科学研究費助成事業

研究成果報告書

	平成	29	年	4	月	27	日現在
機関番号: 1 3 3 0 1							
研究種目: 挑戦的萌芽研究							
研究期間: 2015 ~ 2016							
課題番号: 15K14290							
研究課題名(和文)2D,3Dイメージ用ガラス放射線検出器の新規な測定	ミ法の確	立とた	放射線	飛跡	iNO.)応用	I
研究課題名(英文)Novel measuring methods using 2D and 3D imaging g fluorescent nuclear track imaging applications	lass de	tecto	ors an	d th	neir		
研究代表者							
黒堀 利夫(Kurobori, Toshio)							
金沢大学・その他部局等・名誉教授							
研究者番号:90153428							

交付決定額(研究期間全体):(直接経費) 3,000,000円

研究成果の概要(和文):本研究で得られた成果は以下のようにまとめることができる:(1)橙色RPLの代替としての青色RPLの使用で,通常必要な100,10分程度の「プレヒート」処理が不要となった。このため書込み,読取り,消去の3工程全てを光処理だけで代替できた。(2)青色RPLの蛍光寿命は5 nsと格段に短いため,今後リアルタイムでの線量や線量率測定への応用が確認できた。(3)構築したディスク型蛍光ガラス読取機は共焦点配置を成しているため表面から深さ400 µm程度のイメージまで迅速に高いコントラストで再構築できた。(4)UV励起の共焦点レーザー顕微鏡を用いて,この材料での蛍光核飛跡の取得に世界で初めて成功した。

研究成果の概要(英文): The data obtained in this study led to the following conclusions: (1) It should be possible for the three stages of operation of an Ag-activated phosphate glass detector -pre-heating, reading and erasing- to be performed optically, without the need to use a thermal heating furnace, as is typically done. (2) Some advantages of using the blue RPL instead of the typically used orange RPL were demonstrated and discussed. Specifically, the use of the blue RPL with a short lifetime of 5 ns in Ag-activated glass should be suitable for real-time measurements for the radiative doses as well as for simultaneous 3D imaging. (3) The use of a confocal detection system and the high luminescent RPL glass allow one to reconstruct a 3D image by combining each image at different depths from the surface to 400 μ m. (4) A fluorescent track image of X-ray irradiated phosphate glass was taken with a confocal fluorescent image microscope, though a 405 nm laser line was not suitable for the excitation source.

研究分野:放射線物理計測

キーワード: 蛍光ガラス線量計 放射線イメージング 銀活性リン酸塩ガラス ラジオフォトルミネッセンス 蛍光 核飛跡 重粒子線 X線

1. 研究開始当初の背景

一般に放射線検出器は次の2つに分類できる:1つ は能動型(active)つまり電子的な線量計であり、もう 1つは本研究で扱う受動型(passive)つまりルミネッ センスを用いた線量計である。さらに、どのようなル ミネッセンス現象を用いるかにより、RPL (Radio-Photo Luminescence), OSL (Optically Stimulated Luminescence), PL (Photo Luminescence), TL (Thermo Luminescence)などに分類できる。このう ち RPL, OSL, PL 現象は光励起により、TL 現象は熱 励起により発光する。これらの原理に基づく線量計 はそれぞれ一長一短があるが、個人、環境、医療な どへの応用に向け、その性能向上と共に新たな展開 も現在活発に行なわれている。

しかしながら,研究開発当初,大面積(ここでは 100 mm以上の径あるいは一辺)でしかもサブミクロ ン程度の高い空間分解能,広いダイナミックレンジ, 広いエネルギー特性,非破壊読出し特性を有する2 次元,3 次元(2D,3D)イメージ検出器の開発は国 内・国外を通して研究者が知る限りにおいて見当た らなかった。

2. 研究の目的

本研究では受動型検出器の中で上記条件を満たす RPL 現象に基づく,代表的な銀活性リン酸塩ガラス (以後,Agガラス)に着目した。これは放射線的特性, 光学的特性,形態性に優れ,さらに日本が世界をリ ードしている材料の一つである。特に,本研究で はこれまで着目されていなかった Ag ガラスの青 色 RPL を用いた 2D, 3D イメージ検出器の開発 および広い面積と高速読取りに重点を置いた機 能ならびに高い空間分解能に重点を置いた機 能を有する新規な読取機の開発も目的とした。

3. 研究の方法

- 研究方法の概要は以下の通りである:
- (1) 青色 RPL を用いることで「プレヒート工程 (PH)」が不要となり、光学処理だけで、書込み、読取り、消去工程、全てを代替し実用 化への礎の確立と実証
- (2) 上記の 2 つの異なる読取機能による迅速な 3D イメージングの収集ならびに高空間分解 能な核飛跡イメージング収集読取機の構築 と実証

図1 定常状態での X 線照射した Ag ガラスの吸収, 励起, 蛍光スペクトル。

図1は典型的な Ag ガラスの吸収(ABS), 励起 (EXC), 蛍光(RPL)スペクトルを示す。放射線照 射後, 形成される主な吸収帯として Ag⁰センター (ガラス中の Ag⁺イオンが電子を捕獲, 青色 RPL の起源)とAg²⁺センター(Ag⁺イオンが正孔を捕獲, 橙色 RPL の起源)がある。それぞれの蛍光寿命 は, 前者が 5 ns 以下, 後者が 2200 ns 程度と測 定された。

通常,銀ガラスを用いた線量計では,橙色 RPL 蛍光を利用した線量測定が行われている。図 2 の吸収スペクトルにおいて 320 nm 付近の吸収 帯が Ag²⁺センターによるものである。X 線照射直 後(黒線)ならびに PH(100℃,10 min,ピンク 線)処理後のスペクトルの変化を示している。こ れより 320 nm の吸収帯の増大が確認でき,これ は橙色 RPL 強度が PH 処理で増大することを示 している。その中間の吸収カーブ(青線,緑線) は X 線照射後,赤外線(熱線)を 5,10 min 照射 したものである。この結果は PH の代替として光 励起が可能であることを示唆している。一方, 370 nm 付近の吸収帯(赤色点線)は、この処理で 吸収強度に変化がないことから、青色 RPL では PH 工程が不要であることを示している。

図3 通常(橙色 RPL 使用)の銀ガラスの書込み, 読取り, プレヒート, 消去の一連の工程。

図 3 に示すように, 銀ガラスに各種放射線照射 によって格子欠陥の形で書込まれた情報は, 紫 外線(UV)照射によって PH 工程が不要な青色 RPL として検出される。さらに再利用の為のイメ ージ消去において, 通常 360℃, 10 min 程度の 熱処理を必要とするが, この工程も赤外線照射 で消去可能なことが確認できた。

(2) 2 種類の機能を有するイメージ読取機の構 築と再構築の実証

図4 迅速な3Dイメージ読取機の構築。

図4は本研究で構築したディスク型 Ag ガラス検 出器(直径 100 mm φ)を高速回転(2400 rpm)し, これを1µm 径に絞った UV 光(波長 375 nm)で 励起し,この点光源から発する RPL 信号を検出 する読取機を示している。本読取機の特徴は, 光電子増倍管(PMT)の直前にピンホールを設置 し共焦点構成とすることで深さ方向の分解能を 高めた。さらに, PMT で検出したアナログ信号を 高速オシロスコープ(2.5 GS/s, 16 bits)でデジタ ル信号に変換後, LAN を介して大量(1 GB 程 度)のデータを PC に高速転送することが可能と なった。また, PMT の直前のバンドパスフィルタ (BP)を交換することで, 青色, 橙色 RPL 信号の どちらのイメージも容易に収集可能となった。

図 5 典型的な 2D 再構築イメージ(左)と拡大機 能によるイメージ(右)。

図5は構築した読取機を用いてディスク型Agガ ラス検出器(100 mm ϕ ,厚さ1 mm)に格子欠陥 の形で書き込まれた情報の 2D 再構築イメージ (左)とその一部を拡大機能で表示したイメージ (右)を示す。イメージ収集時間は回転速度,掃 引ピッチ,測定領域などのパラメータ設定で異な るが,数10 μ m程度の分解能で全領域の場合, 読取から再構築まで5分程度であった。

図 6 Ag ガラス表面(0 µ m)から 400 µ m 深さにお ける 2D イメージの再構築。

図 6 は表面から 100 µ m 間隔で測定した 2D イメ ージ再構築の一例である。これは図 4 で UV 光 を集光する対物レンズ(倍率 100×,開口数 NA 0.90, 作動距離 WD 1.0 mm)の WD の微動を利 用して特定の深さでのイメージを収集した。

② 高空間分解能なイメージの収集読取機 もう1つの読取機機能として、上記のような迅速 なイメージの再構築には欠けるが、空間分解能 (縦,横)が数100 nm 程度のイメージを収集可 能な読取機を構築した。これは図7に示すように、 市販の共焦点顕微鏡を利用した読取機である。 励起源として、水銀ランプあるいは405 nm 半導 体レーザーを用いた。倒立顕微鏡 Ti-U(ニコン、 NIS-Elements BR)、デジタルカメラ(浜松ホトニ クス、ORCA-Flash4.0)から構成されている。現 在、励起光源として励起効率の高い375 nm 半 導体レーザーあるいはチタンサファイアレーザ ーの2光子励起による観察も行っている。

図7 構築した高分解能イメージ読取機。

図 8 顕微鏡による(a) 2D, (b) 3D イメージ。

図 8(a)は構築した共焦点顕微鏡で収集したX線 (エネルギー, 165 keV, 15 mGy)照射した Ag ガ ラスからの 2D 飛跡を示す。(b)は X線 25 keV, 3 Gy 照射の 3D イメージの一例である。これは深さ 方向のピッチ 0.885 µm で 108 枚の 2D イメージ の重ね合わせである。

図 9 改良した共焦点レーザー顕微鏡による Cs ガンマ線(1Gy)の飛跡。

図 9 は Cs ガンマ線の飛跡を 40×, NA=1.25, n=1.33 (水浸)のレンズで測定した飛跡であり, 赤点, 青点は, それぞれ Ag²⁺, Ag⁰ センターから の橙色および青色 RPL 蛍光に相当する。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 6 件)

[1] <u>T. Kurobori</u>, Y. Yanagida, S. Kodaira, and T. Shirao: "Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles", Nucl. Instrum. Methods Phys. Res., Sect. A, **855** (2017) pp.25-31.査読有

[2] <u>T. Kurobori</u>, Y. Yanagida, and Y. Q. Chen: "A three-dimensional imaging detector based on nano-scale silver-related defects in X- and gamma-ray-irradiated glasses", Jpn. J. Appl. Phys. **55** (2016) 02BC01-05.査読有

[3] <u>T. Kurobori</u>, H. Itoi, Y. Yanagida, and Y. Q. Chen: "Time-resolved dose evaluation in an Xand gamma-ray irradiated silver-activated glass detector for three-dimensional imaging applications", Nucl. Instrum. Methods Phys. Res., Sect. A **793** (2015) 6-11. 査読有

[4] <u>T. Kurobori</u>, Y. Maruyama, Y. Miyamoto, T. Sasaki, and H. Nanto[:] "Non-destructive readout of 2D and 3D dose distributions using a disk-type radiophotoluminescent glass plate", IOP Conf. Series: Mat. Sci. Eng. **80** (2015) 012001-06.査読 有

[5] <u>T. Kurobori</u>, A. Takemura, Y. Miyamoto, D. Maki, Y. Koguchi, N. Takeuchi, T. Yamamoto, and Y. Q. Chen: "A disk-type dose imaging detector based on blue and orange RPL in Ag-activated phosphate glass for 2D and 3D dose imaging applications", Radiat. Meas. **83** (2015) 51-55. 査読有

[6] H. Nanto, R. Nakagawa; Y. Takei, K. Hirasawa, Y. Miyamoto, H. Masai, <u>T. Kurobori</u>, T. Yanagida, and Y. Fujimoto: "Optically Stimulated Luminescence in X-ray irradiated xSnO-(25-x) SrO-75B₂O₃ Glass", Nucl. Instrum. Methods Phys. Res., Sect. A **784** (2015) 14-16. 査読有

[学会発表] (計 5 件)

[1]<u>黒堀 利夫</u>,加田 渉,川端 駿介,松原 良典,柳田 由香,佐藤 隆博:「プロトンマイク ロビームで書き込んだ銀活性リン酸塩ガラス蛍 光中心の多光子共焦点顕微鏡による評価」, 2017年 第64回応用物理学会春季学術講演会, パシフィコ横浜(横浜市),2017 年 3 月 14 日~ 17 日,14p-E204-18.査読無

[2]<u>黒堀 利夫</u>,柳田 由香,小平 聡,加田 渉,川端 駿介,松原 良典,佐藤 隆博:「銀 活性リン酸塩ガラスの蛍光放射線飛跡の評価」, 2016年 第77回応用物理学会秋季学術講演会, 朱鷺メッセ(新潟市),2016年9月13日~16日, 15a-A37-7.査読無

[3] <u>黒堀 利夫</u>:第10回 次世代先端光科学研 究会,招待講演「光子,重荷電粒子線を照射し た銀活性ガラスの蛍光飛跡について」,金沢工 業大学(金沢市),平成28年9月1日.査読無 [4] 糸井 駿,<u>黒堀 利夫</u>,柳田 由香,宇部 道子,陳 耀強:リン酸塩ガラス中のナノスケー ル銀関連欠陥に基づく3次元放射線イメージン グ検出器の開発,2015年第76回応用物理学 会秋季学術講演会,名古屋国際会議場(名古 屋市),2015年9月13日~16日,15a-2W-11. 査読無

[5] <u>T. Kurobori</u>, Y. Yanagida, and Y. Q. Chen: "A silver-activated phosphate glass detector for three-dimensional dose distribution measurement", in Proc. of the 5th Int. Symp. on Organic and Inorganic Electronic Materials and Related Nanotechnologies (EM-NANO 2015), June 16-19 (2015), Toki Messe, Niigata, Japan. 查読有

6.研究組織

(1)研究代表者

黒堀 利夫 (Kurobori, Toshio) 金沢大学, その他部局等, 名誉教授 研究者番号: 90153428