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Abstract

Thermal interaction between feed rate powder and thermal plasma was calculated using

the developed numerical model for inductively coupled thermal plasma (ICTP) with particle

injection. The interaction between feed powder and thermal plasmas is greatly important

to consider the stable establishment of the ICTP and effective heating and evaporation

of injected particles, for example, for particle synthesis. Injected particles are heated by

thermal plasma, and they are melted and evaporated to contaminate the thermal plasma,

which influences the thermal plasma properties. The ICTP model was used in this research

because it has benefit of good repeatability and no contamination process. Interactions be-

tween ICTP and injected powder are very complicated to be understood only by related

experiments. The developed numerical model solves mass, momentum and energy con-

servation equations of thermal plasmas as well as mass transport equation for evaporated

materials. In addition, particle motions were derived by solving the lagrange equation of

motion. The temperature distribution inside the particles and phase transition from solid,

liquid to gas of the particles were also taken into account.

Furthermore, numerical simulation in inductively coupled thermal plasma was made on

the temperature distribution in argon (Ar)+ hydrogen (H2) induction thermal plasma torch

with silicon (Si) powder injection to obtain the temperature distribution and gas flow fields.

The ICTP model was used in this research because it has benefit of good repeatability and

no contamination process. The temperature distributions of thermal plasma and Si vapor

distribution were compared at input powers of 20 kW, 30 kW, and 40 kW. Results indicated

that higher input power increases the temperature of the thermal plasma with doughnut

shape but it slightly enhances evaporation of the powder at the center axis of the plasma

torch.

In addition, thermal interaction between titanium feedstock powder and thermal plasma

was calculated using the developed numerical model for inductively coupled thermal plasma
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(ICTP) with particle injection. The interaction between titanium powder and thermal plas-

mas is greatly important to consider the stable establishment of the ICTP and effective

heating and evaporation of injected particles, for example, for particle synthesis. Injected

particles are heated by thermal plasma, and they are melted and evaporated to contami-

nate the thermal plasma, which influences the thermal plasma properties. The developed

numerical model solves mass, momentum and energy conservation equations of thermal

plasmas as well as mass transport equation for evaporated materials. In addition, particle

motions were derived by solving the Lagrange equation of motion. The temperature dis-

tribution inside the particles and phase transition from solid, liquid to gas of the particles

were also taken into account. Finally, a parametric study was conducted to show the influ-

ence of different important physical parameters such as input power, sheath gas flow rate,

and Ti powder feeding rate.

In this thesis, tandem ICTP is formed using two coil currents (upper coil and lower

coil) in a single plasma torch, that was already developed for nanoparticle synthesis. The

temperature distribution of the tandem ICTP and evaporation of feedstock Ti powder were

obtained for different gap lengths between the upper and lower coil and coil turn numbers.

Results indicate that increasing the gap length between the upper and lower coil produces

two separately controlled high-temperature areas in tandem ICTP. This result suggests

that tandem ICTP provides a temperature field that is favourable for particle evaporation

of injected particles while maintaining ICTP in the upper region of the plasma torch for

stable operation




