## One-Dimensional Local Rings

| メタデータ | 言語: eng                        |
|-------|--------------------------------|
|       | 出版者:                           |
|       | 公開日: 2017-10-03                |
|       | キーワード (Ja):                    |
|       | キーワード (En):                    |
|       | 作成者:                           |
|       | メールアドレス:                       |
|       | 所属:                            |
| URL   | http://hdl.handle.net/2297/525 |

## **One-Dimensional Local Rings**

## Ryoichi NAGASAWA

All the rings in this note will be commutative and Noetherian and have a unit element. Throughout, R will denote a one-dimensional local ring having maximal ideal M. We know that for a M-primary ideal I, the length of the R-module  $R/I^n$  is given by en-r for all large values n, where e=e(I) and r=r(I) are integers called the multiplicity and reduction number of I respectively.

Northcott first introduced the notion of neighbourhood rings and studied some important connections between e and r for I=M. We quote Northcott[4], [5], Kirby[1] and Matlis[2] as references for these notion and results. In this note we consider certain extensions of these results and give a direct method for their proofs in the case of non-maximal I.

The terminology used in note is in general the same as that of [2] and [3]. We recall some basic definitions. We shall assume that I denote an M-primary ideal unless otherwise stated. An element a in I is called an I-superficial element of degree s, if there is an integer c such that  $(I^n:a)\cap I^c=I^{n-s}$  for all large n. The set of those elements forms a multiplicatively closed set S and  $R\{I\}$  denotes the set of elements b/a in  $S^{-1}R$ , where  $b\in I^s$  and a is an I-superficial element of degree s (s variable). Then it is easy to see that  $R\{I\}$  is a semi-local subring of  $S^{-1}R$ , and  $Ker(R\to R\{I\})$  is the height 0 unmixed part U(0) of the zero ideal. In particular, if R is Cohen-Macaulay, then  $R\{I\}$  contains R. Here we note the following.

- (a) (1) Let  $\bar{R} = R/U(0)$ . Then  $e(I) = e(I\bar{R})$ .
  - (2)  $e(I) = L(T/I\overline{R}), r(I\overline{R}) = L(T/\overline{R}), \text{ where } T = R\{I\} \supset \overline{R}.$
  - (3)  $r(I) = r(I\overline{R}) L(U(0))$ . (L(N)) denotes the length of the R-module N
  - (4)  $r(I) = -L(U(0)) \iff I\bar{R} \text{ is a principal ideal.}$
  - (5) R is Cohen-Macaulay  $\iff$   $r(I) \ge 0$  for all I.

*Proof*. The proofs of (1) and (3) are easy, and (4) follows from (2). In fact,  $\bar{R}$  is Cohen-Macaulay, and  $r(I\bar{R})=0$  if and only if  $T=\bar{R}$ . This holds if and only if  $IT=I\bar{R}$  is a regular principal ideal. As for (2), since  $R\{I\}=\bar{R}\{I\bar{R}\}$ , we may assume that R is Cohen-Macaulay. In this case, the proof is almost analogous to that of those assertions in the case of I=M (cf. [2]) and may be omitted. The assertion (5) follows from (2), (3) and (4).

We also note the following elementary fact.

- (b) For every parameter element a in M, we have
  - (1)  $a^n R/a^{n+1}R \cong R/(aR+(0:a^n))$ .

(2)  $L(a^{l}R/a^{l+1}R) = e(aR) \iff 0 : a^{l} = U(0).$ 

In particular, R is Buchsbaum if and only if  $L(aR/a^2R) = e(aR)$  for every parameter a. Proof. The kernel of  $R \to a^n R/a^{n+1}R$  ( $x \to a^n x$ ) is  $a^{n+1}R : a^n R = aR + (0:a^n)$ , which implies (1). Suppose  $L(a^l R/a^{l+1}R) = e(aR)$ . Then  $aR + U(0) = aR + (0:a^l)$  by (1) and (a), (1). Let x = ay + z be any element in U(0), where  $y \in R$  and  $z \in 0: a^l \subset U(0)$ . Then  $x - z = ay \in U(0)$ , hence  $y \in U(0): aR = U(0)$ . Therefore  $U(0) = aU(0) + (0:a^l)$  and  $U(0) = (0:a^l)$  by Nakayama. The converse of (2) is obvious by (1) and (a), (1). The last assertion is immediate from the definition.

We shall treat the Cohen-Macaulay case from now on. Then  $R\{I\}$  is a finite ring extension of R in the total quotient ring Q(R).

(c) R is analytically unramified if and only if there is an integer l such that  $r(I) \le l$  for all I. If R is not necessarily Macaulay, then r(I) is bounded if and only if R/P is analytically unramified for every height 0 prime ideal P of R.

*Proof.* In fact, for any finite ring extension S in Q(R), there is a regular element a in R such that I=Sa is an M-primary ideal with  $I^2=Ia$  and hence a is an I-superficial element of degree 1. Since r(I)=L(S/R), the first assertion is obvious by (a). If R is general, the similar argument show that  $\bar{R}=R/U(0)$  is analytically unramified if and only if  $r(I)=r(I\bar{R})-L(U(0))$  is bounded for all I. From this fact the last assertion follows immediately.

We also note that  $R\{I\} = R[I^s a^{-1}]$  for any I-superficial element a of degree s, and hence  $R\{I\} = I^{ns} a^{-n}$  for all large n, which can be proved similarly as in [2].

By c(I) we denote the least number c such that  $L(R/I^n) = e(I) n - r(I)$  for all n with  $n \ge c$ . We also set R(I) = R[It] and G(I) = R(I)/IR(I). Let  $K = \sum K_n t^n$  be the height one unmixed part of IR(I). Then we have the following, which contains certain extensions of Theorem 12.10 and 12.11 in [2].

- (d) (1)  $K_n = I^{n+1}R\{I\} \cap I^n$ ,  $n \ge 0$ .
  - (2)  $K_n = I^{n+1}, n \ge c(I)$ .
  - (3) Suppose  $c(I) \ge 1$ . Then  $L(I^{n-1}/K_{n-1}) + 1 \le L(I^n/K_n) \le L(I^n/I^{n+1}) \le e(I) 1, \ n \le c(I) 1.$

*Proof.* An element  $a \in I^s$  is I-superficial of degree s if and only if  $at^s \in R(I) - K$  (cf. [3], 22.). Let W be the multiplicatively closed set consisting of homogeneous elements in R(I) - K and let  $A = W^{-1}R(I)$ . Then  $K = IA \cap R(I)$ . Comparing the degree n homogeneous part, the assertion (1) is immediate from the definition of  $R\{I\}$ . As for (2), considering  $R(X) = R[X]_{M[X]}$  if necessary (cf. [3], 6., 22.), we may assume that there is an I-superficial element of degree 1. In fact, since the theorem of transition holds for rings R and R(X) (cf. [2], p.108), the results of (2) and (3) for R(X) and IR(X) immediately yields those for R and I, and hence it is sufficient to prove (2) and (3) under the above assumption. Let P be an P-superficial element of degree 1. Since P is finite over P, there is an integer P such that

$$R \subset Ib^{-1} \subset I^2b^{-2} \subset \cdots \subset I^db^{-d} = R\{I\}.$$

Then  $I^d b = b^{d+1} R\{I\} = I b^d R\{I\} = I^{d+1}$  since  $IR\{I\} = bR\{I\}$ . For every  $k \ge 0$ , we have  $L(R/I^{d+k}) = L(R/I^d b^k) = L(R/b^k R) + L(b^k R/b^k I^d) = e(I) k + L(R/I^d)$ .

This implies  $d \ge c(I)$ . On the other hand, letting c = c(I), we have

$$L(R/I^{c+1}) = e(I) + e(I)c - r(I) = L(R/bR) + L(bR/bI^{c}) = L(R/I^{c}b),$$

which implies  $I^cb=I^{c+1}$ , hence  $I^cb^{-c}=I^{c+1}b^{-(c+1)}$ . Therefore we see that  $I^cb^{-c}=R\{I\}$  and hence  $c \ge d$ . Thus we have c(I)=d. Suppose  $n \ge c$ . Then  $I^nb^{-n}=R\{I\}$  and  $I^n=b^nR\{I\}=I^n$   $R\{I\}$ . By virtue of (1), we have

$$I^{n}/K_{n} = I^{n}/I^{n} \cap I^{n+1}R\{I\} \cong I^{n} + I^{n+1}R\{I\}/I^{n+1}R\{I\} = I^{n}R\{I\}/I^{n+1}R\{R\}$$

$$= b^{n}R\{I\}/b^{n+1}R\{I\} \cong R\{I\}/IR\{I\}.$$

Since  $n \ge c$ ,  $L(I^n/I^{n+1}) = e(I) = L(R\{I\}/IR\{I\}) = L(I^n/K_n)$ . Thus  $K_n = I^{n+1}$  for all  $n \ge c(I)$ , which proves the assertion (2).

By what was proved above, c(I) is the least integer d such that  $I^db^{-d}=R\{I\}$ , and in particular,  $I^cb^{-c}=R\{I\}$  with c=c(I). Now we proceed with the proof of the assertion (3). By the above remark we may assume that there is an I-superficial element b of degree 1. Set  $U=Ib^{-1}+IR\{I\}/IR\{I\}$  and  $U^0=R+IR\{I\}/IR\{I\}$ . Then, U is an submodule of  $R\{I\}/IR\{I\}$ , and  $U^n=I^nb^{-n}+IR\{I\}/IR\{I\}$ ,  $n\geq 0$ . This yields the following ascending chain:

$$U^0 \subset U^1 \subset U^2 \subset \cdots \subset U^c = U^{c+1} = \cdots = R\{I\}/IR\{I\},$$

where  $U^n \cong I^n + b^n IR\{I\}/b^n IR\{I\} = I^n + I^{n+1}R\{I\}/I^{n+1}R\{I\} \cong I^n/K_n$ ,  $n \ge 0$ .

In fact, suppose that  $U^{k-1} = U^k$  for some  $k \le c$ . Then  $U^{c-1} = U^{c-k}U^{k-1} = U^c = R\{I\}/IR\{I\}$ , and hence  $I^{c-1}b^{-(c-1)} + IR\{I\} = R\{I\}$ . Since  $R\{I\}$  is a finite R-module and  $I \subseteq M$ , we have  $I^{c-1}b^{-(c-1)} = R\{I\}$  by Nakayama. But this contradicts the definition of d(=c). Since  $L(I^n/K_n) = L(U^n)$  and  $I^{n+1} \subseteq K_n$ ,  $n \ge 0$ , the assertion is proved except for the last inequality in (3). On the other hand,  $b \in I$  is I-superficial of degree 1, and hence

$$L(I^n/I^{n+1}) \leq L(I^n/I^nb) = L(R/bR) + L(bR/I^nb) - L(R/I^n) = L(R/bR) = e(I).$$
 Therefore,  $L(I^n/I^{n+1}) = e(I)$  if only if  $I^{n+1} = I^nb$ . This holds if and only if  $I^nb^{-n} = I^{n+1}b^{-(n+1)} = \cdots = R\{I\}$ . From the definition of  $d(=c)$ , if  $n \leq c-1$ , then  $L(I^n/I^{n+1}) \leq e(I) - I^{n+1}b^{-(n+1)} = \cdots = R\{I\}$ .

1. Thus the assertion (3) is proved completely.

In the proof of (d) we obtain the following.

(e)  $R[It]/K = \sum (I^n/K_n) t^n \cong U^0 + U^1t + U^2t^2 + \cdots = U^0[Ut], \ U^c = R\{I\}/IR\{I\}$  where  $IR\{I\} = bR\{I\}$  for a suitable  $b \in IR\{I\}$  and  $U = Ib^{-1} + IR\{I\}/IR\{I\}$ .

In fact,  $U^n \cong I^n/K_n$ ,  $n \ge 0$  as in the above proof, and there is an I-superficial element a of degree s for some natural number s. Then  $I^{ns}a^{-n}=R\{I\}$  for large n, and hence  $I^{ns}=a^nR\{I\}=I^{ns}R\{I\}=b^{ns}R\{I\}$ . This implies that there is the least integer d with  $I^d=b^dR\{I\}$ . It is easy to see that d=c(I) and  $U^d=R\{I\}/IR\{I\}$ .

As a simple application we have the following.

- (f) Let  $K = \sum K_n$  be the height one unmixed part of IR[It]. Set  $r_0 = e(I) L(R/I)$ ,  $h = e(I) L(R/K_0)$  and c = c(I).
  - $(1) \quad \mathit{Max}\left(\mathit{c},\ \mathit{r}_{0}\right) \leq \! \mathit{r}\left(\mathit{I}\right) \leq \! \mathit{hc} \! \frac{1}{2} \mathit{c}\left(\mathit{c} 1\right).$
  - (2)  $c \le h$  and c = h if and only if  $L(I^n/K_n) = e(I) c + n$  for  $n = 0, 1, \dots, c 1$ . Proof. If c = 0, then r(I) = 0 from the definition and hence  $r_0 = 0$ . Thus the assertion is true

in this case.

Suppose  $c \ge 1$ . By virtue of (d) we have

$$\begin{split} r_0 &\leq \sum_{n=0}^{c-1} (e(I) - L(I^n/I^{n+1})) = r(I) \leq \sum_{n=0}^{c-1} (e(I) - L(I^n/K_n)) \\ &\leq \sum_{n=0}^{c-1} (e(I) - (L(R/K_0) + n)) = hc - \frac{1}{2}c(c-1). \end{split}$$

Since  $L(I^n/I^{n+1})+1 \le e(I)$  for  $n=0, 1, \dots, c-1$  by (d), we have  $r(I) \ge c$ . Thus the assertion (1) is proved. On the other hand, by virtue of (d), we have

$$h=e(I)-L(R/K_0) \ge 1+e(I)-L(I/K_1) \ge 2+e(I)-L(I^2/K_2) \ge \cdots \ge c-1+e(I)-L(I^{c-1}/K_{c-1}) \ge c.$$

Thus  $c \le h$  and the equality c = h hold if and only if  $e(I) - L(I^n/K_n) = c - n$  for  $n = 0, 1, \dots, c-1$ , which prove the assertion (2).

The following is a refinement of Theorem 2 in [1].

(g) With the same notation as in (g) we have the following.

$$r(I) \le (e(I) - 1) c - \frac{1}{2} c(c - 1) \le \frac{1}{2} e(I) (e(I) - 1).$$

In particular, if G(I), the associated graded ring of R with respect I, is Macaulay, then  $r(I) \le r_0(r_0+1)/2$ , where  $r_0 = e(I) - L(R/I)$ .

*Proof.* Since  $h=e(I)-L(R/K_0) \le e(I)-1$ , the first inequality is obvious by virtue of (g), (1). On the other hand, set

$$p(n) = (e(I) - 1) n - \frac{1}{2} n(n-1), n = 0, 1, 2, \dots$$

Then it is easily seen that p(n) has the maximum at n=e(I)-1 and p(e(I)-1)=e(I)(e(I)-1)/2, which proves the assertion. If R(I) is Macaulay, then  $h=r_0$  and the last assertion is immediate from the similar argument above.

## References

- [1] D. Kirby, The reduction number of a one-dimensional local ring, J. London Math.Soc.(2), 10 (1975), 471-481.
- [2] E. Matlis, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Math. 327, Springer-Verlag (1973).
- [3] M. Nagata, Local Rings, Interscience, New York, 1962.
- [4] D.G. Northcott, The neighbourhoohs of a local ring, Jour. London Math. Soc., 30 (1955), 360-375.
- [5] D.G. Northcott, The reduction number of a one-dimensional local ring, Mathematica, 6 (1959), 87-90.