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MRI-Based Assessment of Acute Effect of
Head-Down Tilt Position on Intracranial

Hemodynamics and Hydrodynamics

Shota Ishida, MS,1,2 Tosiaki Miyati, PhD, DMSc,1* Naoki Ohno, PhD,1

Shinnosuke Hiratsuka, MS,3 Noam Alperin, PhD,4 Mitsuhito Mase, MD, PhD,5 and

Toshifumi Gabata, MD, PhD6

Purpose: To quantify the acute effect of the head-down tilt (HDT) posture on intracranial hemodynamics and
hydrodynamics.
Materials and Methods: We evaluated the intracranial physiological parameters, blood flow-related parameters, and
brain morphology in the HDT (–68 and –128) and the horizontal supine (HS) positions. Seven and 15 healthy subjects
were scanned for each position using 3.0 T magnetic resonance imaging system. The peak-to-peak intracranial volume
change, the peak-to-peak cerebrospinal fluid (CSF) pressure gradient (PGp-p), and the intracranial compliance index
were calculated from the blood and CSF flow determined using a cine phase-contrast technique. The brain volumetry
was conducted using SPM12. The measurements were compared using the Wilcoxon signed-rank test or a paired t-test.
Results: No measurements changed in the –68 HDT. The PGp-p and venous outflow of the internal jugular veins (IJVs) in
the –128 HDT were significantly increased compared to the HS (P < 0.001 and P 5 0.025, respectively). The cross-
sectional areas of the IJVs were significantly larger (P < 0.001), and the maximum, minimum, and mean blood flow
velocity of the IJVs were significantly decreased (P 5 0.003, < 0.001, and 5 0.001, respectively) in the –128 HDT. The
mean blood flow velocities of the internal carotid arteries were decreased (P 5 0.023). Neither position affected the
brain volume.
Conclusion: Pressure gradient and venous outflow were increased in accordance with the elevation of the intracranial
pressure as an acute effect of the HDT. However, the CSF was not constantly shifted from the spinal canal to the
cranium.
Level of Evidence: 2
Technical Efficacy: Stage 1
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Invasive procedures are typically used for monitoring the

intracranial physiology despite the risk of complications

and morbidity.1,2 Magnetic resonance imaging (MRI)-based

techniques can noninvasively provide physiological informa-

tion on the brain, such as cerebral blood flow (CBF).3 Flow

measurements using phase-contrast (PC) MRI may quantita-

tively assess intracranial physiological parameters, such as

the intracranial volume change (ICVC), the cerebrospinal

fluid (CSF) pressure gradient (PG), and the intracranial

compliance index (ICCI). Previous reports using PC cine

MRI showed that the intracranial biomechanical properties

were altered in patients with idiopathic normal pressure

hydrocephalus,4–6 Chiari malformation,7 and idiopathic

intracranial hypertension.8

Intracranial hydrodynamics and cerebral hemodynam-

ics are strongly affected by body posture due to gravitational

hydrostatic pressure changes.9,10 Notably, most neuroradio-

logical examinations are conducted in patients in a horizon-

tal supine position (HS). However, cephalad fluid shifts are

driven by a loss of the hydrostatic pressure in the head-
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down tilt position (HDT).11 An HDT, in which the physio-

logical responses are similar to those in microgravity envi-

ronments, is exploited for the ground-based evaluation of

intracranial conditions in space.11 A previous report using

sonography showed that the cross-sectional area (CSA) in

the right internal jugular vein (IJV) was significantly

increased in the HDT position.12 Sun et al reported that

CBF velocity was decreased in the HDT.13 A recent study

reported that cerebral hemodynamics changed during an

HDT using PC MRI.14 MRI-based measurements enabled

us to noninvasively observe the posture-related changes in

the intracranial physiology. Furthermore, the HDT is easily

implemented inside of the bore of a general MRI scanner.

While cerebral hemodynamics, intracranial hydrodynamics,

brain tissue volumes, and brain morphology are linked to

one another,15 these parameters have been separately studied

and reported. CSF flow dynamics in the HDT have not

been previously investigated. We hypothesized that a com-

prehensive MRI-based assessment of intracranial physiology

associated with the HDT will provide more detailed infor-

mation on the biodynamical faculties of the brain.

Materials and Methods

Subjects and Data Acquisition
This prospective study was approved by our Institutional Review

Board. All data acquisitions and analyses were performed in

healthy male volunteers with no known history of neurological dis-

ease. The purpose and procedures of our investigation were fully

explained to all subjects, and the study was performed only after

we obtained informed consent from each volunteer.

We used three different tilt angle positions, ie, HS of 08, a

slight HDT (sHDT) of –68, and a moderate HDT (mHDT) of

–128 (Fig. 1a). The subjects were scanned using the following pulse

sequences immediately after a posture change to the sHDT or

mHDT from the HS.

On a 3.0 T MRI (Signa HDxt, GE Healthcare, Milwaukee,

WI), the retrospective electrocardiogram-synchronized PC cine

MRI was used to obtain transcranial blood flow, CSF flow, and

spinal cord displacement in each tilt angle position (seven men in

the sHDT study, 23 6 1 years; 15 men in the mHDT study,

23 6 1 years). A transverse imaging plane was set perpendicular to

the flow direction at the mid C2 level. PC MRI was performed

using the following parameters: repetition time (TR) 11 msec,

echo time (TE) 4 msec, slice thickness 5 mm, field of view (FOV)

140 mm, matrix size 256, flip angle (FA) 208, and number of sig-

nal averaged (NSA) 1. The velocity encoding (VENC) was set at

90 cm/s for blood flow and 7–10 cm/s for CSF flow. Subsequently,

3D fast spoiled gradient-echo (3D-FSPGR) was performed with a

TR 6.8–7.0 msec, TE 2.5 msec, slice thickness 1 mm, FOV 230–

256 mm, matrix size 256, FA 128, and NSA 1 (seven men in the

sHDT study, 23 6 1 years; eight men in the mHDT study, 23 6

1 years).

Calculation of Intracranial Physiological
Parameters
We used pulsatility-based segmentation16 to automatically delineate

the lumen boundaries of the internal carotid arteries (ICAs), verte-

bral arteries (VAs), and IJVs on velocity-mapped phase images

(Fig. 1b,c). The ICVC was calculated using Eqs. (1) and (2):

ICVCðtÞ5½QAðtÞ2QV ðtÞ2QCSF ðtÞ�Dt (1)

ICVCðT Þ5
X

Cardiac cycle

½QAðtÞ2QV ðtÞ2QCSF ðtÞ�Dt50 (2)

where QA(t) is the arterial volumetric flow rate, QV(t) is the venous

volumetric flow rate, QCSF(t) is the CSF oscillatory flow, and T is

the time period of one cardiac cycle.

The peak-to-peak ICVC during the cardiac cycle (ICVCp-p)

was calculated from Eq. (3):

FIGURE 1: Schematic diagrams of the three different tilt angle positions and velocity-mapped phase images: (a) horizontal supine
position (top), slight head-down tilt position (middle), and moderate head-down tilt position (bottom), (b) velocity-mapped phase
image with a VENC of 90 cm/s for blood flow, and (c) VENC of 7 to 10 cm/s for CSF flow measurements. (b) ICA 5 internal
carotid artery (black arrow), VA 5 vertebral artery (black arrowhead), IJV 5 internal jugular vein (white arrow); and (c) CSF (white
arrow), cord (black arrow).
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ICVCp2p5ICVCmax2ICVCmin (3)

where the ICVCmax and ICVCmin are the maximum and minimum

ICVC during the cardiac cycle, respectively.

Next, we assumed that CSF is a Newtonian fluid, and calcu-

lated the craniospinal CSF PG during the cardiac cycle from a sim-

plified Navier-Stokes equation17:

PG52q
@V

@t
1V � rV

� �
1l � r2V (4)

where q is the fluid density (1.0007 g/cm3), l is the fluid viscosity

(1.1 cP), and V is the velocity vector. To correct for the loss of

pressure derived from the difference in cross-sectional flow area,

PG was normalized by multiplying by the CSF flow area. The

peak-to-peak PG (PGp-p) was calculated from Eq. (5):

PGp2p5PGmax2PGmin (5)

where the PGmax and PGmin are the maximum and minimum PG

during the cardiac cycle, respectively.

Finally, the ICCI was calculated from Eq. (6):

ICCI5ICVCp2p=PGp2p (6)

In addition to these parameters, we also evaluated the CSA and

blood flow velocity of the aforementioned vessels.

All statistical analyses were performed using SPSS for Win-

dows, v. 23.0 (Chicago, IL). The Wilcoxon signed-rank test was

used for statistical comparisons in the sHDT study. In the mHDT

study, the intracranial physiological and blood flow parameters

were assessed using a paired t-test. A P-value < 0.05 was defined

as statistically significant.

Data Analysis of Voxel-Based Morphometry
We used SPM12 software for voxel based morphometry (VBM)

analysis.18 First, a bias correction was computed for the 3D-

FSPGR images. The corrected images were segmented into gray

matter (GM), white matter (WM), and CSF. A study-specific tem-

plate was created using the Diffeomorphic Anatomical Registration

using Exponentiated Lie Algebra algorithm.19 The images were

transformed to the Montreal Neurological Institute space, and

smoothing was performed using an 8 mm full-width at half-

maximum (FWHM) Gaussian kernel. The spatially normalized

images were modulated by multiplying the relative volumes derived

from the Jacobian determinant. After modulation, the GM, WM,

and CSF volumes were computed. We calculated the total intracra-

nial volume (TIV) by summing each brain compartment volume.

Whole-tissue volumes of each brain compartment were compared

by the Wilcoxon signed-rank test. Region-wise volumetric compari-

sons between the groups were statistically performed using a paired

t-test. P < 0.05 was considered statistically significant.

Results

None of the intracranial physiological and blood flow

parameters showed significant differences between the

sHDT and the HS (n 5 7; Table 1). All nonsignificant P-

values were as follows: P 5 0.611 for tCBF; P 5 0.866 for

venous outflow of IJVs; P 5 0.866 for CSF stroke volume;

P 5 0.866 for systolic CSF velocity; P 5 0.176 for PGp-p;

P 5 0.112 for ICVCp-p; P 5 0.866 for ICCI; P 5 0.499,

5 0.063, 5 0.176 for maximum blood flow velocity of the

ICAs, VAs, and IJVs, respectively; P 5 0.735, 5 0.735, 5

0.091 for minimum blood flow velocity of the ICAs, VAs,

and IJVs, respectively; P 5 1.000, 5 0.612, 5 0.176 for

mean blood flow velocity of the ICAs, VAs, and IJVs,

respectively; and P 5 0.612, 5 0.176, 5 0.128 for the

CSA of the ICAs, VAs, and IJVs, respectively.

In contrast, the PGp-p in the mHDT (7.9 6 2.5 3

1022 mmHg�cm) was significantly higher when compared

to the HS (6.4 6 2.3 3 1022 mmHg�cm; P < 0.001).

The venous outflow of the IJVs was significantly increased

in the mHDT (543 6 92 mL/min) compared with the HS

(459 6 174 mL/min; P 5 0.025). The mean blood flow

velocity of the ICAs in the mHDT (11.1 6 1.3 cm/s) was

significantly decreased when compared to the HS (11.9 6

1.6 cm/s; P 5 0.023). The maximum, minimum, and

mean blood flow velocity of the IJVs were significantly

decreased in the mHDT (P 5 0.003, < 0.001, 5 0.001,

respectively), whereas the CSA of the IJVs was significantly

larger in the mHDT (0.54 6 0.21 cm2) compared to the

HS (0.36 6 0.20 cm2; P < 0.001). None of the other

parameters significantly varied between the mHDT and the

HS (n 5 15; Table 1). All nonsignificant P-values were as

follows: P 5 0.566 for tCBF; P 5 0.138 for CSF stroke

volume; P 5 0.260 for systolic CSF velocity; P 5 0.289 for

ICVCp-p; P 5 0.673 for ICCI; P 5 0.096, 5 0.585 for

maximum blood flow velocity of the ICAs and VAs, respec-

tively; P 5 0.143, 5 0.263 for minimum blood flow veloc-

ity of the ICAs and VAs, respectively; P 5 0.188 for mean

blood flow velocity of the VAs; P 5 0.135, 5 0.653 for the

CSA of the ICAs and VAs, respectively.

For both datasets, there were no significant differences

in any of the whole-tissue volumes of each brain compart-

ment or TIV (Table 2). P-values for the sHDT study (n 5

7) were as follows: P 5 0.735 for GM volume, P 5 0.612

for WM volume, P 5 0.499 for CSF volume, and P 5

0.499 for TIV. The results of the statistical tests for the

mHDT (n 5 8) study were as follows: P 5 0.889 for GM

volume, P 5 0.889 for WM volume, P 5 0.674 for CSF

volume, and P 5 0.674 for TIV.

There were no statistical differences between the

region-wise measured tissue volumes for both datasets.

Discussion

None of the intracranial physiological or blood flow param-

eters were significantly changed in the sHDT condition. We

assessed the intracranial physiological parameters immedi-

ately after a position change. The loading induced by lower-

ing the head did not exceed the intracranial compensatory

faculties, due to the low tilt angle and extremely short
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TABLE 1. Intracranial Physiological and Blood Flow Parameters Obtained in the Horizontal Supine Position (HS)
and the Head-Down Tilt (HDT) Positions

HS HDT P-value

tCBF (mL/min) HS 5 750 6 145 v.s. sHDT 5 716 6 128 0.611

HS 5 722 6 103 v.s. mHDT 5 712 6 82 0.566

Venous outflow of IJVs (mL/min) HS 5 514 6 259 v.s. sHDT 5 508 6 178 0.866

HS 5 459 6 174 v.s. mHDT 5 543 6 92 0.025

CSF stroke volume (mL/cc) HS 5 0.53 6 0.27 v.s. sHDT 5 0.66 6 0.48 0.866

HS 5 0.61 6 0.17 v.s. mHDT 5 0.56 6 0.12 0.138

Systolic CSF velocity (cm/s) HS 5 2.35 6 0.88 v.s. sHDT 5 2.38 6 0.79 0.866

HS 5 2.29 6 0.68 v.s. mHDT 5 2.47 6 0.90 0.260

PGp-p (mmHg�cm) HS 5 0.077 6 0.034 v.s. sHDT 5 0.069 6 0.026 0.176

HS 5 0.064 6 0.023 v.s. mHDT 5 0.079 6 0.025 < 0.001

ICVCP-P (mL) HS 5 0.67 6 0.35 v.s. sHDT 5 0.62 6 0.36 0.112

HS 5 0.54 6 0.15 v.s. mHDT 5 0.61 6 0.24 0.289

ICCI (mL/mmHg�cm) HS 5 10.0 6 6.9 v.s. sHDT 5 10.1 6 7.7 0.866

HS 5 9.2 6 3.7 v.s. mHDT 5 8.7 6 4.5 0.673

Maximum blood flow velocity (cm/s)

ICAs HS 5 21.3 6 4.5 v.s. sHDT 5 20.4 6 3.3 0.499

HS 5 20.1 6 2.8 v.s. mHDT 5 19.5 6 2.2 0.096

VAs HS 5 13.0 6 1.3 v.s. sHDT 5 12.0 6 1.4 0.063

HS 5 12.8 6 1.9 v.s. mHDT 5 12.6 6 1.5 0.585

IJVs HS 5 29.4 6 10.5 v.s. sHDT 5 25.9 6 11.5 0.176

HS 5 32.0 6 10.9 v.s. mHDT 5 26.5 6 8.9 0.003

Minimum blood flow velocity (cm/s)

ICAs HS 5 8.3 6 1.6 v.s. sHDT 5 8.3 6 1.2 0.735

HS 5 8.0 6 1.3 v.s. mHDT 5 7.5 6 1.1 0.143

VAs HS 5 4.4 6 0.7 v.s. sHDT 5 4.5 6 0.8 0.735

HS 5 4.3 6 1.0 v.s. mHDT 5 4.1 6 0.9 0.263

IJVs HS 5 18.3 6 8.8 v.s. sHDT 5 15.3 6 9.3 0.091

HS 5 17.6 6 7.5 v.s. mHDT 5 11.7 6 5.8 < 0.001

Mean blood flow velocity (cm/s)

ICAs HS 5 12.1 6 2.4 v.s. sHDT 5 11.9 6 2.4 1.000

HS 5 11.9 6 1.6 v.s. mHDT 5 11.1 6 1.3 0.023

VAs HS 5 7.0 6 0.9 v.s. sHDT 5 6.9 6 1.0 0.612

HS 5 4.3 6 1.0 v.s. mHDT 5 4.1 6 0.9 0.188

IJVs HS 5 24.0 6 8.8 v.s. sHDT 5 20.8 6 10.2 0.176

HS 5 25.2 6 10.9 v.s. mHDT 5 19.1 6 7.2 0.001

CSA (cm2)

ICAs HS 5 0.38 6 0.04 v.s. sHDT 5 0.37 6 0.05 0.612

HS 5 0.38 6 0.06 v.s. mHDT 5 0.40 6 0.06 0.135
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duration exposure. In contrast to our results, a recent report

documented that the CBF and the venous outflow of the

IJVs were decreased after 4.5 hours in a –68 HDT.14

According to these results, the duration of the posture may

be a profound factor when investigating the effects of a low-

angle HDT on the intracranial condition.

The PGp-p in the mHDT was significantly larger than

that in the HS, as lowering the head altered the gravitational

hydrostatic pressure gradient. We deduced that the increase

in PG in the mHDT indicated an elevation of intracranial

pressure in accordance with the law of fluid mechanics and

not derived from a cephalad fluid shift.20,21 The PG is the

most sensitive to postural changes of the intracranial physio-

logical parameters. Therefore, the CSF dynamics associated

with posture is the most important factor to evaluate the

acute effects of a HDT. Our brain volume measurement of

each tissue compartment results also support this inference,

since the whole-tissue volumes of each brain compartment

and the TIV were not significantly different between the

positions. Due to the stiffness and lack of distensibility of

dura mater and the fixation to the skull, the intradural vol-

ume was unchangeable.21 However, a temporal change (in a

unit of a second or millisecond) of the intracranial volume

was observed due to the pulsatile arterial flow into the cra-

nium during the cardiac cycle.22 The intracranial volume

was transiently altered during the cardiac cycle, indicating

some possibility that a cephalad fluid shift is caused by the

larger tilt angles and/or long-term exposure to the HDT.

Further investigations should explore these effects on intra-

cranial conditions.

Venous outflow of the IJVs was significantly increased

in the HDT. The IJVs are the main pathway for venous

outflow in the supine position23; however, the IJVs also play

a predominant role in cerebrovenous drainage immediately

after a change in posture to the mHDT. The total venous

outflow may have remained unchanged, since the tCBF,

CSF stroke volume, and ICVC were not significantly differ-

ent. Therefore, a significant increase in the venous outflow

of the IJVs represents a shift of the venous pathway in

response to a postural change. Furthermore, a significant

increase in the CSA in the IJVs demonstrated the compliant

nature of the venous system. The increase in PG in the

HDT was regulated by dilation of the IJVs, which are more

compliant than secondary venous pathways (eg, vertebral,

epidural, and deep cervical veins). This vasodilation induced

a decrease in venous velocity via the Venturi effect. Thus,

TABLE 1: Continued

HS HDT P-value

VAs HS 5 0.24 6 0.05 v.s. sHDT 5 0.23 6 0.05 0.176

HS 5 0.23 6 0.05 v.s. mHDT 5 0.23 6 0.04 0.653

IJVs HS 5 0.39 6 0.18 v.s. sHDT 5 0.48 6 0.23 0.128

HS 5 0.36 6 0.20 v.s. mHDT 5 0.54 6 0.21 < 0.001

Mean 6 standard deviation are shown for each value, tCBF 5 total cerebral blood flow, IJV 5 internal jugular vein, CSF 5 cerebro-
spinal fluid, PG 5 pressure gradient, ICVC 5 intracranial volume change, ICCI 5 intracranial compliance index, ICAs 5 internal
carotid arteries, VAs 5 vertebral arteries, IJVs 5 internal jugular veins, CSA 5 cross-sectional area.

TABLE 2. Tissue Volume of Each Brain Compartment and the Total Intracranial Volume (TIV) in the Horizontal
Supine Position (HS) and the Head-Down Tilt (HDT) Positions

HS HDT P-value

GM (mL) HS 5 802 6 55 v.s. sHDT 5 803 6 58 0.735

HS 5 792 6 38 v.s. mHDT 5 792 6 40 0.889

WM (mL) HS 5 488 6 46 v.s. sHDT 5 487 6 43 0.612

HS 5 484 6 34 v.s. mHDT 5 485 6 36 0.889

CSF (mL) HS 5 319 6 54 v.s. sHDT 5 321 6 58 0.499

HS 5 311 6 40 v.s. mHDT 5 310 6 40 0.674

TIV (mL) HS 5 1609 6 130 v.s. sHDT 5 1611 6 130 0.499

HS 5 1588 6 71 v.s. mHDT 5 1588 6 72 0.674

Mean 6 standard deviation are shown for each value, GM 5 gray matter, WM 5 white matter, CSF 5 cerebrospinal fluid, TIV 5
total intracranial volume.
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the venous system played a major role in the compensation

for the increase in PG immediately after a change in posture

to the HDT, ie, the sudden change in intracranial condi-

tion. In contrast to our results, a previous study showed

that venous outflow of the IJVs was decreased after 4.5

hours in the –128 HDT.14 This discrepancy indicates the

importance of a time-dependency effect of the HDT.

In agreement with the previous study,14 the mean

blood flow velocity in the mHDT was significantly

decreased when compared to the HS. There are many

reports on the CBF and blood flow velocity in the HDT;

however, the results of posture-related blood flow analyses

are inconsistent. It is difficult to interpret these previous

reports due to diverse bias factors, eg, measured vessel loca-

tion, procedure, tilt angle, and duration in the HDT.13,24–26

On the basis of our results, we speculate that the ICAs have

a higher reactivity to posture changes than the VAs. Despite

the significant increase in mean blood flow velocity of the

ICAs, the tCBF was not significantly affected.

Our brain morphological analyses using SPM12

showed no differences between the positions. The VBM

analyses revealed that brain morphology was not signifi-

cantly affected by the postural changes. A previous study

reported that brain morphology was altered after 3 hours in

parabolic flight,27 indicating that larger loading may affect

brain morphology. However, the increase in PG associated

with a brief exposure to the HDT was not enough to alter

brain morphology.

Our study has several limitations. First, the study pop-

ulation was small, and all participants were adult males in a

narrow age range. A larger study population would enable

us to demonstrate more rigorous statistical analyses. Intra-

cranial physiology shows sexual specificity and age depen-

dence28; therefore, further evaluations are needed with a

larger sample size, female subjects, and a wider age range.

Second, the subjects in each study group were not exactly

the same, biasing the observation of the present study. How-

ever, we believe that this problem in the study design had a

small effect on the measurements, since the majority of each

group was similar. Future studies should be performed on a

single group of participants. We only evaluated the intracra-

nial condition after a brief exposure to the HDT, ie, an

acute effect. Hence, time-dependency and long-term expo-

sure to the HDT, ie, a chronic effect, should be assessed.

Furthermore, separation of the acute and chronic effects

associated with the HDT is indispensable to obtain more

detailed information on the intracranial physiology related

to body posture. We used two tilt angles for the HDT.

Although none of the measurements were significantly

changed in the sHDT, several parameters were statistically

significant in the mHDT. This indicates that the intracranial

physiology associated with the HDT is dependent on the

tilt angle. It is necessary to identify a threshold tilt angle for

physiological effects.

In this study we evaluated the intracranial physiologi-

cal parameters, blood flow, brain tissue volume, and brain

morphology in the HDT using two tilt angles. In conclu-

sion, as an acute effect of the HDT, the PG and the venous

outflow were increased in accordance with the elevation of

intracranial pressure. However, the CSF was not constantly

shifted from the spinal canal to the cranium.
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