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The phenomenon of transfer of coherence and the effect of level shift caused by two-
quantum (TQ) excitation were studied on ?’Al nuclei in Al,0;. Transfer of coherence be-
tween two single-quantum (SQ) transitions and that between SQ and three-quantum transi-
tions were examined. It was observed that the coherences transfer periodically with fre-
quency equal to one-half the TQ transient nutation frequency accompanied by phase shifts
caused by the level shift. Experimental results are in good agreement with theoretical pre-
dictions. The effect of magnetic dipole interaction was also studied. A precise measure-
ment was made on the shift of TQ resonance frequency and it was confirmed that no shift
exists on the TQ resonance frequency contrary to the prediction based on the three-level

model.

I. INTRODUCTION

Transfer of coherence is one of the fundamental
phenomena in coherent spectroscopy. In a previous
paper we reported the first investigation of this
phenomenon in a multilevel NMR system and its
application to the creation and detection of two-
quantum (TQ) coherence.! It has been shown that,
when a single-quantum (SQ) transition is excited,
the coherences in two nonresonant transitions which
share a common level are transferred periodically
with each other with frequency equal to one-half the
transient nutation frequency of the SQ transition.
This phenomenon can be pictorially represented by a
vector precessing around an effective field in a spe-
cial three-dimensional space. Coherence transfer ro-
tary echoes? are those associated with transfer of
coherence.

The present paper is concerned with transfer of
coherence caused by TQ excitation in a multilevel
NMR system. The transfer of coherence caused by
TQ excitation has been reported by Wolff and
Mehring with a spin-1 system in connection with
the spinor character of the spin system.> We here
present detailed studies of coherence transfer by TQ
excitation on ’Al nuclei (I=>) in Al,0; with em-
phasis on the effect of level shift which has not been
examined so far. We examined two kinds of
transfer phenomena caused by TQ excitation: One
is coherence transfer between two SQ transitions,
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and the other that between SQ and three-quantum
transitions. We observed that coherence transfer by
TQ excitation occurs basically with frequency equal
to one-half the TQ nutation frequency. In this
respect the phenomenon is analogous to the coher-
ence transfer by SQ excitation. However, the ex-
istence of level shift causes phase shifts in
transferred coherences and makes the phenomenon
unique and more complicated than that in the case
of SQ excitation. The coherences observed with a
phase-sensitive detection method exhibits complicat-
ed oscillation patterns reflecting the effect of level
shift. By examining the phenomenon we could
deduce the amount of the level shift caused by the
TQ rf field. The origin of the level shift is similar
to that of the ac Stark shift,* well known in quan-
tum optics, although magnetic dipole radiation is
our concern here instead of the electric one. The ef-
fect of the level shift should exist in the case of the
spin-1 system treated by Wolff and Mehring.>

It is well known that, when the TQ excitation is
performed under the condition that the frequency
offset to the intermediate state is much larger than
Rabi frequencies, TQ coherent phenomena can be
described by Bloch-type equations,*® and several TQ
analogs of well-known SQ phenomena have been ob-
served in NMR and quantum optics.” Brewer and
Hahn derived the equations applicable to the exact
resonant TQ phenomena independent of the fre-
quency offset to the intermediate state.® However,
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Bloch-type equations and the equations derived by
Brewer and Hahn for TQ coherent phenomena can-
not explain the transfer phenomena caused by TQ
excitation. We derived equations governing the
coherence transfer by TQ excitation from our basic
equation for TQ coherent phenomena in a multilevel
NMR system. The effect of level shift is involved in
the equations and the complicated oscillations of the
observed coherences are explained as an effect of the
level shift caused by TQ rf field. The effect of mag-
netic dipole interaction between Al nuclei is also
taken into account to explain damping of the oscilla-
tion of the coherences. Experimental results are in
good agreement with theoretical predictions.

We also examined the shift of TQ resonance fre-
quency. In a three-level system usually used in
quantum optics, the shift of TQ resonance frequen-
cy is expected and actually observed.” In our case of
the multilevel NMR system, no shift is expected
from our basic equation, in contrast to the case of
the three-level system. The difference comes from
the fact that the effects of all levels in the multilevel
NMR system are taken into account in our theory.
We performed a precise measurement showing that
no shift exists in TQ resonance frequency within ex-
perimental errors.

The theory of transfer of coherence caused by TQ
excitation is given in Sec. II. The derivation of our
basic equation for TQ coherent phenomena is given
in the Appendix. In Sec. III the experimental pro-
cedure and apparatus are described. Section IV is
divided into five subsections IVA—IVE. In the
IV A and IVB experimental results of the transfer
phenomena are described and compared with the
theory. In IV C the decay of the coherences due to
magnetic dipole interaction is discussed and com-
pared with experimental results. The effect of level
shift on the transfer phenomena is treated in some
detail in Sec. IVD. The last section, IVE, is con-
cerned with the absence of the shift of TQ resonance
frequency. The precise measurement proving this
fact is described.

II. THEORY OF COHERENCE TRANSFER
CAUSED BY TQ EXCITATION

We first present the basic equation for TQ
coherent phenomena which we derived previously.'
We consider quadrupolar nuclei with spin I whose
J

unperturbed Hamiltonian is given by
Ho=—vHol+ 0 [I}—TII+1)], (1)

where 7 is the gyromagnetic ratio and fiw, is the
electric quadrupole coupling energy. A static mag-
netic field H, is applied along the principal axis (z
axis) of the electric field gradient (efg) tensor. This
system has the energy levels with unequal spacings
and no state mixing, and magnetic dipole transitions
between levels with Am >2 are forbidden. The elec-
tric quadrupole coupling energy is assumed to be
much smaller than the Zeeman energy #iyH .

Suppose that an rf field 2H cos(Q¢ + ) is applied
to the spin system along the x axis in the laboratory
frame. The frequency Q is assumed to be nearly at
TQ resonance and is far off resonance from single-
quantum resonances. The time development of the
spin system is described, in the interaction represen-
tation, by the equation of motion for the density ma-
trix p as

p(t)=i[p(1),7(1)] )
with
()= —2yH explid ot )1,
Xexp(—id ot )cos(Qt +¢) , 3)

where relaxation effects are neglected. We treat the
case where YH | <<@,.

We use the following operators introduced previ-
ously,!® which are associated with eigenfunctions
|m), |n)of I, as

Pp=|m)(m|, Qim,n)=|m){(n| (m#n),
Q,(m,n)=Q(m,n)+Q(n,m),
Qy(m,n)=—i[Q(m,n)—Q(n,m)],

4)

Qz(myn)=Pm —'Pn ’

where P, is a projection operator on the state m.
These operators are very useful in treating coherent
phenomena in a multilevel system with unequal
spacings. Some characteristics of these operators
are shown in Eqgs. (A3) in the Appendix. Essentially
the same operators are used by several authors.!!

Assuming the slowly varying amplitude approxi-
mation, we obtain the following basic equation for
the TQ coherent phenomena:

pl(0)=iBlp'(6), 0, (m +1,m — 1)cos(24)— Q, (m +1,m — 1)sin(2¢)]

+i8[p"(1),0,(m +1,m —1)]+i[p'(1),R],

(5)

where we suppose that the transition between levels m —1 and m + 1 is nearly at TQ resonance, i.e.,

Q48=5{{m—1|Ho|m—1)—(m+1|Ho m+ =50 _1ms1> 8] <<|70moims1—C],

(6)
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and

pl(t)=exp[ —i8Q,(m +1,m — 1)t ]p(t)exp[i8Q,(m +1,m —1)t] ,

B=YHi(m+1|I}|m—1)/a,,

(7)

R=VH} 3 (k|1 |k—1)Q,(kk—1)/4Q—Q _, 1),
k

Q1 x=Ck—1|H | k—1)—(k |Ho| k) .

The details of the derivation of Eq. (5) are given in
the Appendix. The third term in Eq. (5) indicates
the effect of level shift caused by the TQ-resonant rf
field. Using the relations

Umn =pZnn +le =Tr[Pth(n,m )] s
Umn = _i(PIm _pInn )= —Tr[PTQy(nym )1, (8)
Wmn =Pln _p:rnm =Tr[P*Qz(n,m )1,

and the commutation relations of Q;(m,n)
(i=x,y,z) shown in Egs. (A3), we obtain equation
of motion for the coherences %, _1,m+1> Vm—1,m+1
and the population difference w,, _; n, 41 as follows:

Um —1,m +1=28vm—1,m+1_2me—1,m+lSin2¢ ’
Um —1,m 1= —20Up 1, m 41+ 2BWm _1,m +1€082¢ ,

9)
Wi —1,m +1=2BUm _1,m +18102¢ — 2BV _1 1 4 1C0826 .

Equations (9) are rewritten in a form of a torque
equation T= —q X T using vectors

r= )
1'—‘(um—l,m +0Um—1m+1Wm —1,m +1

and q=[2Bcos(2¢),28sin(24),28]. Then, in a
reference frame rotating at frequency 2Q) around the
z axis, the vector T precesses at the frequency
2(B2+8%)1/% around the effective field along the vec-
tor g, which tilts from the z axis by an angle
tan~!(8/8) and has an azimuthal angle 2¢. The
phase shift ¢ of the rf field brings about 2¢ rotation
of the effective field around the z axis, and the off
resonance & appears as TQ off resonance of 28. The
vector model is the same as that obtained by
Grischkowsky et al.® The effect of the level shift
does not appear in Eqgs. (9). This is due to the fact
that the operator R commutes with Q;(m +1,m —1)
(i=x,y,z). The related experiment and discussions
will be given in Sec. IVE.

Now we derive the equations representing the
transfer of coherence caused by the TQ transition
between levels m —1 and m + 1. Hereafter, we as-
sume that 8=¢=0. Using Egs. (8) and the commu-
tation relations for Q operators shown in Egs. (A3),
the equations of motion for the coherences between

r

levels m +1 and m +p are derived from Egq. (5) as

Smi'l,m+p =iD(m,m+p )Smil,m+p
FiBSmtimp (10)

with S;; =u;; +iv;;, where p is an integer (#%1).
The coherences Sy, 41,m+p and Sy _1,m4p are those
corresponding to |p—1|- and |p+1]|-quantum
transitions, respectively. The term D(m,m+p)
comes from the fact that the operators
Qi(m+1,m+p) (i=x,y) do not commute with the
operator R and is given by

WHI P — )T —m*+1+7)
30,(4p*—1) '

D(im,m+p)=
(11

The solutions of Eq. (10) are
Sm+1,m+p(8)=Um+1,m4p(0)
X exp[iD(m,m +p)t]cospt ,
Smrtmsp (0= tms1,m 1p(0) .
Xexp{i[D(m,m+p)t+7/2]}
Xsinpt ,

where it is assumed that only the coherence
Upm _1,m +p(0) OF Up, 41 m4p(0) exists before the ap-
plication of the TQ pulse.

Equations (12) show that, when the TQ transition
between levels m — 1 and m +1 is excited (i.e., £0)
the coherences S, _im4p and Sy i1m4p are no
longer independent. If the effect of the term
D(m,m +p) is ignored, Eqgs. (12) show the periodic
transfer of coherence between S, _; , ,(f) and
Sm +1,m +p(2) with frequency B which is one-half the
TQ transient nutation frequency. The fact that the
transfer occurs at one-half the transient nutation
frequency has been noted in the case of coherence
transfer by SQ excitation.! However, the existence
of the term D(m,m +p) in the present case makes

- the behavior more complicated than that in the case

of SQ excitation. The value D(m,m +p) causes a
periodic phase variation of the coherences. This
comes from the effect of the level shift, as will be
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described in Sec. IVD. The value of D(m,m +p) is
not necessarily small compared with the frequency
B. If 8540, Eq. (10) is modified to be

smil,m+p =i[D(m,m+p)+8]1Sm+1,m+p

+iBSm¥l,m+p . (13)

Equation (13) shows that the effect of D(m,m +p)
cannot be eliminated by introducing an appropriate
amount of off-resonance 8.

III. EXPERIMENTAL PROCEDURE
AND APPARATUS

The experiment was performed on %’Al nuclei in a
single crystal of Al,0;. A static magnetic field H,
was applied along the principal axis (z axis) of the
axially symmetric efg tensor at Al nuclei. The six
levels of Al nuclei (I= —) shown in Fig. 1 are eigen-
states of I, and have unequal spacings. The intensi-
ty of the static magnetic field was adjusted so that
the resonance frequency w; between levels a and b
was 27X 10.00 MHz. The resonance frequencies w,
between levels b and ¢, and w4 between levels ¢ and
d, were 2mX9.64 MHz and 27X 9.29 MHz, respec-
tively. We carried out two kinds of experiments of
transfer of coherence caused by TQ excitation; I is
the transfer between SQ coherences and II is that be-
tween SQ and three-quantum coherences.

In e¥(periment I, an rf pulse with frequency
s03=75(w;+,) was applied to excite TQ transi-
tion between levels a and c in the presence of the SQ
coherence between levels b and ¢, which was
prepared by a /2 pulse with frequency w,. The SQ
coherence between levels a and b produced by the
transfer of coherence was monitored by observing
the amplitude of the free-induction decay (FID) sig-

S e
3 f
_3
2 a
w,
W3
1 —vV———p——-
-3 : b
w,
1
7 C
W,
I, A
3 d
S e
2 e

FIG. 1. Energy-level diagram of *’Al nuclei in A1,Os.
A static magnetic field H, is applied along the principal
axis (z axis) of the efg tensor.

nal at the frequency w, just after the TQ excitation
pulse. The phase-sensitive detection (PSD) method
was used to detect FID signals. The experimental
apparatus is almost the same as described in a previ-
ous paper'? and not described here in detail. The rf
sources used are two free-running oscillators with
frequencies ‘{(01 and lwz The rf powers with fre-
quencies w, and @, were obtained by frequency dou-
bling, and that with frequency %w3 by frequency
mixing. After an appropriate amplification these
powers were used to produce rf fields. Thus all rf
fields have fixed relative phases, and it enables us to
use the PSD method for detecting FID signals.

In experiment II, the TQ transition between levels
b an]d d was excited with an oscillator with frequen-
cy 5(wy+w,) in the presence of the SQ coherence
between levels a and b, which was prepared by a
/2 pulse with frequency w,. The effect of coher-
ence transfer was detected by observing the ampli-
tude of the FID signal at the frequency o, just after
the TQ excitation pulse. The PSD method was used
to detect the FID signal at the frequency w;.

In these experiments we used a sample coil with
low Q for the excitation and detection at different
frequencies. The amplitude 2H of the rf field for
the TQ excitation was about 50 Oe. The linewidths
of SQ transitions were about 27X 8 kHz and much
smaller than the differences between resonance fre-
quencies of adjacent SQ transitions. The frequency
offset of the intermediate state was about 27X 180
kHz and was sufficiently larger than yH .

The observations were made at 77 K to improve
S /N of the FID signals. We used a sample contain-
ing about 0.01% Cr** ions to avoid the inconveni-
ence due to very long T in a pure sample. It was
confirmed that the impurities did not affect the ex-
perimental results.

IV. EXPERIMENTAL RESULTS
AND DISCUSSIONS

A. Transfer of coherence between
SQ transitions a-b and b-c

The results of experiment I are shown by open
circles in Fig. 2. The amplitude of FID at w;, which
represents the degree of coherence between levels a
and b, is plotted as a function of the duration 7 of
the TQ excitation pulse. Figures 2(a) and 2(b) were
taken at different rf phases of the reference signal in
the PSD. In Fig. 2(a), the phase of the reference sig-
nal was chosen so that the FID signal at w;, ob-
tained by an application of a TQ /2 pulse with fre-
quency 7 w; followed by a 7 pulse (probe pulse) with
frequency w, [denoted as % (5 w3)7r(w2)], became
maximum. In Fig. 2(b), the reference phase was
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FIG. 2. Experimental and theoretical results indicating
the transfer of coherence between SQ transitions a-b and
b-c caused by TQ excitation of the transition a-c. Initially
coherence u,.(0) is prepared and the transferred coher-
ence between levels @ and b is detected as a function of the
duration 7 of the TQ excitation pulse. Open circles in (a)
and (b) show the observed coherences v,;, and a mixture of
vsp and ug, respectively. Oscillation patterns are not
sinusoidal due to the effect of level shift caused by the TQ
rf field. Solid curves are theoretical.

shifted by a certain amount.

Since the coherence is initially created only be-
tween levels b and c, the experimental results in Fig.
2 show that the transfer of coherences between levels
a-b and b-c occurs periodically by the TQ excitation.
The oscillation patterns in Figs. 2(a) and 2(b) are
complicated in contrast to the case of coherence
transfer caused by SQ excitation, where sinusoidal
oscillations are observed. The complication is due to
the effect of the level shift described by the term
D(m,m+p) in Egs. (12). This effect becomes
detectable by using the PSD method. The term of
D(m,m +p) given by Eq. (11) can be rewritten as
358/9V'2 in the present case (m=—% and p =0)
by using the expression of B in Egs. (7), and its value
can be estimated from the observed TQ transient nu-
tation frequency 28=27 X 13.6 kHz. The oscillato-
ry behavior in Figs. 2(a) and 2(b) can be regarded as
a superposlitionlof the oscillations with frequencies 8
and D(—5,—7).

In order to analyze the observed oscillation pat-
tern, it is necessary to know the phase of the ob-
served signals. In this paper, we use three reference
frames (x,y1,21), (x3,¥2,2,), and (x3,y3,2z3) rotat-
ing at the frequencies w;, w,, and w; with fixed rela-
tive phases. The coherences along the x; and y;

(i=1,2,3) axes are called u and v components,
respectively. We assume that the rf field with fre-
quency w, is applied along the y, axis. Then the
coherence initially created between levels b and ¢
should be u;.(0). The TQ pulse is assumed to be ap-
plied along the x; axis. Under this condition it can
be shown, by using the commutation relations of Q
operators, that the coherence at the frequency w,;
produced by the operation -}w(%wﬂw(wz) is vgp.
Therefore, the signal in Fig. 2(a) should be com-
pared with the imaginary part of the following equa-
tion obtained from Eqgs. (12),

Sup(7)= tpe (0)exp{i[ D(— 5, — 7)7+7/2]}
Xsin(B7) . (14)

The coherence ug,(7) is also obtained from the real
part of Eq. (14). The values of B and D(—,— )
estimated from the observed TQ transient nutation
frequency are 27xX6.8 kHz and 27X 18.7 kHz,
respectively. The oscillation pattern in Fig. 2(a) is in
good agreement with the expectation by Eq. (14) ex-
cept for the damping. In the case of Fig. 2(b) a cer-
tain amount of u,,(7) is mixed. The detailed com-
parison is made in Sec. IV C after taking into ac-
count the effect of magnetic dipole interaction. The
expression of Sy, (7) is obtained from Eqgs. (12) as

Spe(T)=up.(0)exp{ —i[D(— %, — %)1’] }cos(Br) .
(15)

It is to be noted that the signs in the exponents are
different in Egs. (14) and (15). This indicates that
the effect of level shift is in opposite directions in
Sgp(7) and Sy (7).

Wolff and Mehring observed a similar
phenomenon of transfer of coherence for a spin-1
system.” The effect of level shift represented by
D(m,m +p) described above should exist in their
case although they did not mention it. The value of
D(m,m +p) in their case is estimated to be

D(0,0)=3y2H?%/20,=3p . . (16)

B. Transfer of coherence between
SQ transition a-b and three-quantum
transition a-d

The results of experiment II are shown by open
circles in Fig. 3. The degree of coherence between
levels a and b are plotted versus 7. In Fig. 3(a), the
phase of the reference signal in the PSD was adjust-
ed so that the FID signal obtained by a /2 pulse at
o, (along the y, axis) became maximum. The phase
of the reference signal was shifted by 7/2 in Fig.
3(b). Therefore, the signals in Figs. 3(a) and 3(b)
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FIG. 3. Experimental and theoretical results indicating
the transfer of coherence between the SQ transition a-b
and the three-quantum one a-d caused by the TQ excita-
tion of the transition b-d. The coherence #,5(0) is initially
prepared and the changes of u,, and v, vs 7 (duration of
the TQ excitation pulse) are plotted in (a) and (b), respec-
tively. The effect of level shift caused by the TQ excita-
tion is also seen in the oscillation patterns. (c) shows the
vector sums of u,, and v, where the effect of the level
shift is eliminated. At 7~23 us and ~ 68 us, where the
curve in (c) crosses the base line, the SQ coherence be-
tween levels a and b is completely transferred to the
three-quantum one between levels @ and d. Solid lines are
theoretical.

represent u,;(7) and v, (7), respectively. The coher-
ence initially created is u,,(0). Then the oscillations
of the observed coherences in Fig. 3 show the
periodic transfer of coherences. The transfer should
occur between the SQ transition a-b and the three-
quantum transition a-d, since the TQ transition be-
tween levels b and d is excited.

The appearance of the signal v, (7) in Fig. 3(b) is
due to the effect of level shift. The term D(%, — %)
can be rewritten as 78/9v'2 by using Egs. (11) and
the expression of B in Eqs. (7), which is smaller than

B in contrast to the case of experiment I. Therefore,
the oscillation patterns are not as complicated as in
Fig. 2. The positions of the first zeros in Figs. 3(a)
and 3(b) are determined by the value of 8. The ap-
pearance of the second zero in Fig. 3(a) at about 40
us is due to the effect of a D term. The expressions
of S, (7) and S,4(7) are derived from Egs. (12),

Sap(7) =g (0)exp[ —iD(5, — 3 )r]cos(Br) ,
(17
S,a(7)= gy (0)exp{ —i[D(5,—3)7+7/2]}

Xsin(B7) .

In contrast to Eqgs. (14) and (15), the signs in the ex-
ponents in Egs. (17) are the same, indicating that the
effect of level shift is in the same direction.

Equations (12) suggest that the effect of D term
does not appear if one takes the vector sum of the
signals in Figs. 3(a) and 3(b). Open circles in Fig.
3(c) represent such vector sums as a function of 7.
As is expected, the oscillation becomes sinusoidal
except for the damping. From the oscillation fre-
quency the value of S is obtained to be 27X 11 kHz.
This value is also obtained from the TQ transient
nutation frequency. Then the value of D(%,—%)
becomes 27X 6.0 kHz. At the zeros of Fig. 3(c)
(~23, 68 us), the SQ coherence between levels a and
b is completely transferred to the three-quantum
transition a-d. The experimental curves in Fig. 3 are
in good agreement with the theoretical ones obtained
from Eqgs. (17) except for the damping. The detailed
comparison is made in Sec. IV C considering the ef-
fect of damping due to the effect of magnetic dipole
interaction.

We tried to observe free decay of the three-
quantum coherence a-d using an operation

)T T+ 0)-T-T( F0r+ 704) (18)

which is a two-step excitation consisting of SQ and
TQ transitions followed by a probe pulse. However,
the signal could only be detected near 7~0. This
shows that the decay time of the three-quantum
coherence is very short, which can also be predicted
from the calculated values of second moments
M,(ad) and M,(ab) obtained by using Egs. (17) in
our previous paper.'?

C. Effect of magnetic dipole interaction on the coherence transfer

When the magnetic dipole interaction 57, is taken into account, the basic equation (5) is modified to be

ply=ip

+id

p'(0), 3 Qplm+1,m —1)cos(2¢)— 3, Q,(m +1,m — 1)sin(24)
J j

p'(0), 3 Qum+1,m—1) | +ilp'(e),R1+ilp'(0), 7], (19)
J
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with
R=VH{3 (k|1 |k—1)2Qu(k,k—1)/4Q—Q _1 ;) , (20)
ik
where #°% is the secular part of the dipole interaction. The derivation of Eq. (19) is given in the Appendix.
The explicit form of #°} is given by!?

Hi=73 lelp—5 3 ah[Qulm,m —1)Qp(m,m —1)+Qy(m,m —1)Q; (m,m —1)] |D;; , 1)
ivj m

with
am={m|I, |m-1),
(22)
D,-j ='}’2ﬁ( 1-3 COSZG,']' )/r,-j- ’
where T}; is a vector connecting nuclei  and j, and 6;; is an angle between T;; and the z axis.
We consider the case where §=0. The amplitude 2H of the TQ rf field is assumed to be so large that the

dipole interaction can be treated as a perturbation compared with the Zeeman energy in the rotating reference
frame. Only the time-independent part #°; of

exp i[BZij(m+1,m——1)+R]t]%}(H.c.) (23)
j

becomes effective on the decay of the coherence. The explicit form of % is given by
1

Hy=3 2 [Iizljz—Qiz(erl,m—1)I,-,—I,-,Q,-,(m+1,m—1)
LJ

+530u(m+1,m —1)Q,(m+1,m —1)+ 50y (m +1,m —1)Q, (m +1,m —1)
—af,.+2[Q,-x(m+2,m+1)Q,-x(m+2,m+1)+Q,~y(m+2,m+1)Q,-y(m+2,m+1)]/16

—ap o[ Qi (m +2,m —1)Qj (m +2,m — 1)+ Qyy (m +2,m —1)Q;,(m +2,m —1)]/16

—(ap 41+ 05 [Qix(m +1,m)Qye (m +1,m) +Qyy (m +1,m)Q;, (m +1,m)]/16

(@2 41402 Qi (mym — 1)@ (mym — 1)+ Qyy (m,m —1)Q;, (m,m —1)]/16

—ap _1[Qi(m —1,m —2)Qj (m —1,m —2)+Qy (m —1,m —2)Q;,(m —1,m —2)1/16

—ap _[Qu(m +1,m —2)Qj (m +1,m —2)+Qy(m +1,m —2)Q;,(m +1,m —2)] /16
—%)I_‘,a?[Q.-x(I,Fl)ij<l,l—1)+Q,-y(1,1—1)Q,~y(1,1—1)] ID,.,., I£m+1l,mm+2. (24)

Since the Hamiltonian #; commutes with > j Qix(m+1,m— 1) and R, the solution of Eq. (19) is given by

p(t)=exp’—i B Qp(m+1,m—1)+R+%#, |t |p(0)(H.c.). (25)
J

We first consider the coherence transfer between SQ transitions (m —1)-m and m-(m + 1) corresponding to
experiment I, where the coherence u,, ,, ,1(0) is initially created between levels m and m +1. In this case p(0)
is given by

p0)=4 3 Q,(m+1,m), (26)
j
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2[Q,-,(m+1,m)]2’ .
J

Substituting Eq. (25) into

“m—l,m(t)=

we obtain

Tr [p(t)ZQJ-x(m,m—l) ] ,
j

Um _1,m(t)= —AT |(t)sin[ D(m,m )t ]sin(Bt )+ AT ,(t)cos[ D(m,m )t ]cos(Bt)

where

Fl(t)=Tl'

F()=Tr

I5(8)=Tr

T4t)=Tr

with U =exp(

y(t)=Tr

=Tr

—AT5(t)cos[D(m,m )t sin(Bt )+ AT 4(t)sin[ D(m,m )t ]cos(Bt) ,

S Qu(m,m—1U; ¥ Qp(m,m —1)UT!
j j

> Qp(m,m—1)U, Eij(m+1,m)U1']
j J
> Qj(m,m—1)U, Zij(m,m—l)Ul‘]
j j

S Qjx(m,m—1)U,; 3, Q(m +1,m)UT"
j J

—iHy4t). T(1) is an even function of ¢ sinc

3 Qi (m,m —1)U; 3, Qj(m,m —1)UT!
j j

3 Qu(m,m —1)UT' 3, Qju(m,m —1)U,
i j

Expanding T'(¢) in power series of ¢ and assuming
that it can be approximated by a Gaussian-type
equation, we obtain

[y(t)=Tr E[ij(m,m—l)]Z]
j
Xexp(—t2/2T?) , (32)
where
2
_Tr[ i’d,Eij(m,m—l)/] ]
j
T 2= . (33

Tr

2 [Q]x(m)m_l)]z ]
j

The other factors I';(?) (i=2,3,4) are shown to be
zero. Therefore, Eq. (29) becomes

27
27
(28)
(29)
(30)
e
=T (—1t). (31)
T
Up _1,m (D)= —UUp m 1(0)exp(—12/2T?)
X sin[D(m,m )t]sin(Bt) . (34)
In a similar way, we obtain
Vm —1,m(8)= Uy m +1(0)exp(—1%/2T?)
X cos[D(m,m )t]sin(Bt) . (35)
Thus
Sm —1,m(8)= tp m +1(0)exp(—12/2T?)
Xexp{i[D(m,m)t+7/2]}
Xsin(ft) . (36)

For the coherence between levels m and m + 1, we
obtain
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Smm +1(8)= thpy m 1 1(0)exp(—12/2T?)
Xexp[ —iD(m,m)t]cos(Bt) . (37)

In the case of coherence transfer between the SQ
transition m —2-m —1 and the three-quantum one
m —2-m +1 as in experiment II, the following equa-
tions are derived in a manner similar to the previous
case:

S —2.m—1(8)=thpy _3 m _1(0)exp(—1%/2T?)
X exp[ —iD(m,m —2)t]cos(Bt) ,
S —2.m +1(8)=tp _3 m _1(0)exp(—12/2T?)
xexp{ —i[D(m,m —2)t+m/2]}
Xsin(Bt) , (38)

where T are obtained from Eq. (33) by replacing m
by m—1.

We also take into account of the effect of the dead
time 14 of the receiver because the damping during
T4 is not negligible. Since the time development
during 74 is governed by U,=exp(—i¥ i), we
have

plt+77)=Uyp()UF ", (39

where p(?) is given by Eq. (25). Using Eq. (39) in-
stead of Eq. (25), we obtain

Sy (T4+74)= tp.(0)exp[ — (14 E74)?/2T?] sin(Br)

Xexp{i[D(—5,—3)r+7/21},  (40)

instead of Eq. (36), with
J

Tr | |#%5, 3 Qx(ba) | |#4, S Qjxlb,a)
J j

Z

Tr | | #4, 3Qjx(b,a)
J

, (41)

—Tr i?d,Eij(b,a)
J

T-2=

Tr

2 [ij(bra )]2
J

where we replace the notations m —1, m, and m +1
by a, b, and c, respectively, in accordance with the
experimental condition. In the case of 7=0, E be-
comes unity and T gives the decay time of the FID
aslszociated with the coherence between levels a and
b.

The solid curve in Fig. 2(a) represents v,, obtained
from Eq. (40), where the value of 7, is taken to be
30 us, and the amplitude is adjusted so that the best
fit to the experimental one is obtained. The solid
line in Fig. 2(b) is drawn by introducing a phase
shift of 77 /18 with respect to the curve in Fig. 2(a).
These theoretical curves are in good agreement with
the experimental ones for 7<60 us. The disagree-
ment for 7> 60 us is considered to be due to the un-
desirable excitation of the transition a-b by the TQ
rf pulse.

The theoretical expressions which should be com-
pared with the experimental results in Fig. 3 is ob-
tained in a similar way as

S (T+74)= ugy(0)exp[ —(1+E74)2/2T?]
X cos(Br)exp[ —iD( %, — % 1],
(42)

where E and T are obtained from Egs. (41) by using
the time-independent part of

" exp [i {B? Qjx(d,b)+R ]t ];f;;exp [—i [/3? Qjx(d,b)+R ]r] (43)

as #;. The solid curves in Figs. 3(a) and 3(b)
represent #,,(7) and v, (7) obtained from Eq. (42),
respectively, where the amplitude u,,(0) is adjusted
so that it coincides with the experimental value.

The solid curve in Fig. 3(c) represents

(uZy 402> = gy (0)exp] — (T+E7,)*/2T?]
X cos(Br) , (44)

which shows the sinusoidal oscillation with damp-

T
ing. The agreement between theoretical and experi-

mental curves is quite satisfactory.

D. Effect of the level shift on transfer
of coherence due to TQ excitation

In this section we discuss the effect of the level
shift in the coherence transfer caused by TQ excita-
tion. The operator R in the basic equation (5)
represents the level shift caused by the TQ rf field.
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In the case of TQ exact resonance (§=0), the effec-
tive Hamiltonian in the interaction representation
where the effect of 27 is eliminated, is derived from
Eq. (5) as

H=BO,(m+1,m—1)+R , (45)

where we assume that ¢ =0 for simplicity. Since the
TQ =f field is assumed to be far off resonance with
SQ transitions, the level shift A, (in angular fre-
quency units) of the state with magnetic quantum
number 7 is given by

A, =Tr(#P,)=Tr(RP,)
=&/(Q-Q,_,)
—€n41/(Q—Qp p41) (46)
where
€x=7vHa, . 47)

The first and second terms in the right-hand side of
Eq. (46) show the shifts of level n caused by the vir-
tual transitions n—1-n and n-n+1, respectively.
The shift occurs in the direction such that the
amount of off resonance in each transition is in-
creased.

The shifts A, +, and A, of the levels m+1 and m
caused by the TQ rf field exactly at resonance with
TQ transition m + l<>m —1 are obtained from Eq.
(46) as

Ap11=TH(RPp 1) =VHII*—m*+1+1)/60, ,

Ap =Tr(RP,)=—YH{(I*~m*+1)/20, . “8)

Then the transition frequency between levels m —1
and m becomes higher by an amount

gm—l,m =Ap_1—An
=2PHI I —m*4+1+7) /30, ,  (49)

whereas the transition frequency between levels m
and m +1 becomes lower by the same amount
(gm,m +1= _gm —1,m ).

The transfer of coherence occurs in the presence
of the level shift and therefore the phases of the
relevant coherences are shifted after the transfer,
i.e., the effect of level shift appears as the phase
shifts of the transferred coherences. The phase of
the observed coherence between levels m —1 and m
advances, and that between levels m +1 and m de-
lays by the same amount. The values of §,, _; ,, and
Cmm+1 are equal to those of D(m,m) and
—D(m,m) estimated from Eq. (11), respectively.
The effect of level shift described above is involved

in Egs. (14) and (15), where the term D(m,m) has
different signs.

The amount of the level shifts A, A,, and A can
be obtained from the observed value of D(— 5, —7)
or B with the aid of Eq. (48). The r&eult is
Apy=—27X%13.6 kHz and A,=A_,=27X5.1 kHz
for 2H ;=43 Oe.

In the case of coherence transfer between SQ and
three-quantum transitions, the level shifts by the TQ
rf field produce the phase shifts of coherences in the
same directions as is seen from Egs. (17), where the
signs in the exponents are the same. This fact can
be understood intuitively because the level d is out-
side the levels relevant to the TQ transition. The
amount of the level shifts A;, A, (=Ay), and A, are
obtained as 2mX2.2 kHz, 27X8.2 kHz, and
—2mX22.0 kHz, respectlvely, for 2H,; =55 Oe from

the observed value of D(5 ) or B with the aid of
Egs. (48) and
Am_2=VH1(I*—m?+1+4)/300, , (50)

1
where m = .

E. Shift of TQ resonance frequency

In previous sections we have shown that level
shifts are produced by the TQ rf field. However,
Egs. (48) show an interesting fact—that the level
shifts A,, ,; and A, _; are equal, and therefore no
frequency shift is expected for the TQ resonance fre-
quency. In our previous experiments on TQ
coherent phenomena, such as the TQ transient nuta-
tion, etc.,’> no evidence was observed on the shift of
TQ resonance frequency, consistent with this predic-
tion.

However, in a pure three-level system, the shift of
the TQ resonance frequency is expected. If we take
a three-level system consisting of levels m —1, m,
and m +1, it is expected that the TQ resonance fre-
quency is shifted by an amount

which is generally not zero (it becomes zero in the
special case of m =0). This formula can also be de-
rived from the exact pulse solutions of Brewer and
Hahn® for the TQ coherent phenomena when the
large frequency offset of the intermediate state is as-
sumed.

The calculated value of § is usually very small in
the system consisting of three levels in a multilevel
NMR system whose Hamiltonian is given by Eq. (1).
Therefore, the three-level model is a good approxi-
mation in the present experiment. However, as will
be described below, a high-precision measurement
shows that the shift (51) predicted by the three-level
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model does not agree with experimental results.

The experiment was performed as follows. First,
we fixed the strength of the static magnetic field H,
and measured the resonance frequency v, between
levels f and a very precisely, using a method which
we reported previously.'*

The method is illustrated in the lower part in Fig.
4. We apply a long pulse whose amplitude is initial-
ly small (about 0.01 Oe) and adiabatically increased
to about 20 Oe. If the rf field is slightly off-
resonance, the FID signal should be observed just
after the pulse. Plotting the amplitudes of the FID
signal as a function of the frequency of the rf field,
we obtain a curve like in Fig. 4. The point where
the curve crosses the base line gives the value of the
resonance frequency. This method gives the exact
resonance frequency of the spins whenever the first
moment of the absorption line is zero, i.e., even
when the resonance is asymmetrically broadened.

Next, we measured the resonance frequency be-
tween levels a and b v, by the same method. The
experimental results for the measurement of v, is
shown in Fig. 4. The resonance frequencies
obtained are  v;=9999.8+0.2 kHz and
v,=9644.010.2 kHz, respectively. From these
values the (unshifted) resonance frequency between
levels f and b is given by v;+v,=19643.8+0.4
kHz.

Finally, we measured the TQ resonance frequency

va2 b o
oK
&3 °
‘n§1 — o ’
ez 9645 YV (kH2)
520 | +————+p——t—t—t——
3 9640 ° 9650
= -1 -
g ®o
< 2+ (a)
Y FID
(b)

FIG. 4. A method for precise determination of the SQ
resonance frequency (b) and the experimental result ob-
tained by this method (a). The amplitude of the rf field is
adiabatically increased from about 0.01 Oe to about 20 Oe
and turned off suddenly. Open circles show the initial
amplitudes of FID signals just after the rf pulse for vari-
ous values of rf frequency v'. The point where the curve
crosses the base line gives the exact resonance frequency
V3.

with an operation as shown in Fig. 5(b). We apply a
long TQ excitation pulse with frequency v
[~ %(vl +v,)] followed by a 7 pulse with frequency
v,. The duration of the TQ excitation pulse is so
long that a quasi-steady state of the spin system is
achieved in the rotating reference frame. It can be
shown that when the frequency v shifts by A/27
from the TQ resonant frequency, the TQ effective
field is tilted from the z axis by an angle

f=tan"'(B/A) (52)

in the reference frame rotating at the frequency 2v.
In this case, a TQ coherence proportional to
cosfsind is expected to be created between levels f
and b as a dispersion component. The 7 pulse
(probe pulse) with frequency v, detects this disper-
sion component of TQ coherence as a FID signal be-
tween levels f and a. Plotting the initial amplitudes
of the FID signals as a function of v, we obtained
the curve shown in Fig. 5. The TQ resonance fre-
quency is obtained to be v;=9822.2+0.2 kHz from
the crossing point to the base line. In this measure-
ment undesirable signals arising from the direct ex-
citation by the long TQ pulse are eliminated since
the probe pulse selectively detects the TQ coherence.

The shift of the TQ resonance frequency between
levels f and b is then v +v,—2vy= —0.610.8 kHz,

292 o
Z’E‘] - o
£ o
g Y (kHz2)
530 k—o—‘—O&%
$ 9820 o 9825
S
2 (a)

» [
})2 l—-l 7T pulse
))‘ &FID

(b)

FIG. 5. A method for precise determination of the TQ
resonance frequency under the irradiation of the TQ rf
field and the result obtained by this method. Open circles
indicate the amplitudes of FID signals after the 7 (probe)
pulse for various frequencies of the TQ rf field. The am-
plitudes are proportional to the magnitudes of the disper-
sion components of the TQ coherence. The crossing point
of the curve and the base line gives the TQ resonance fre-
quency.
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which should be compared with the calculated value
of §/2mw. The three-level model [Eq. (51)] gives the
value

£/2m=3.0£0.1 (53)
in units of kHz,5 for the TQ rfaﬁeld used (2H,; =48
Oe), where I=+5 and m=—5. The experimental

value of /2 is clearly different from the theoreti-
cal one and can be regarded as zero within experi-
mental errors. Therefore, we conclude that the
three-level model gives incorrect results for the cal-
culation of the shift of TQ resonance frequency.!®
Our Egs. (48) give the correct value of the shift; in
other words, one should take into account not only
the effect of intermediate state but also those of oth-
er nonresonant levels in a multilevel system in order
to calculate level shift due to the TQ rf field.

APPENDIX

The Hamiltonian #°(¢) given by Eq. (3) is a fast-
oscillating operator since the frequency Q is far off
resonance from SQ resonances. Assuming the slow-
ly varying amplitude approximation, we expand the
right-hand side of Eq. (3) by using integration by

P, ifm=n

P,P,=
men 0 if m#n,

P, if j=n and k=m
Q(k,j)Q(n,m)=0(k,m) if j=n and k#=m
0 if j+#n,

parts. The first-order term is fast oscillating, and
the third- and higher-order terms are small com-
pared to the second-order one. Therefore, we obtain

plt)=— [ [pm, fotﬂﬁ(t’)dt'],ﬁ"l(t)] . (AD

We develop the right-hand side of Eq. (A1) by ap-
plying projection operator 3 P, on both sides of
the Hamiltonian #°|(¢) and rewrite it by using the
relations

I1,=3P, 1, 3P,=3a,Qmm—1),
m m m

I_=3P,I_3P,=3a,0m—1,m),
m m m

(A2)
L=3P,;3P,=53330,(m,n),

m>n

1
Liy=73anQx,(mm—1),
m

with a,,=(m I, |m—1) and following charac-
teristics of the operators P,,, Q(m,n), and Q;(m,n)
(i=x,y,z),

[Qp(m,n),Q,(m,n)]=2iQ,(m,n), p,q,r =2,y,z (cyclic permutation),

iQ,(n,k) if p=x,y

[Qp(m’n )’Qp(m’k)]= [O lfp =z,

(A3)

[Qx(m,n),Qy(m,k)]=—iQx(n,k), [Qy(m,n),Q,(m,k)]=iQx(m,n),
[Qz(m’n)7Qx(m’k)]=iQy(myk), [Iz;Qx(m,n)]‘—_i(m_n)Qy(m,n) ’
[Qy(m’n)’Iz]=i(m —n)Qx(m’n ), [Iz’Qz(m’n )]=O (ms£n,m+£k,ns£k) .

Thus we obtain under the rotating-wave approximation,

i)(t)=G1 +G2+G3+G4
with

Gi= —+PHI S S axayexpli ({400 +A4())t+26))
j k

(A4)

X[ p(1)Q(k,k —1)Q(j,j—1)/A(k)+Q(k,k —1)Q(j,j — 1)p(£) /A(})

—Q(k,k—1)p()Q(j,j—1)/A(k)—Q(k,k —D)p()Q(j,j —1)/A()],
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G,= i—yZH% ?%akajeXp(——i{[A(k)+A(j)]t+2¢})
X[ p(t)Q(k —1,k)Q(j —1,j)/A(k)+Q(k —1,k)Q(i —1,j)p(2) /A(j) (A5)
—Q(k—1,k)p()Q(j —1,j) /A(k)—Q(k — 1,k )p(1)Q(j —1,j) /A()] ,
Gy= —fﬂﬁ §§akajexp{i[A<k)—A(j)]t}
X[ p(0Q(k,k —1)Q(j —1,j)+Q(j —1,/)Q(k,k —1)p(t)

—Q(k,k—1)p(1)Q(j—1,/)—Q(i—1,j)p(t)Q(k,k—1)]/A(k) ,
and

Gi= +VH} S S arayexplil A —A()])
k
X [p()Q(j —1,/)Q(k,k —1)+Q(k,k —1)Q(j —1,j)p()

—Q(—1,j)p()Q(k,k —1)—Q(k,k —1)p(1)Q(j —1,7)]/A(j) , (A6)

where k and j are eigenvalues of I, and
AK)=Q—Q 1, =Q—(k—1|2y|k—1)—(k | H,|k))
=Q—[yHy—(2k —1)o,] (A7)

is the frequency offset to the SQ transition k — 1-k. We consider TQ transition m — 1-m + 1, and assume that
the absolute value of frequency offset to the TQ transition

28=2[Q—(yHo—2ma,)] (A8)

is much smaller than yH;. The term A(k) can be rewritten as

A(K)=(2k —1=2m ), +8 . (A9)

The first and second terms with k+j+ 1 in the second set of square brackets in G, in Eq. (A5) vanish owing
to the characteristics of P, and Q(m,n). The terms with frequency |A4(k)+A(j)| >vH, are removed as
fast-oscillating ones. Then, we obtain

Gi=— V’H1exp[2i(8t +$)otmtm 41[p(1),Qm +1,m —D]/a . (A10)
In the derivation we use the approximations w, £8~w,, and 4(k)+28~A(k), since |8 | is much smaller than
wg and |A(k)|.
In a similar way, the term G, is simplified to be
Gy =— P Hiexp[ —2i(8t +§)laman 11[p(1),Q(m —1,m +1)) /o, , (AlD
and the term (G3;+ G},) is reduced to

Gy+Gy=— %ysz S a2 [p(1),0, (ko k— D]/ Q— Dy _14) - (A12)
k

Thus, Eq. (A4) becomes
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p(t)=iB[p(t),exp[2i(8t +¢)]Q(m +1,m —1)+exp[ —2i(8t +¢)]Q(m — 1,m + 1)] +i[p(2),R] , (A13)
where
B=vHI(m+1|I}|m—1)/0,,

(A14)
R=7VH}S ot Q,(k,k—1)/4Q—Q) _1 ;) .
k

Using the transformation
p'()=exp[ —i8Q,(m +1,m — )t]p(¢)(H.c.) , (A15)
we rewrite Eq. (A13) as
pl(0)=iBlp"(1),Qy (m +1,m —1)cos2¢ — Q, (m + 1,m — 1)sin2¢ ]
+i8p"(1),0,(m +1,m —D]+ilp'(1),R], (A16)

which is the basic equation quoted in the text.
If the effect of the counter-rotating component of the rf field is taken into account, the term R in Eq. (A16)
is replaced by R +R’, where

R’=——-y2H%Zain(k,k—l)/4(Q+ﬂk_,,k). (A17)
k

However, the expectation value of R’, which gives a Bloch-Siegert shift, is extremely small compared with that
of R. Then, we neglect the operator R’ in the following.

The effect of magnetic dipole interaction #°; is considered in an ensemble of spins with Zeeman and interac-
tion Hamiltonians #°, and 57°(¢) given by

FHo=—vHo D Ip+0, S IE—5IT+1)],
J J

(A18)
H\(t)=—2vH expliHot) 3, Ijxexp( —iH ot )cos(Qt +¢) .
j
The time development of the ensemble is governed by the following equation:
pt)=i[p(), () +#5(D)] , (A19)
where
H (1) =expli ot ) gexpl—iHot) . (A20)

The effect of the secular part #°j of the dipole Hamiltonian ﬁ”};(r) can be eliminated by using the transforma-
tion p* = U~ !pU, where U=exp(—i# jt). Equation (A19) becomes

pr(O=i[p*(), 1)+ 4(1)], (A21)

where #3(t)=U~'9,(1)U and # 4(t)=U"'[#}(t)—#%]U. The Hamiltonian 5#°}(1)+5 (1) is a fast os-
cillating operator and therefore Eq. (A21) can be approximated as

pt ] ! * * ! * ’
ph)= — [ [p‘(t), fof,(t’)dt’],%l(t)]—— [ [p‘(t), foﬁfl(t’)dt’],i/d(t)]
t t
_ [ [p*m, [ o ],;ﬂ(r) ]- [ [p*(t), [ o aunar ],2’,’,(1) ] . (A22)
The right-hand side of Eq. (A22) can be developed by applying projection operator ,, P,. The integrals in-
volved in Eq. (A22) have a common form as
F= fotexp[iA(k)t']exp(i%}t’)Q(m,n)exp(—i%’§t')dt’ ,
(A23)
t 0
= fo explid(k)t'] S (it [H 5[5, . .[#5,Q(m,n)]...1]1/n\dt" ,
n=0
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where n is the number of #°5 terms. By using integration by parts and neglecting the second- and higher-

order terms by assuming that {#°; ) << (#,), we obtain

F=—i{exp[id(k)t]lexp(i# 3t)Q(m,n)exp(—i¥ 3t)—Q(m,n)} /A(k) . (A24)

Using Eq. (A24) and procedures similar to those used to derive Eq. (A13), we derive the following equation

from Eq. (A22):

p)=ipB [p(t), S Qj(m +1,m —1exp[2i (8t +4)]
j

+ 3, Qj(m—1,m+1exp[ —2i(8t+¢)] | +i[p(2),R]+i[p(2),#5], (A25)
J
where
R=pH} 30} 3 Qutkik—1) [40—0% 1) (A26)
ko
After the transformation
pl(t)=exp —is)_‘Qj,(m+1,m—1)t]p(t)(H.c.), (A27)
J
we finally obtain
pl=ip pT(t),Zij(m—i-l,m—l)cos(ZdJ)— > Q(m+1,m —1)sin(2¢)
J j
+i8 |pl(0), 3 Qp(m +1,m —1) | +i[p"(),R]1+i[p'(1),#%] . (A28)
j
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