# Optical emission using interaction of electron beam and surface plasmons on silver diffraction grating

| メタデータ | 言語: jpn                           |
|-------|-----------------------------------|
|       | 出版者:                              |
|       | 公開日: 2020-05-25                   |
|       | キーワード (Ja):                       |
|       | キーワード (En):                       |
|       | 作成者:                              |
|       | メールアドレス:                          |
|       | 所属:                               |
| URL   | https://doi.org/10.24517/00058253 |

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.



# 銀回折格子上の表面プラズモンと電子ビーム

# との相互作用を利用した光放射

桑村 有司 节 板倉 圭佑

金沢大学 〒920-1192 石川県金沢市角間町 E-mail: kuwamura@ec.t.kanazawa-u.ac.jp

**あらまし** 金属回折格子上の表面プラズモンと真空中を走行する電子ビームを利用した新しい光発生法を実験的 に検証した.金属回折格子 I 上の表面プラズモンを利用してその位相速度  $v_{spp}$ を光速 c の 1/3 程度まで遅くしてお き、その表面に沿って電子を群速度  $v_e$ で走行させると、 $v_{spp=v_e}$ の条件で表面プラズモンが発生する.この表面プラ ズモンを異なる周期の金属回折格子 II で光に変換して真空側に出力させる.実験では、周期 500nm の銀回折格子 I と 1800nm の回折格子 II を利用した.真空/銀回折格子に沿って 30~40 k V に加速した電子を走行させた時、スミス・ パーセル放射(波長 1.3-1.5  $\mu$  m帯)より長波長側の 2.0~1.9  $\mu$  m 帯に新たな光放射が観測された.この光放射は、  $v_{spp=v_e}$ から求まる条件と一致し、表面プラスモン発生が関与した発光である事が実証された.

キーワード 表面プラズモン,電子ビーム,光放射,金属回折格子

## Optical emission using interaction of

## electron beam and surface plasmons on silver diffraction grating

Yuji KUWAMURA<sup>†</sup> and Keisuke ITAKURA

Kanazawa University Kakuma, Kanazawa-shi, Ishikawa, 920-1192 Japan

E-mail: <sup>†</sup>kuwamura@ec.t.kanazawa-u.ac.jp

**Abstract** The new optical generation method that we had proposed using the surface plasmon on the metallic grating and the traveling electron in the vacuum was experimentally verified. Phase velocity  $v_{spp}$  of the surface plasmon mode is slowed down to about 1/3 of speed of light c by using the surface plasmon at the metallic diffraction grating I interface, and the electron beam is propagated along the surface of the metallic grating I. In the condition of  $v_{spp}=v_e$ , the surface plasmon is generated. This surface plasmon is converted into light by metallic diffraction grating II with a different period and it outputs it to the vacuum side. In the experiment, silver grating I of the period 500 nm and silver grating II of 1800 nm were used. When the electron that accelerated to 30-40kV ran along the interface, a new optical radiation was observed to 1.9-2.0µm band in the long-wavelength side from the Smith Purcell radiation of 1.3-1.5µm band. The condition that this optical radiation is generated was corresponding to the condition of  $v_{sp}=v_e$  and we demonstrated that this optical radiation was caused by surface plasmon generation.

Keyword Surface plasmon, Electron beam, Optical radiation, metallic diffraction grating

## 1. はじめに

通常のレーザの動作波長は材料のエネルギー準位 で定まるため,未開発の波長領域での動作を得るには, 新しい材料を見つけ出さなければならない.申請者ら は、マイクロ波から紫外線までの欲しい波長で動作す る新型の光放射やレーザを実現するため,真空中を進 行する電子と誘電体導波路で遅延させた光を利用した チェレンコフ放射タイプの発光デバイスを提案して開 発を進めてきた<sup>[1]</sup>.一方,金属/真空表面では,金属 内の自由電子の集団的振動と電磁波が結合した表面電 磁波モードが表面に沿って伝搬することができる.こ の表面電磁波モードは表面プラズモンまたは表面プラ ズモンポラリトン(以下 SPPと略す)と呼ばれる. 我々は,真空中を進行する電子と SPPとの相互作用を 利用した新型光・電磁波光源を提案している.本報告 では,図1のように金属回折格子 I 表面に沿って電子 ビームを走行させて SPP を発生させ,回折格子 II で SPPを光として取り出す方式の光源の基本動作確認を



図1 表面プラズモンを使用した光放射器の構造

行い,波長 1.9-2.0μm帯での発光が観測されたことに ついて報告する.

## 2. 新型光放射器の提案

## 2.1 光放射器の構造

図1に示すように提案・開発している光源は、電子 銃と周期の異なる2つの金属回折格子IとIIで構成す る.電子ビームは回折格子上の真空領域に沿って走行 し、右側の回折格子IでSPPを発生、左側の回折格子 IIでは界面を-z方向に伝搬するSPPを回折させ光と して上側方向に出力させるために利用している.金属 回折格子I/真空界面では、電界成分が真空側にエバネ ッセント波として染み出した表面プラズモンが位相速 度 $v_{\text{SPP}}$ で伝搬できる.その領域に沿って+z方向に群速 度 $v_{e}$ の電子ビームを走行させると、下記の2つの条件 が満たされると、回折格子I上を-z方向に進むSPP が発生する.SPP発生のための条件は、

i)電子の群速度 v<sub>e</sub>と SPP の位相速度 v<sub>SPP</sub>が一致する.
 ii)電子の進行方向に SPP の電界成分が存在する.

である. SPP は z 方向に電界成分を持つ TM モードであ るため、2)の条件は満たされている.発生した SPP は-z方向に進行して、領域 II の金属回折格子 II 上を 伝搬すると、真空側の上側方向に回折して光として放 射する.

## 2.2 電子ビームによる表面プラズモン発生 の原理 - 電子波動での扱い-

電子ビームによる SPP 発生の原理を以下に示す.図 2には進行する電子のエネルギー準位  $E_i$ と波数  $k_i$ の関係を示した.真空中を一定速度で進行している電子の 初期準位を b とし、エネルギーの低い準位 a への電子 遷移を考える.金属回折格子上の SPP の波数を  $k_2$ 、エ

ネルギーを  $\hbar \omega$  として  $e^{j(\omega \leftarrow \xi)}$ の波で表す. 電子遷移中 の電子と SPP の間に,



図 2 進行する電子のエネルギーと波数の関係  $E_b - E_a = \hbar \omega$  (1)  $\hbar(k_b - k_a) = \hbar k_c$  (2)

エネルギー保存則と運動量保存則が成立すると、準位 bから a への電子遷移が可能となり、SPP が発生する. 式(1)と(2)が成立すると、電子群速度 v<sub>a</sub>の定義式より、

$$v_e = \frac{1}{\hbar} \frac{\partial E}{\partial k} \approx \frac{1}{\hbar} \frac{E_b - E_a}{k_b - k_a} = \frac{\omega}{k_z} = v_{spp}$$
(3)

となり, SPP 発生の条件 i)が導出される.

電子を波動として扱うと,準位 b から a への電子遷移 中には 2 つの電子波のビート振動より縦波の交流電流

 $e^{j\{(E_b - E_a)t/\hbar - (k_b - k_a)z\}} = e^{j\{\omega_{ba}t - (\omega_{ba}/v_e)z\}}$ (4)

が生じる.ここで、 $E_b = \hbar \omega_b$ 、 $\omega_{ba} = \omega_b - \omega_a$ とした.式(1) と(2)が成立して、両者の波が一致すれば、準位 ba 間 の電子ビームによるビート振動が交流電流の駆動源と なり、SPP を励振することができる.次節では電子を 点電荷として古典的に扱かった場合の原理についても 説明する.なお、電子が準位 b から c へ遷移すれば、 SPP は吸収される.

## 2.3 金属回折格子上の SPP の分散関係およ び電子加速電圧と SPP 発生波長の関係

平坦な金属/真空界面を z 方向に伝搬する SPP の分 散関係は,その波数を k<sub>0</sub>とすると,

$$k_0 = \sqrt{\frac{\varepsilon_m(\omega)}{1 + \varepsilon_m(\omega)}} \frac{\omega}{c} \tag{5}$$

となる.ここで、  $\varepsilon_m(\omega)$ は金属の比誘電率である.図 3には平坦界面の SPP 分散曲線をm=0の曲線で示した. 一方、周期構造  $\Lambda$ の金属回折格子上をz方向に伝搬す る SPP の電磁界分布は、基本波の波数kの他にグレー ティングで生じる逆格子  $2\pi/\Lambda$ の整数倍で変調を受け るようになる.このため、回折格子上の SPP の波数に



図3 Ag 回折格子上 SPP と電子ビームの分散曲線

は,基本波数成分 kg0 の他に

 $k_{mz} = k_{g0} + m(2\pi / \Lambda) \tag{6}$ 

の高調波成分が生じる.その結果,回折格子上のSPP 電界の z 方向成分  $E_z(y, z$ は、フロッケの定理より、

$$E_{z}(y,z) = \sum_{m=\dots-2,-1,0,1,2\dots} E_{m}(y) e^{j\left[\omega t - \left(\pm k_{g0} + m(2\pi/\Lambda)\right)z\right]}$$
(7)

の合成波として記述できる. 一般的には回折格子上の 式(7)中の波数  $k_{g0}$ は式(5)の波数  $k_0$ とは異なるが,  $k_0$ で近似した時の回折格子(周期 $\Lambda$ =400nm)上の SPPの 分散関係を図 3 中に  $m=\pm 1,\pm 2\cdots$ の実線で示した. 図 3 中の  $m=\pm 1,\pm 2\cdots$ は後退波の高 調波成分である.

一方, x方向の線上に並んだ電子の集合を一本の線 電荷密度  $\tau$  とみなし、この線電荷が、位置 y=0 を z 軸 に沿って速度  $v_e$  で進行すると、単位長さ当たりに生じ る電流  $J_i$ は、フーリエ解析を用いて、

$$J_{z} = -\tau v_{e} \delta(y) \delta(z - v_{e} t)$$
  
=  $-(\tau / 2\pi) \delta(y) \int_{-\infty}^{+\infty} e^{i\omega(t - z/v_{e})} d\omega$  (8)

と書ける.式(8)の  $J_{z}$ のフーリエ成分の縦波  $e^{j(\omega\tau-(\omega/v_{c})z)}$ が,式(7)中の SPP 電界の z 成分の波と一致すると(条件i)とii)),  $J_{z}$ は電流源となり SPP モードを発生させることができる.図3中の点線は,式(8)で表される一定電圧(1~50kV)で加速された真空中を進行する電子ビームの分散関係  $k_{ba} = \omega_{ba} / v_{e}$ である.図3中の実線と点線の交点では式(7)と式(8)中の両者の縦波成分が一致する.図3中には交点が実現可能な状態を太い実線で示してあるが,この条件において,進行する電子の運動エネルギーの一部が SPP へと移り,SPP を発生させることが可能となる.

より正確な回折格子上の SPP の分散関係について は、FDTD 法によるシミュレーションと境界面を含むグ リーンの定理とグリーン関数を利用した Bernado Laks らの解析法<sup>[2]</sup>を利用して数値計算を行った.周期



図4 FDTD 法で計算した Ag 回折格子上の SPP 分散曲線

500nm, 深さ 40nm の矩形形状の Ag 回折格子上の SPP の分散曲線を FDTD 法により計算した例を図4中の青丸 で示す. 波数  $k_z$ は FDTD 計算により求めた z 方向の電 磁界の空間分布をフーリエ変換して求めた. 図4中の 実線は,式(7)と(5)を用いた近似計算である. FDTD 計 算では,実線の交差する光エネルギー帯においてスト ップバンドが確認される. これはよく知られているよ うに波数  $k_z$ が $\pi/\Lambda$ の整数倍であるとき,回折格子に よるブラック反射により, SPP の前進波と後進波が干 渉を起こして定在波となり SPP が伝搬できなくなるた めに生じる現象で,ストップバンド帯では SPP モード は存在できなくなる.

一方, Bernado Laks らの解析法<sup>[2]</sup>により求めた Ag
 回折格子上のSPPの分散曲線を図5中の実線で示した.



図 5 Bernado Laks らの解析法により求めた Ag 回 折格子上の SPP の分散曲線



図6 電子加速電圧 Vと発生可能な SPP 波長の関係 回折格子の周期 500nm,形状は sin 形状とし,深さ h をパラメータとして示した.格子の深さhによって SPP の分散曲線は変化し,特にブラック反射条件に近い領 域ではその変化量は大きい.また,図5中の赤点線は,

真空中の電子ビームの分散関係  $k_{ba} = \omega_{ba} / v_e$ であり,相対論を考慮して

$$v_{e} = c \sqrt{1 - \frac{1}{\left(1 + eV / m_{0}c^{2}\right)^{2}}}$$
(9)

より求めた.ここで、Vは電子の加速電圧である.両 者の交点、 $v_e = v_{spp}$ の条件で SPP 発生が発生する.図 6 には、電子加速電圧 Vと発生可能な SPP 波長の関係を 回折格子周期  $\Lambda$ を変化して計算した.周期  $\Lambda = 500$  nm の Ag 回折格子では加速電圧 20-50kV (研究室所有の電子 銃で加速可能な電圧範囲)の電子ビームで走行させる と,約 2.4~1.7  $\mu$  m帯の SPP が発生すると予想される.

### 3. 金属回折格子Ⅰ・Ⅱの設計と作製

図 1 で説明したように金属回折格子 I /空気界面で SPP を発生させ、後退波として伝搬する SPP を回折格 子 Ⅱで回折させ上側に光として出力させる. SPP の光 学的な伝搬特性は、使用する金属の材質や波長帯によ り大きく異なる.また、回折格子 I の周期 は発生する SPP の波長帯、回折格子の深さ h は電子ビームとの相 互作用の強さを決める要因である.そこで、これらの パラメータを評価して回折格子設計を行った.

平坦な金属/真空界面での SPP の伝搬距離 Lは,金属 内部での光損失のため可視領域では数~数+μm と短 い. SPP の伝搬距離 は,光電力の強度が 1/e まで減衰 する長さと定義され,次式で明記される.

$$L = \frac{1}{2 Im[k_z]} = \frac{c}{\omega} \left(\frac{\varepsilon_m + 1}{\varepsilon_m}\right)^{\frac{3}{2}} \frac{\left(Im[\varepsilon_m]\right)^2}{Re[\varepsilon_m]}$$
(10)



図7 平坦な Ag/真空界面での SPP 伝搬距離



図8 *と*値と回折格子深さの関係

図7には伝搬距離の長い金属として、銀/真空及び金/ 真空界面を選び、両者のSPP 伝搬距離を見積った. 伝 搬距離が比較的長く、実験の行い易い波長として 2 $\mu$ m 近傍のSPPを発生させることとし、図6の結果より回 折格子 I の周期 は500nmとした.波長 2 $\mu$ mのSPP は、 銀・金とも数百 $\mu$ m 程度まで伝搬できるが、本研究で は伝搬距離 をより長くできる銀を選択した. そして、 回折格子 I の長さ $\ell_1$ は、 $\ell_1$ <*L*を満たすように 40 $\mu$ m に設定した. 一方、回折格子 II の周期は出力光がほぼ 上側に出力されるように 1.8 $\mu$ m とし、長さ $\ell_2$ は 60 $\mu$ m とした.決定した回折格子寸法を表 1 にまとめた.

回折格子上の SPP 電界は,式(7)のような合成波で 記述できる.合成波の内,電子ビームと相互作用可能 な成分は,図3中で太い実線で示した次数の波成分で あり,これらの成分が大きいほど,電子ビームから SPP へのエネルギー変換効率が大きくなると期待できる. そこで,

 $\xi \equiv \frac{$ 真空領域に染み出したm = +1.後退波の電界z成分のエネルギー SPP電界の全エネルギー

#### 表1 使用した銀回折格子ⅠとⅡの周期と長さ

|         | 周期                   | 長さ                  |
|---------|----------------------|---------------------|
| 銀回折格子 I | $\Lambda=500nm$      | $\ell_{_1}=40\mum$  |
| 銀回折格子Ⅱ  | $\Gamma = 1.8 \mu m$ | $\ell_2 = 60 \mu m$ |



図 9 回折格子 II からの光出力の様子 (FDTD 計算)

を定義した.そして、 $\xi$ 値と格子の深さhとの関係を FDTD 計算により評価した.回折格子の形状は矩形で、 周期 500nm を仮定した. $\hbar \omega = 0.8 \text{ eV}$ での計算結果を図 8 に示す.深さh が深くなるにつれ、 $\xi$ 値は増加し、深 さ h=140nm では $\xi$ 値は 0.09 まで大きくなった.

次に表1の回折格子構造を仮定して回折格子Ⅱから 光が出力できることを確かめるため, FDTD 計算を行っ た.その結果を図9に磁界のx方向成分で示した. 10 位置に電気双極子を置き周波数 1.5955×10<sup>14</sup> Hz (波長 1.879 µm) で振動し,回折格子 I 界面に SPP を-z 方向 に励振させた. SPP は回折格子 I を伝搬して,回折格 子Ⅱまで到達すると回折され、そのエネルギーは平面 波としてほぼ上側方向に出力されることが確認された. 実験では光出力を大きくする目的で、図 10(a)に示す ように表1の回折格子 I・IIを10 ブロック数珠つなぎ した回折格子を作製した. 電子線用レジスト ZEP520A を塗布した Si 基板上に電子ビーム描画装置で回折格 子バターンを描いた後, CF<sub>4</sub>ガスを用いたドライエッ チング装置で削り、Si 基板上に凹凸構造を形成した. その後,銀膜を真空中で蒸着して回折格子を作製した. 作製した回折格子に斜め上から白色光を照射して撮影 した回折格子の写真を図 10(b)に示した. レーザ光を 入射した時の反射光の回折角を測定した結果、ⅠとⅡ の回折格子周期は、ほぼ $\Lambda$ =500nm、 $\Gamma$ =1.8 $\mu$ mで形成 されていることを確認した.

## 4. 光放射実験

作製した銀回折格子を真空装置内に設置して、図11



図 10 作製した銀回折格子 ⅠとⅡの表面写真



#### 図 11 光放射を観測した実験系

のように回折格子表面に沿って電子ビームを進行させ た. そして、上側方向に出力された発光を観測した. 出力光は大気側でレンズを用いて集光し,分光器(日 本分光 CT-10) で分光,液体窒素冷却プリアンプ付 InGaAs 光検出器 (浜松ホトニクス G7754-03) で検出し た. 出力光の測定にはロックインアンプ法を用いた. 電子銃の偏向コイルに 10Hz の矩形電流を流して電子 ビームの走行位置を上下に変化させた.50msの半周期 の時間帯は図 11 のように回折格子表面に沿って電子 ビームを走行させたが、ビームは表面に接触してしま った.しかしながらこの時間帯には発光が観測された. 残りの 50ms 帯は電子ビームを表面から大きく上側に 逸らせたため,発光は観測されなかった. ロックイン アンプ法により不要な雑音を減少させることで回折格 子からの出力光の観測が可能となった.測定データは, データ収集器(GL-900)からパソコンに取り込んだ. 光放射の出力角θは図 11 中に示した電子ビームの進 行方向をゼロとしたときの出力光の放射角度とした.



発光スペクトルの一例を図 12 に示した. 発光スペクト ルは,電子加速電圧  $V=30 \text{ k} \text{ V} \cdot \theta = 80^\circ$ ,  $V=35 \text{ k} \text{ V} \cdot \theta = 85^\circ$ ,  $V=40 \text{ k} \text{ V} \cdot \theta = 90^\circ$ の条件でそれぞれ測定した. 出力光に は偏光依存があり,電界が回折格子の溝に対して垂直 な偏光 (z方向)の光だけが観測され,平行な偏光の 光は無かった. このため,基板材料からの発光ではな いと判断した. 図 12 には, 1.2~1.6 $\mu$ m と 1.8~2.2  $\mu$ mに光強度の強い波長帯が観測された. 波長 1.2~ 1.6 $\mu$ m の発光は,従来から知られているスミス・パー セル放射<sup>[3,4]</sup>に起因した発光であった. 金属回折格子 から輻射されるスミス・パーセル放射光の波長  $\lambda$ は,

$$\lambda = -\frac{d}{n} \frac{\left(1 - \gamma \cos\theta\right)}{\gamma} \tag{11}$$

で与えられる.ここで*d*は回折格子の周期,*n*は回折 の次数,*y*は相対論効果を考慮した電子ビームと光速 の速度比である.表2には回折格子 I と回折格子 II か ら放射されるスミス・パーセル光のピーク波長を  $V=40 \, \text{kV}-\theta=90^\circ \text{cV}=30 \, \text{kV}-\theta=80^\circ$ の条件で式(11)より 算出した.波長 1.2~1.6 $\mu$ mの発光は,表2の回折格 子 I からの n=1 次のスミス・パーセル光の予測波長と ほぼ一致した.回折格子 II からの発光もあるが,次数 n=2 は 2.4~2.58 $\mu$ m, n=3 は 1.6~1.72 $\mu$ m と推定され る.したがって,図 12 で観測された 1.8~2.2 $\mu$ m の発 光はスミス・パーセル放射光とは別の原理に基づく発 光であると判断した.

図 13 には Bernado Laks らの解析法により見積った 周期 500nmの銀回折格子上に SPP 発生させるための電 子加速電圧と発光波長の関係を実線で示した.回折格 子の形状はsin 関数とし,深さhをパラメータとした. ●印は図 12の実験における1.8~2.2µm帯でのピーク 波長である.実験値は理論予測とはほぼ一致した.し たがって,1.8~2.2µm帯での発光は,銀回折格子上 の表面プラズモン発生が関与した発光であると判断し た.上記のように電子ビームの加速電圧を変えるだけ で,発光波長を可変できることは確認できた.しかし ながら,上記の発光が電子ビームの進行方向に対して 逆方向に進む SPP が関与しているかどうかについては 現時点では実験で実証できていない.また,発光強度



図 13 実測した電子加速電圧と発光波長の関係

表 2 回折格子 I と II から発生するスミス・パーセル放 射光波長の計算値

|   | V=40kV | $\theta = 90^{\circ}$ | V=30kV | $\theta = 80^{\circ}$ |
|---|--------|-----------------------|--------|-----------------------|
|   | 回折格子I  | 回折格子Ⅱ                 | 回折格子I  | 回折格子Ⅱ                 |
| n | (µm)   | (µm)                  | (µm)   | (µm)                  |
| 1 | 1.337  | 4.812                 | 1.436  | 5.169                 |
| 2 | 0.668  | 2.406                 | 0.718  | 2.584                 |
| 3 | 0.446  | 1.604                 | 0.479  | 1.723                 |
| 4 | 0.356  | 1.203                 | 0.359  | 1.292                 |

についてはスミス・パーセル放射光強度とほぼ同程度 か、実験条件によっては幾分強くなる程度であった. 上記実験では、電流値 6 µ A、ビーム直径 200 µ m,電流 密度 200A/m<sup>2</sup> 程度の電子ビームを使用したが、より電 流密度の高い電子ビームを利用する必要があると思わ れる.また、回折格子の深さを深くして最適化を図る ことや回折格子形状と光出力強度の相関なども含め、 高出力化への課題が残った.

#### 5.まとめ

金属回折格子上の表面プラズモンと真空中を走行 する電子ビームを利用した新しい光源を提案し,提案 した動作原理に基づく光放射を波長 1.9-2.0 µ m 帯で観 測した.

謝辞:この研究は,科学研究費助成事業・基盤研究(C) の助成を受けて行われたものである.

## 文 献

- Y. Kuwamura, M. Yamada, R. Okamoto, T. Kanai and H. Fares, "Optical emission from a high-refractive -index waveguide excited by a traveling electron beam," J. Appl. Phys. 104, 103105, (2008)
- B. Laks, D. L. Mills and A. A. Maradudin, "Surface polaritons on large-amplitude gratings," Phys. Rev. B, 23, 10, pp.4965-4976, (1981)
- [3] S.J. Smith and E. M. Purcell, "Visible Light from Localized Surface Charges Moving across a Grating," Phys. Rev. 92, pp.1069, (1953)
- [4] P. M. van den Berg, "Smith-Purcell radiation from a line charge moving parallel to a reflection graing,"
  J. Opt. Soc. Am. 63, pp.689-698, (1973)