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One-Dimensional Local Rings

Ryoichi NAGASAWA

All the rings in this note will be commutative and Noetherian and have a unit element.
Throughout, R will denote a one-dimensional local ring having maximal ideal M. We know
that for a M-primary ideal I, the length of the R-module R/I" is given by en—# for all large
values #, where e=¢(I) and »=7#(I) are integers called the multiplicity and reduction number
of I respectively.

Northcott first introduced the notion of neighbourhood rings and studied some important
connections between ¢ and 7 for =M. We quote Northcott[4], [5], Kirby[1] and Matlis[2]
as references for these notion and results. In this note we consider certain extensions of these
results and give a direct method for their proofs in the case of non-maximal I.

The terminology used in note is in general the same as that of [2] and [3]. We recall some
basic definitions. We shall assume that I denote an M-primary ideal unless otherwise stated.
An element « in [ is called an /-superficial element of degree s, if there is an integer ¢ such
that (I”: @) NI°=I""* for all large =. The set of those elements forms a multiplicatively
closed set S and R{I} denotes the set of elements /¢ in S™'R, where 4<I° and « is an
I -superficial element of degree s (s variable). Then it is easy to see that R{I} is a semi-local
subring of ST'R, and Ker (R—>R{I}) is the height 0 unmixed part U (0) of the zero ideal. In
particular, if R is Cohen-Macaulay, then R{I} contains R. Here we note the following.

@) (1) Let R=R/U(0). Then e(I)=e(IR). ’
2) eI)=L(T/IR), v IR)=L(T/R), wheve T=R{I}DR.
(3) r{I)=r{UR)—L(U(0)). (L(N) denotes the length of the R-module N
@) »(I)=—L(U(0)) <= IR is a princival ideal.
(5 R is Cohen-Macaulay <—=>r(I)>0 for all I.

Proof. The proofs of (1) and (3) are easy, and (4) follows from (2). In fact, R is Cohen-
Macaulay, and # (IR) =0 if and only if T=R. This holds if and only if 7 =IR is a regular
principal ideal. As for (2), since R{I}=R{IR}, we may assume that K is Cohen-Macaulay. In
this case, the proof is almost analogous to that of those assertions in the case of I =M (cf. [2])
and may be omitted. The assertion (5) follows from (2), (3) and (4).

We also note the following elementary fact.

(b) For every parameter element a in M, we have
(1) a"R/a""'R=R/(aR+(0:a").
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(20 L(a'R/a'"'R)=e(aR) <=>0:a'=U(0).
In particulay, R is Buchsbaum if and only if L{aR/a’R)=ec(aR) for every pavameter a.
Proof. The kernel of R—a"R/a" 'R (x—a"x) is a®'R : a”"R=aR+ (0 : ™), which implies
(1). Suppose L{(@'R/a'"'R)=¢(aR). Then aR+U(0) =aR+ (0: ") by (1) and (a), (1). Let x=
ay—+2z be any element in U (0), where yER and 20 : a'CU(0). Then x—z=ay<= U (0), hence
yeU(0) : aR=U). Therefore U{0)=aU0)+(0: &") and U0)=(0 : &) by Nakayama.
The converse of (2) is obvious by (1) and (a), (1). The last assertion is immediate from the
definition.
We shall treat the Cohen-Macaulay case from now on. Then R{I} is a finite ring extension
of R in the total quotient ring Q ().
(¢) R is analytically unvamified if and only if theve is an infeger [ such that v (I) <1 for all

I If R is not necessarvily Macaulay, then v (I) is bounded if and only if R/P is analytically

unramified fov every height 0 prime ideal P of R.

Proof. In fact, for any finite ring extension S in @ (R), there is a regular element « in R
such that 7 =Sz is an M-primary ideal with 7?=1Iz and hence « is an I-superficial element of
degree 1. Since » (I) =L(S/R), the first assertion is obvious by (a). If R is general, the similar
argument show that R=R/U(0) is analytically unramified if and only if »(J) =7 (IR)—
L(U(0)) is bounded for all /. From this fact the last assertion follows immediately.

We also note that R{I/}=R[I°a¢"!] for any I-superficial element @ of degree s, and hence
R{I}=1I"a"" for all large %, which can be proved similarly as in [2].

By ¢(I) we denote the least number c¢ such that L(R/I")=e(I)n—r{I) for all » with n>
c. We also set R(I)=R[It] and GUI)=R)/IR(I). Let K=3K ,t* be the height one
unmixed part of IR(I). Then we have the following, which contains certain extensions of
Theorem 12.10 and 12.11 in [2].

@ (1) K,=I""R{IINI", n>0.
2 K,=I""" n>c(I).
‘(3) Suppose ¢ (I)>1. Then
L™K, F1<LI"/K,) <LI*/I") <e(I)—1, n<c(I)—1.

Proof. An element a=1° is I-superficial of degree s if and only if at*=R (I) — K (cf. [3],
22.). Let W be the multiplicatively closed set consisting of homogeneous elements in R (I) —
Kandlet A=W ™'R(I). Then K=IANR(I). Comparing the degree # homogeneous part, the
assertion (1) is immediate from the definition of R{I}. As for (2), considering R(X)=
R[X]yrx if necessary (cf. [3], 6., 22.), we may assume that there is an J-superficial element
of degree 1. In fact, since the theorem of transition holds for rings R and R (X) (cf. [2], p.108),
the results of (2) and (3) for R (X) and IR (X) immediately yields those for R and 7, and hence
it is sufficient to prove (2) and (3) under the above assumption. Let 4 be an I -superficial element
of degree 1. Since R{I} is finite over R, there is an integer d such that

RCIhcr*p?cC-CI% *=R{I}.
Then I°b=p""R{I}=16°R{I}=1%" since IR{I}=5bR{I}. For every k>0, we have
LR/I*®=L(R/I*b*)=L(R/b*R)+L(b*R/b*I*)=c(I)k+L(R/I?.
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This implies d>¢(I). On the other hand, letting ¢=c(I), we have
LR/ I =e(I)+e(I)c—r{I)=L(R/bR)+L(bR/bI°)=L(R/I°b),
which implies 7°6=1I°"', hence I°b~°=1°"1p"“"V Therefore we see that /6 “=R{I} and
hence ¢>d. Thus we have ¢(I)=d. Suppose #>c¢. Then I"6"=R{I} and I"=p"R{I}=I"
R{I}. By virtue of (1), we have
]"/Kn:["/lnﬂI"“R{I}E["-I—I"HR{I}/["+1R{I}:I”R{I}/I"HR{R}
=p"R{I}/ 6" 'R{I}=R{I}/IR{I}.
Since n>c¢, LI I"Y) =e(I)=L(R{I}/IR{I})=L(I"/K,). Thus K,=I"" for all n>c(I),
which proves the assertion (2).

By what was proved above, ¢ (/) is the least integer d such that / dp~d=R{I}, and in
particular, I°6=°=R{I} with c=c(I). Now we proceed with the proof of the assertion (3). By
the above remark we may assume that there is an I -superficial element & of degree 1. Set U=
b+ IR{I}/IR{I} and U’=R~+IR{I}/IR{I}. Then, Uis an submodule of R{I}/IR{I}, and
Ur=I1"b""+IR{I}/IR{I}, n>0. This yields the following ascending chain:

U'cU'cU?C- CU=Utt=.mees =R{I}/IR{I},

where U"=I"+p*IR{I}/b"IR{I}=I"-+I""'R{I}/I"'R{I}=I"/K,, n>0.

In fact, suppose that U* 1= U* for some k<c¢. Then U '=U"*U*"'=U*=R{I}/IR{I},
and hence 7€~ V4 JR{IV=R{1}. Since R{I} is a finite K-module and I/ C M, we have
I¢p~“U=R{JI} by Nakayama. But this contradicts the definition of 4 (=¢). Since
L(I*/K,)=L(U" and I""'CK,, n>0, the assertion is proved except for the last inequality
in (3). On the other hand, b<1 is I-superficial of degree 1, and hence

LI/ Y <L(I"/I"0)=L(R/bR)+L(bR/I"b)—L(R/I")=L(R/bR)=e(I).
Therefore, L(I”/I"“) =e(I) 'if only if I*"'=I"p. This holds if and only if I"67"=
) SaRY/ AR R =R{I}. From the definition of d(=¢), if n<c—1,then L(I*/I""") <e(l)—
1. Thus the assertion (3) is proved completely.

In the proof of (d) we obtain the following.

() R[II/K=3U"/K,)t'=U"+U't+U*+--=U"LUt], U'=R{I}/IR{I}
where IR{I}—bR{I} for a suitable bEIR{I} and U=Ib""+IR{I}/IR{I}.

In fact, U”=I1"/K ,, >0 as in the above proof, and there is an /-superficial element a of
degree s for some natural number s. Then /¢ "=R{I} for large », and hence / W=g"R{I}=
I™R{I}=b"R{I}. This implies that there is the least integer d with I?=6“R{I}. It is easy
to see that d=c¢ (I) and U=R{I}/IR{I}. )

As a simple application we have the following.

() Let K=SK, be the height one unmixed part of IR [[t] Set
ro=e(I)—L(R/I), h=e(I)—L(R/K,) and c=c(I).

(1) Max(c, 7o) <v(I) ghc—%c(c—-l).

@) c<hand c=h if and only if LUI"/K,)=e(l)—c+n for n=0,1, -, ¢c—L
Proof. If ¢=0, then » (I) =0 from the definition and hence 7,=0. Thus the assertion is true
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in this case.
Suppose ¢>1. By virtue of (d) we have

1 —

<3 (e(D) LU/ =r (1)< S () ~LU/K,)

1
n=0

—

<3 (e()~ (L(R/K) +) = he=pe (c=1).

Since LUI"/I"™) +1<e(I) for n=0, 1, -+ , ¢c—1 by (d), we have » () >¢. Thus the

assertion (1) is proved. On the other hand, by virtue of (d), we have
h=e(I)~L(R/Ky)>1+e(I)—L(I/K,)>2+e(I)—L(I*/K,) >
............ 26—1+@(I)—L(1“1/Kc,1) >c.

Thus ¢< % and the equality ¢=7% hold if and only if e(I)—L{I"/K,)=c—n for n=0, 1, -+
¢—1, which prove the assertion (2).

The following is a refinement of Theorem 2 in [1].

(8)  With the same notation as in (g) we have the following.

P (1)< (e(1) =D e—tc(e=D) <re(D) (e (1) 1),
In particular, if G(I), the associated graded ving of R with respect I, is Macaulay, then
v(I) <ry(ry+1)/2, where ro=e(I)—L(R/I).
Proof. Since h=e(I)—L(R/K,) <e(I)—1, the first inequality is obvious by virtue of (g),
(1). On the other hand , set

p(n)y="(ell) —1)%—%%(1/&—1), n=0,1,72, - .
Then it is easily seen that p (%) has the maximum at #=e¢(l)—1 and p(e(/)—1) =
e(I) (e(I)—1)/2, which proves the assertion. If R(J) is Macaulay, then 2=, and the last
assertion is immediate from the similar argument above.
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