Numerical modeling on thermal interaction between thermal plasma and solid powder for materials processing

メタデータ	言語: eng
	出版者:
	公開日: 2020-01-09
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/00056493
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

DISSERTATION ABSTRACT

NUMERICAL MODELING ON THERMAL INTERACTION BETWEEN THERMAL PLASMA AND SOLID POWDER FOR MATERIAL PROCESSING

KANAZAWA UNIVERSITY

GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

STUDENT ID 1624042016

YULIANTA SIREGAR

CHIEF ADVISOR PROF. YASUNORI TANAKA

JUNE, 2019

Contents

Ackn	owledge	ement	XV
Chap	ter1 I	$\operatorname{ntroduction}$	3
1.1	Plasm	a state	3
	1.1.1	Overview of plasma	3
	1.1.2	Concept of temperature in a plasma	4
	1.1.3	Different types of plasma by temperature	6
1.2	Induct	vively coupled thermal plasma torch	9
1.3	Object	tive of this thesis	11
1.4	Comp	osition of the thesis	13
Refer	ences ir	n chapter 1	15
Chap	ter2 I	nfluence of input power in Ar/H_2 thermal plasma with Si powder by	
	S	imulation	19
2.1	Introd	uction	19
2.2	Config	guration of Inductively Coupled Thermal Plasma torch	20
2.3	Model	ing of the Inductively Coupled Thermal Plasma with Powder Injection	21
	2.3.1	Modelling Assumptions	21
	2.3.2	Governing equation	22
	2.3.3	Calculation condition	24
2.4	Calcul	ation results	26
	2.4.1	The Temperature Distribution of Thermal Plasma	26
2.5	Summ	ary of chapter 2	33
Refer	ences ir	1 chapter 2	35
Chap	ter3	Numerical Parametric Investigation on Temperature Distribution	
	iı	Ar/O_2 Induction Thermal Plasmas with Ti Powder Injection	
	-]	Inclusion of Particle Evaporation	39

3.1	Introduction			
3.2	Configuration of inductively coupled thermal plasmatorch		41	
3.3	B Modeling		43	
	3.3.1 Assumptions			
	3.3.2	Governing equation for Ti particle	44	
	3.3.3	The drag force coefficient and heat transfer coefficient	46	
	3.3.4	Governing equation for thermal plasma region	47	
	3.3.5	Interaction between Ti particle and thermal plasma	49	
	3.3.6	Thermodynamic properties of Ar/O_2 mixture and Ti vapor	50	
	3.3.7	Calculation condition	55	
3.4	Calcul	ation results	58	
	3.4.1	Influence of operation parameters reduced to lower values	58	
	3.4.2	Influence of operation parameters increased to higher values \ldots	64	
	3.4.3	Particle behavior	70	
3.5	Summ	ary of chapter 3	75	
Refer	Teferences in chapter 3 77			
Chap	ter4 N	Numerical study of temperature and gas flow fields in $Ar-O_2$ tandem-		
	tŗ	ype inductively coupled thermal plasma with Ti feedstock powder in-		
	j€	ection	81	
4.1	Introd	uction	81	
4.2	Config	guration of Tandem-coil Induction Thermal Plasma Torch \ldots .	83	
4.3	Model	ling of Tandem-coil Induction Thermal Plasma	86	
	4.3.1	Modelling assumptions	86	
	4.3.2	Governing equation for Ti feed powder	87	
	4.3.3	Governing equation for tandem-coil induction thermal plasma $\ . \ .$	90	
	4.3.4	Interaction between Ti particles and tandem coil thermal plasma $% \left({{{\bf{n}}_{{\rm{s}}}}_{{\rm{s}}}} \right)$.	92	
	4.3.5	Thermodynamic and transport properties of Ti bulk, $Ar-O_2$ -Ti system	95	
	4.3.6	Boundary condition	96	
	4.3.7	Calculation conditions for single-frequency coil ICTP and tandem		
		coil ICTP	104	
4.4	Calcul	ation Results	107	

4.4.1	Temperature distribution of thermal plasma	107
4.4.2 Mass fraction distribution of titanium vapour and gas flow pattern		125
4.4.3	Particle behaviour	134
Summ	nary of chapter 4	139
ences i	n chapter 4	141
ter5 (Conclusions	145
5.1 Introduction \ldots		
Summ	nary of results	146
5.2.1	Influence of input power in Ar/H_2 thermal plasma with Si powder by	
	simulation	146
5.2.2	Numerical Parametric Investigation on Temperature Distribution in	
	$\rm Ar/O_2$ Induction Thermal Plasmas with Ti Powder Injection-Inclusion	
	of Particle Evaporation-	146
5.2.3	Numerical study of temperature and gas flow fields in $Ar-O_2$ tandem-	
	type inductively coupled thermal plasma with Ti feedstock powder	
	injection	147
Futur	e researches	148
	4.4.2 4.4.3 Summ ences in ter5 (Introc Summ 5.2.1 5.2.2 5.2.3	 4.4.2 Mass fraction distribution of titanium vapour and gas flow pattern . 4.4.3 Particle behaviour

iii

List of Figures

1.1	States of materials.	4
1.2	Maxwell-Boltzmann distribution of velocities in argon atom	5
1.3	Classification of plasmas by electron temperature and electron density. $\ .$.	7
1.4	Configuration of ICTP torch.	8
2.1	Configuration of ICTP torch.	20
2.2	The temperature distribution of 99% Ar-1% $\rm H_2$ ICTPs with Si powder injec-	
	tion at input powers of 20 kW, 30 kW, and 40 kW. \ldots \ldots \ldots \ldots	27
2.3	Radial temperature distribution of 99% Ar-1% $\rm H_2~ICTP$ at an axial position	
	of 250 mm with Si powder injection.	28
2.4	Axial temperature distribution of 99% Ar-1% $\rm H_2~ICTP$ at an radial position	
	of 5 mm with Si powder	28
2.5	Diameter variation for 35 kinds of Si particles injected with different 7 initial	
	diameters and 5 different initial positions as a function of axial position in	
	99% Ar-1%H ₂ ICTPs	30
2.6	Mass fraction distribution of 99% Ar-1% H $_2$ ICTPs with Si powder injection	
	at input powers of 20 kW, 30 kW and 40 kW	31
2.7	Streamlines in 99% Ar-1% $\rm H_2$ ICTPs with Si powder injection at input powers	
	of 20 kW, 30 kW, and 40 kW	32
3.1	Configuration of inductively coupled thermal plasma torch used in the cal-	
	culation.	42
3.2	Initial positions of particle injections and particle size distribution	43
3.3	Molar fraction of thermal plasma in 90% Ar $+10\%$ O ₂ at a pressure of 300 Torr.	52
3.4	Molar fraction of thermal plasma in 89% Ar $+9\%$ O ₂ $+9\%$ Ti at a pressure of	
	300 Torr	52

3.5	Specific heat at constant pressure for $Ar-O_2$ thermal plasma with Ti vapor	
	at a pressure of 300 Torr	53
3.6	Electrical conductivity for Ar-O ₂ thermal plasma with Ti vapor at a pressure	
	of 300 Torr	53
3.7	Viscosity for $Ar-O_2$ thermal plasma with Ti vapor at a pressure of 300 Torr.	54
3.8	Temperature distribution of $Ar-O_2$ thermal plasma with Ti powder injection	
	for reduced sheath gas flow rate (a), feedstock feeding rate (b), input power	
	(c) from the reference condition at a pressure of 300 Torr	59
3.9	Radial temperature distribution of $Ar-O_2$ thermal plasma with Ti powder	
	injection at axial positions of 250 mm for reduced sheath gas flow rate (a),	
	feedstock feeding rate (b), input power (c) from the reference condition	60
3.10	Axial temperature distribution of $Ar-O_2$ thermal plasma with Ti powder	
	injection at radial positions of 5 mm for reduced sheath gas flow rate (a),	
	feedstock feeding rate (b), input power (c) from the reference condition	60
3.11	Streamline in $Ar-O_2$ thermal plasma with Ti powder injection for reduced	
	sheath gas flow rate (a), feedstock feeding rate (b), input power (c) from the	
	reference condition at a pressure of 300 Torr	61
3.12	Mass fraction distribution of Ti vapor in $Ar-O_2$ plasma with Ti powder	
	injection for reduced sheath gas flow rate (a), feedstock feeding rate (b),	
	input power (c) from the reference condition at a pressure of 300 Torr. $$.	63
3.13	Temperature distribution in $Ar-O_2$ thermal plasma with Ti powder injection	
	for increased sheath gas flow rate (d), feedstock feeding rate (e), input power	
	(f) from the reference condition at a pressure of 300 Torr	65
3.14	Radial temperature distribution of $Ar-O_2$ thermal plasma with Ti powder	
	injection for increased sheath gas flow rate (d), feedstock feeding rate (e),	
	input power (f) at axial positions of 250 mm	66
3.15	Axial temperature distribution of $Ar-O_2$ thermal plasma with Ti powder	
	injection for increased sheath gas flow rate (d), feedstock feeding rate (e),	
	input power (f) at radial positions of 5 mm	66

3.16	Streamline in $Ar-O_2$ thermal plasma with Ti powder injection for increased	
	sheath gas flow rate (d), feedstock feeding rate (e), input power (f) from the	
	reference condition at a pressure of 300 Torr	67
3.17	Mass concentration distribution of Ti vapor in $Ar-O_2$ thermal plasma with	
	Ti powder injection for increased sheath gas flow rate (d), feedstock feeding	
	rate (e), input power (f) from the reference condition at a pressure of 300	
	Torr	69
3.18	Time variation in particle diameters of 35 Ti particles injected into $\mathrm{Ar}\text{-}\mathrm{O}_2$	
	ICTP for the reference condition. Particles have initial 5 different diameters.	
	The different curves with the same initial diameter indicates the results of	
	particle diameters injected at different initial 7 radial positions as indicated	
	in Fig. 3.2	72
3.19	An example of particle temperature history flying of a single Ti particle in	
	Ar-O ₂ ICTP under the reference condition. Temperatures for 3 shells in a	
	single particle are indicated here.	73
3.20	Time variation in particle diameters of 35 Ti particles injected into $\mathrm{Ar}\text{-}\mathrm{O}_2$	
	ICTP with 0.5 g/min feeding rate. Particles have initial 5 different diameters.	
	The different curves with the same initial diameter indicates the results of	
	particle diameters injected at different initial 7 radial positions as indicated	
	in Fig. 3.2	74
4.1	Configuration ICTP torch with (a) 8-turn coil and (b) 12-turn coil	85
4.2	Definition of (a) Single-frequency coil and (b) Tandem double-frequency coil.	87
4.3	Definition of parameters for temperature inside a titanium particle. \ldots	90
4.4	Particle size distribution and particle injection positions	94
4.5	Number density of (a) 90% Ar-10%O2 and (b) 89% Ar-10%O2-1% Ti thermal	
	plasmas at a pressure of 300 Torr	99
4.6	Specific heat of 100% Ar gas, 90% Ar-10%O2 gas mixture, 89% Ar-10%O2-	
	$1\%\mathrm{Ti}$ gas mixture and $100\%\mathrm{Ti}$ vapor as a function of temperature at 300	
	Torr pressure	100

vii

4.7	Thermal conductivity of 100% Ar gas, 90% Ar-10%O ₂ gas mixture, 89% Ar-	
	$10\%\mathrm{O}_2\text{-}1\%\mathrm{Ti}$ gas mixture and 100% Ti vapor as a function of temperature	
	at 300 Torr pressure	101
4.8	Viscosity of 100% Ar gas, 90% Ar-10% O_2 gas mixture, 89% Ar-10% O_2-1% 	
	gas mixture and 100% Ti vapor as a function of temperature at 300 Torr	
	pressure	102
4.9	A full-set of boundary conditions.	103
4.10	Temperature distribution in $Ar-O_2$ single-frequency coil ICTP with Ti pow-	
	der injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm,	
	and (d) 60 mm. The coil is operated at an input power of 25 kW at a	
	frequency of 450 kHz	109
4.11	Axial temperature distribution at radial position of 25 mm in $Ar-O_2$ single-	
	frequency coil ICTP with Ti powder injection at different gap lengths of (a)	
	$20~\mathrm{mm},~\mathrm{(b)}~30~\mathrm{mm},~\mathrm{(c)}~40~\mathrm{mm},~\mathrm{and}~\mathrm{(d)}~60~\mathrm{mm}.$ The coil is operated at an	
	input power of 25 kW at a frequency of 450 kHz	110
4.12	Radial temperature distribution at axial position of 230 mm in Ar-O ₂ single-	
	frequency coil ICTP with Ti powder injection at different gap lengths of (a)	
	$20~\mathrm{mm},$ (b) $30~\mathrm{mm},$ (c) $40~\mathrm{mm},$ and (d) $60~\mathrm{mm}.$ The coil is operated at an	
	input power of 25 kW at a frequency of 450 kHz	111
4.13	Power density distribution in $Ar-O_2$ single-frequency ICTP with Ti powder	
	injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and	
	(d) 60 mm. The coil is operated at an input power of 25 kW at a frequency	
	of 450 kHz	112
4.14	Temperature distribution in $\operatorname{Ar-O}_2$ tandem double-frequency ICTP by an 8-	
	turn coil with Ti powder injection at different gap lengths of (a) 20 mm, (b)	
	$30~\mathrm{mm},~\mathrm{(c)}~40~\mathrm{mm},~\mathrm{and}~\mathrm{(d)}~60~\mathrm{mm}.$ The upper coil is operated at an input	
	power of 10 kW at a frequency of 450 kHz, while the lower coil is operated	
	at 15 kW and 300 kHz	115

- 4.15 Axial temperature distribution at a radial position of 25 mm in Ar-O₂ tandem double-frequency ICTP by an 8-turn coil with Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10 kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and 300 kHz.
- 4.16 Radial temperature distribution at an axial position of 230 mm in Ar-O₂ tandem double-frequency ICTP by an 8-turn coil with Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10 kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and 300 kHz.
- 4.17 Power density distribution in Ar-O₂ tandem double-frequency ICTP by an 8-turn coil with Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10 kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and 300 kHz.
- 4.18 Temperature distribution in Ar-O₂ tandem double-frequency ICTP by a 12-turn coil with Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10 kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and 300 kHz.
- 4.19 Axial temperature distribution at the radial position of 25 mm in Ar-O₂ tandem double-frequency ICTP by a 12-turn coil with Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10 kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and 300 kHz. . . . 122
- 4.20 Radial temperature distribution at an axial position of 230 mm in Ar-O₂ tandem double-frequency ICTP by a 12-turn coil with Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10 kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and 300 kHz. . . . 123

117

118

4.21	Power density distribution in $Ar-O_2$ tandem double-frequency ICTP by a	
	12-turn coil with Ti powder injection at different gap lengths of (a) 20 mm,	
	(b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is operated at an	
	input power of 10 kW at a frequency of 450 kHz, while the lower coil is	
	operated at 15 kW and 300 kHz.	124
4.22	Mass fraction distribution of Ti vapour in $Ar-O_2$ single-frequency ICTP by	
	an 8-turn coil with Ti powder injection at different gap lengths of (a) 20	
	mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The coil is operated at an	
	input power of 25 kW at a frequency of 450 kHz	126
4.23	Streamlines in Ar-O ₂ single-frequency ICTP by an 8-turn coil with Ti powder	
	injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c) 40 mm, and	
	(d) 60 mm. The coil is operated at an input power of 25 kW at a frequency	
	of 450 kHz	127
4.24	Mass fraction distribution of Ti vapour in $Ar-O_2$ tandem double-frequency	
	ICTP by an 8-turn coil with Ti powder injection at different gap lengths	
	of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is	
	operated at an input power of 10 kW at a frequency of 450 kHz, while the	
	lower coil is operated at 15 kW and 300 kHz	130
4.25	Streamlines in $Ar-O_2$ tandem double-frequency ICTP by an 8-turn coil with	
	Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c)	
	40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10	
	kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and	
	300 kHz	131
4.26	Mass fraction distribution of Ti vapour in $Ar-O_2$ tandem double-frequency	
	ICTP by a 12-turn coil with Ti powder injection at different gap lengths	
	of (a) 20 mm, (b) 30 mm, (c) 40 mm, and (d) 60 mm. The upper coil is	
	operated at an input power of 10 kW at a frequency of 450 kHz, while the	
	lower coil is operated at 15 kW and 300 kHz	132

Х

4.27	Streamlines in Ar-O ₂ tandem double-frequency ICTP by an 12-turn coil with	
	Ti powder injection at different gap lengths of (a) 20 mm, (b) 30 mm, (c)	
	40 mm, and (d) 60 mm. The upper coil is operated at an input power of 10	
	kW at a frequency of 450 kHz, while the lower coil is operated at 15 kW and	
	300 kHz	133
4.28	Variation in diameters of 35 Ti particles in $Ar-O_2$ single-frequency ICTP by	
	an 8-turn coil with 60 mm gap length.	136
4.29	Temperature history of Ar-O ₂ in single-frequency coil ICTP with 60 mm gap	
	length	137
4.30	Variation in diameters of 35 Ti particles in $Ar-O_2$ tandem double-frequency	
	ICTP by an 8-turn coil with 60 mm gap length.	138
4.31	Variation in diameters of 35 Ti particles in $Ar-O_2$ tandem double-frequency	
	ICTP by 12-turn coil with 60 mm gap length.	138

List of Tables

2.1	Thermodynamic Properties of Silicon Powder	25
3.1	Thermodynamic properties of titanium powder	56
3.2	Calculation condition with lower value in parameters from reference	56
3.3	Calculation condition with higher value in parameters from reference	57
4.1	Numerical conditions	105
4.2	Thermodynamic properties of titanium powder [37]	106

Acknowledgement

I wish to express my higher gratitude and thankful to Prof. Yasunori Tanaka as my major professor. You always help me since the first day to answer my questions and concerns, large or small, and many valuable suggestions, discussions, support, personal guidance, and encouragement. I feel very privileged to have worked with him. Without his guidance, I would never have learned what I know about the thermal plasma, principles of plasma discharge and material processing, tandem thermal plasma technology, and I would certainly never have come this far. Thank you very much.

For finishing this thesis I am indebted to many people for their help in completing this study. First of all, I would like to thank my co-supervisor Prof. Yoshihiko Uesugi, Prof. Tatsuo Ishijima and Dr. Yusuke Nakano for many useful discussions and helps. To all members of the Electric Power and Environment Laboratory for answering my questions with concerns.

I would also like to thank to dean of Engineering Faculty and Head Departement of Electrical Engineering at University of Sumatera Utara, Indonesia, I sincerely appreciate their help as well. I am also thankful to all my friends of Dikti-Kanazawa University awardee in 2016 who also strive to finish their study. I hope we can continue being friend and support each other.

I am grateful to and for my wife and best friend, Nani Barorah Nasution who kept me motivated and support me during all the process, I hope we always remember how we strive and hold on to reach our dream. My most thankful is to my beloved son and daughter, Danish Juna Siregar and Dhakira Juna Siregar. I am nothing without your love and caring, both of you is the real true fighter, and I learn a lot from both of you. I know it must be hard in the beginning to learn and adapt to new culture and language, but both of you make me proud and always grateful to be your father. Thank you for being lovely children. I hope one day, I will back to Japan, to see you study here. I thanks to my parents Rahim Siregar and Chairani Harahap, from them I learn that education can change path and mind, thank you for the inspiration and the work ethic you instilled in me, I will never be able to payback all the love you give and teach me. I thank to my father in law and mother in law Nasrun Naution and Yusnani Tambunan, for always support us. I thank my brothers (in-law) and sister (in-law) Irfan Siregar, Yenny Marlina, Cherry Siregar, Zainal Safri, Andy Siregar, Intan Suhaila, Dicky Zickrika Siregar, Faradilla Safitri Siregar and all my nephews for always being supportive and always care

Lastly, but the most influence I would like to thank Allah SWT, as written in Al-Quran Surah Al-Mujadalah verse 11 "Allah will raise to high ranks those of you who believe and are endowed with knowledge. Allah is well aware of all that you do". I hope through this process, I will one of the person who Allah grant high ranks.

Abstract

Thermal interaction between feed rate powder and thermal plasma was calculated using the developed numerical model for inductively coupled thermal plasma (ICTP) with particle injection. The interaction between feed powder and thermal plasmas is greatly important to consider the stable establishment of the ICTP and effective heating and evaporation of injected particles, for example, for particle synthesis. Injected particles are heated by thermal plasma, and they are melted and evaporated to contaminate the thermal plasma, which influences the thermal plasma properties. The ICTP model was used in this research because it has benefit of good repeatability and no contamination process. Interactions between ICTP and injected powder are very complicated to be understood only by related experiments. The developed numerical model solves mass, momentum and energy conservation equations of thermal plasmas as well as mass transport equation for evaporated materials. In addition, particle motions were derived by solving the lagrange equation of motion. The temperature distribution inside the particles and phase transition from solid, liquid to gas of the particles were also taken into account.

Furthermore, numerical simulation in inductively coupled thermal plasma was made on the temperature distribution in argon (Ar)+ hydrogen (H_2) induction thermal plasma torch with silicon (Si) powder injection to obtain the temperature distribution and gas flow fields. The ICTP model was used in this research because it has benefit of good repeatability and no contamination process. The temperature distributions of thermal plasma and Si vapor distribution were compared at input powers of 20 kW, 30 kW, and 40 kW. Results indicated that higher input power increases the temperature of the thermal plasma with doughnut shape but it slightly enhances evaporation of the powder at the center axis of the plasma torch.

In addition, thermal interaction between titanium feedstock powder and thermal plasma was calculated using the developed numerical model for inductively coupled thermal plasma xviii

(ICTP) with particle injection. The interaction between titanium powder and thermal plasmas is greatly important to consider the stable establishment of the ICTP and effective heating and evaporation of injected particles, for example, for particle synthesis. Injected particles are heated by thermal plasma, and they are melted and evaporated to contaminate the thermal plasma, which influences the thermal plasma properties. The developed numerical model solves mass, momentum and energy conservation equations of thermal plasmas as well as mass transport equation for evaporated materials. In addition, particle motions were derived by solving the Lagrange equation of motion. The temperature distribution inside the particles and phase transition from solid, liquid to gas of the particles were also taken into account. Finally, a parametric study was conducted to show the influence of different important physical parameters such as input power, sheath gas flow rate, and Ti powder feeding rate.

In this thesis, tandem ICTP is formed using two coil currents (upper coil and lower coil) in a single plasma torch, that was already developed for nanoparticle synthesis. The temperature distribution of the tandem ICTP and evaporation of feedstock Ti powder were obtained for different gap lengths between the upper and lower coil and coil turn numbers. Results indicate that increasing the gap length between the upper and lower coil produces two separately controlled high-temperature areas in tandem ICTP. This result suggests that tandem ICTP provides a temperature field that is favourable for particle evaporation of injected particles while maintaining ICTP in the upper region of the plasma torch for stable operation

学位論文審査報告書(甲)

1. 学位論文題目(外国語の場合は和訳を付けること。)

Numerical modeling on thermal interaction between thermal plasma and solid powder for materials processing (材料加工のための熱プラズマと固体粉末の間の熱相互作用に関する数 値モデリング)

2.	論文提出者	(1) 所	属	
		(2) 氏	^{がな} 名	ゆりあんた しれがー Yulianta Siregar

3. 審査結果の要旨(600~650字)

2019 年 8 月 6 日に第1回学位論文審査委員会,同日に口頭発表,第2回審査委員会を開催し,慎重審議の結果,以下のとおり判定した。なお、口頭発表における質疑を最終試験 に代えるものとした。

本論文は、材料プロセス用誘導熱プラズマと、そこに投入する固体粉体との間の熱的相 <u>互作用のモデリングに関する研究である。誘導熱プラズマはガス温度が 10000 K にも達す</u> る高温高気圧のプラズマである。この誘導熱プラズマに原料固体粉体を導入することで、 原料を蒸発させ、さらにそれを冷却することでナノ材料を大量に得ることがなされている。 この物理過程を把握するためには、様々な診断とともに数値モデリングすることが重要で ある。本論文では、誘導熱プラズマを電磁熱流体で、固体粒子をラグランジュ粒子として モデル化している。熱プラズマ流内での固体粒子の運動と、プラズマからの熱伝達による 粒子の温度変化、さらに粒子の溶融・蒸発を考慮している。誘導熱プラズマは電磁場から ジュール発熱とローレンツ力とを受け、これらが熱プラズマ温度と流れ場を決定する。さ らに、粒子の蒸発蒸気が熱プラズマの温度分布・流速分布に影響する。そのため、これら を包括的に考慮し、熱プラズマの電磁熱流体解析と粒子の運動・蒸発とが収束するまで計 算している。本論文では,開発したモデルを用いて,TiO2ナノ粒子生成に使用されるAr-O2 誘導熱プラズマと Ti 原料粉体との相互作用, Si ナノ粒子生成に使用される Ar-H2誘導熱プ ラズマとSi原料粉体との相互作用を明らかにしている。さらに「タンデム型誘導熱プラズ マ」についてもモデリングし、原料粉体の効率的蒸発と誘導熱プラズマの安定動作とが同 時に実現できることを明らかにしている。

以上,本研究は誘導熱プラズマによる材料プロセスの物理解明に貢献するものであり、
本論文は,博士(工学)に値すると判定した。
4.審査結果 (1)判 定(いずれかにo印) o合 格 · 不合格

(2)授与学位 博 ±(工学)

5.学位論文及び参考論文に不適切な引用や剽窃が無いことの確認

確認済み(確認方法:iThenticateによる)
□ 未確認(理 由:)