnetic moment at the middle site and the edge sites are
1
3
µB and -2

3
µB, respectively (see Fig. 3.5 and Fig. 3.8), which means that the spin

density at the middle site is negative. We perform GGA calculation by taking

a large bond length(lH−H = 2.0 Å), which corresponds to a small t
U

case in the

Hubbard model (see Fig. 3.5). The calculated spin density distribution is similar

to that in the Hubbard model in the limit, t
U
→ 0.

As t
U

becomes large, the magnitude of the spin density at the middle site is ex-

pected to decrease and get close to zero as is expected based on the tight binding

model. This tendency of the spin density expected based on the Hubbard model is

reproduced by our GGA calculation. We perform calculations for the bond lengths

of 0.82 Å, 0.95 Å and 2.00 Å and find that the magnitude of the spin density at the

middle site becomes small as the bond length decreases(Fig. 3.5). This tendency

of the spin density is also demonstrated in Fig. 3.7(a): We plot the spin densities
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by varying the bond lengths around the equilibrium length (0.95 Å). The mag-

nitue of the negative spin density linearly decreases as the bond length becomes

small. Since a shorter bond corresponds to a larger t, the above mentioned results

calculated based on the GGA are consistent with those based on the Hubbard

model. We conclude that the negative spin density at the middle site is due to the

electron correlation effect since it arises when U is not zero.

The spin density distribution in muonium in silicon is expected to be similar to

that of the linear tri-hydrogen molecule where the two nearest Si atoms in the

present system are substituted by hydrogen atoms. To confirm this expectation,

we perform GGA calculations for various Si–Mu bond lengths; we displace the

nearest two Si atoms from the equilibrium positions. As a result, we find that the

magnitude of the negative FCIC becomes large as the Si–Mu bond length increases

(Fig. 3.7(b)). This bond-length dependence of the FCIC is similar to that in the

case of the spin density at the middle site in linear tri-hydrogen molecules. We

expect that small magnitude of the FCIC corresponds to the case of a large t
U
in

the Hubbard model for the linear tri-hydrogen molecule. It is noted, however, that

the present Si–Mu bonds are resonant and thus the length ( (1.619 Å ) is much

longer than the conventional Si–Mu bond length; for example, the silane (SiH4)

forms the bonds whose lengths are 1.481 Å[53]). This rather long bond length

is expected to enhance the magnitude of the FCIC compared with the cases of

shorter bond lengths. Finally, by considering the analogy between the linear tri-

hydrogen molecule and the present system, we attribute the negative FCIC to the

electron correlation effect.
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Summary

4.1 Conclusion

We have carried out the first-principles calculation of the electronic structure of

muonium in silicon using DFT, in particular anomalous muonium. We successfully

reproduce the value of FCIC which is reliable with the experimental data and

also we obtain convergence results. This convergence result can obtained due

to variation of the sizes of supercells. Our calculation shows that the FCIC is

negative which corresponds to the spin density at muon site is negative. The

impurity level does not contribute to the spin density at muon site. Therefore, the

spin density at muon site is solely expected to originate from muon related states

which are embedded in the valence band. In the PDOS of the muon s-orbital

shows two strong peaks around -4 eV and -8 eV and the minority spin PDOS are

found to be larger than those of the majority spin PDOS. We have clarified the

origin of the very small magnitude and the origin of the negative value of FCIC.

By considering the analogy between the three linear hydrogen molecule and the

anomalous muonium in silicon, we concluded that the negative value is induced

by the electron correlation effect.

4.2 Future Scope

We have successfully calculated anomalous muonium in silicon by using DFT. In

this paper we also explain the origin of the small magnitude and the negative

31
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value of FCIC in the case of anomalous muonium, which is considered as electron

correlation effect. We already proven that DFT calculation is reliable for study

of muonium in materials. Therefore we can extend our study about muonium

to studies of other materials such as in a other semiconductors; perovskite, and

gallium arsenide. In some semiconductors such gallium nitride and zinc oxide,

muonium or hydrogen can behave as a shallow impurities[56]. Therefore, the study

of FCIC of muonium as shallow impurities in semiconductors is really challenging

which is also has not explained yet. The study of muonium in magnetic materials

and strong correlated system has been attracted in the last few decades. DFT can

be promising tool for study of this type materials.

The other methods also can be implemented due to the study of muonium. One

of promising tool is Full Potential Linearized Augmented Planewave (FLAPW)

method. This method enables all-electron calculations. Therefore, the calculation

using FLAPW is promising method to study muonium accurately.
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