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Abstract

We investigate a rolling contact problem in elastodynamics. Contact problems in elasticity
appear in various fields such as manufacturing and earthquake engineering. In particular, we
have in mind the application to printers, where paper sheets are driven through the printer
by rollers. A typical problem for such printers is that the roller may produce a squeaking
sound. As a step towards preventing such a sound, we study a simplified model in which
the roller is modeled as an elastic body driven by a rotation. The paper sheet is modeled
as a rigid obstacle. For simplicity, we assume no frictional forces between the roller and the
obstacle. The resulting equations of motion are of hyperbolic type with a free boundary.

The aim of the paper is to develop a numerical scheme to solve these equations of motion.
The scheme is based on a variational method called the discrete Morse flow. The novelty is
that this scheme has not been applied to a hyperbolic system with a free boundary where
the unknown function is vector-valued.
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Chapter 1

Introduction

Rolling contact problems appear throughout manufacturing wherever gears and tires are
involved. We focus on the application to printers, where the rolling contact occurs at the
place where the paper sheets are taken inside the printer (sheet feeder). The sheet feeder
consists of rubber rollers which move the paper sheets through the printer. The problem
with such sheet feeders is that they may produce a squeaking sound. This sound is caused
by the contact of the rubber rollers with the paper sheets. In this paper, we work towards
solving the problem of this squeaking sound by modeling the dynamics of the rubber rollers
by elastodynamics.

Several earlier attempts have been made to model the dynamics of rollers. The first
simplified model is introduced by Signorini [26], who models the rollers as static, linear elastic
bodies subjected to a frictionless rigid obstacle. The Signorini problem was formulated and
analyzed mathematically by [18] as a variational problem. To allow for large deformations,
this model was extended to nonlinear elasticity and analyzed numerically by [16, 10]. There,
the authors studied the equations for the steady state of a rolling hyperelastic material in
contact with an obstacle by Coulomb friction, and implemented a numerical scheme for it.
However, the steady-state solutions cannot explain the squeaking sound. It remains difficult
to solve the rolling contact problem by using the equation of elastodynamics, because the
related set of equations contain a free boundary, are of hyperbolic nature, and are nonlinear
due to the use of hyperelasticity to allow for large deformations.

Therefore our aim is to extend the numerical scheme for the stationary setting in [16, 10]
to a dynamical scheme. Since it is difficult to treat at once the free boundary, hyperbolic
dynamics and the nonlinearities that come with hyperelasticity, we will use instead the
equations of linear elasticity in the coordinate frame which rotates along with the roller.
The resulting equations are of hyperbolic type with a free boundary.

Our numerical scheme is based on the discrete Morse flow (DMF), which was introduced
by [13]. The DMF is a variational method based on a minimizing movement scheme which
was intended for parabolic type problems. [30] extended the application of the DMF to
problems of hyperbolic type. [16] further extended it such that hyperbolic problems with
free boundaries can be treated. The key idea is to put the obstacle constraint as a restriction
on the admissible set over which the energy functional related to the DMF is minimized.

However, [16] treats the case of scalar-valued functions, while the application of the DMF
to our setting requires the extension to vector-valued functions. The aim of this paper is
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CHAPTER 1. INTRODUCTION

therefore to extend the DMF to vector-valued functions. We demonstrate the use of this
extension by applying it to a rolling contact problem.

In Chapter 2, we explain about the variational structure of a stationary obstacle prob-
lem. Free boundary conditions appears on the contact zone. We suppose that the obstacle
is frictionless and undeformed. This conditions are derived naturally from a variational
problem.

In Chapter 3, we derive the set of model equations for the rolling contact problem. The
deformation including rotation is treated as finite deformation. In the finite deformation
the nonlinear elasticity appears, it is not easy to treat. We suppose reasonable assumption
that the deformation is decomposed with rotation and small displacement since the object is
rubber roller. From this decompose assumption, we describe the original nonlinear elasticity
equations as a linear elasticity equations for the small displacement. On the other hand, the
obtained equation is a linear elasticity equation with a outer force coming from the rotation
effects. In §3.3, we discuss the preserving of the model equations. In §3.4, we discuss the
boundary conditions including free boundary conditions coming from obstacle. We suppose
that the obstacle is frictionless and undeformed. These free boundary conditions are derived
naturally from the variational structure. We explain the detail of it in §4.2 as the time
discretized form.

In Chapter 4, we suggest a variant of the discrete Morse flow to develop a numerical
scheme in which the total energy preserves for the vibration of the small displacement. The
proposed time discrete scheme haves O(∆t2)–accuracy for the acceleration part, but the oder
of the approximation of the outer force is O(∆t). It is not satisfactory. We show the existence
of the minimizer of the employed time-discretized type functional in §4.3. However we have
not prove the convergence of the approximate solution interpolated in time by the minimizers.
In §4.4, we explain a variant of the nonlinear conjugate gradient method. The elasticity is
linear however the problem is nonlinear since it contains free boundary condition coming
from the obstacle. Hence we employ the nonlinear conjugate gradient method. Moreover
we need to make it a variant type because of the constraint. To constrain the obstacle in
nonlinear conjugate gradient method, we use the orthogonal projection onto the admissible
set, and operator which restricts the search direction as as not to jump over the obstacle.

In Chapter 5, we solve time discretized problem numerically and discuss the application
to the rolling contact problem. We simulate two cases. In the first case we remove the
obstacle, and study the sensitivity of the roller’s dynamics with respect to the parameters.
In particular, we are interested in the vibrations in the radial and tangential displacements,
because the understanding of these vibrations might help in removing the squeaking sound
of printer rollers. In the second case we add the obstacle. We are interested in the shape of
the deformed domain and the size of the stress tensor, especially in the region close to the
contact zone.

In Chapter 6, we we explain the details of the discrete Morse flow for a linear elasticity
problem. The discrete Morse flow method is a method which constructs a weak solution
by the limit function of the approximate solution interpolated in time with minimizers of
a time-discretized type functionals over an admissible set. The steps of the construction of
a weak solution is as follows: (i) Show the existence of a minimizer of the time-discretized
type functional over the admissible set, and construct an approximate solution. (ii) Show
the boundedness of the approximate solution sequence, and construct weakly converging
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CHAPTER 1. INTRODUCTION

subsequence by theorem by Eberlein and Shmulyan. (iii) Show that the limit of the sequence
is weak solution. It is useful to describe the free boundary condition only by restricting
the admissible set. In our model case, the free boundary condition is corresponding to the
obstacle which is frictionless and undeformed. In this Chapter, using a simple case that linear
elasticity problem with homogeneous Dirichlet boundary without constraint, we explain the
details of the discrete Morse flow. On the other hand, this method is possible to apply the
finite element method as a numerical method. When we treat a admissible set, a variant
of the nonlinear conjugate gradient method with a projection may be possible to solve a
minimizing problem numerically.
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Chapter 2

Obstacle problem

2.1 Geometry

Let Ω ⊂ R2 be a bounded domain representing the area occupied by an elastic body. The
closure Ω of the set Ω is called the reference configuration. We subdivide the boundary ∂Ω
into ΓD and ΓC , where

ΓD ∪ ΓC = ∂Ω, ΓD ∩ ΓC = ∅, ΓD ̸= ∅. (2.1)

We denote by u : Ω → R2 the displacement of the reference configuration Ω. We introduce
the strain tensor

ϵ[u] :=
1

2

(
∇u+∇uT

)
, (2.2)

and the stress tensor
σ[u] := 2µϵ[u] + λ(divu)I. (2.3)

where µ and λ are the Lamé constants (λ+ µ ≥ 0, µ > 0). We define the elasticity tensor

cijpq := λδijδpq + µ(δipδjq + δiqδjp). (2.4)

Using (2.4) we rewrite (2.3) by
σij = cijpqϵpq (2.5)

Here and henceforth we use the convention to sum over repeated indices.
Then the elasticity tensor cijpq satisfies the following properties:

(1) cijpq = cjipq = cpqij,

(2) cijpqϵpqϵij ≥ 2µϵijϵij,

(3) cijpqϵpq[u]ϵij[u] = cijpq
∂up

∂xq

∂ui

∂xj

.
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CHAPTER 2. OBSTACLE PROBLEM

Indeed, we can get (1) and (2) easily. Proof of (3), using the symmetries (1) we obtain

cijpqϵpq[u]ϵij[u] =
1

4
cijpq

(
∂up

∂xq

+
∂uq

∂xp

)(
∂ui

∂xj

+
∂uj

∂xi

)
=

1

4

(
cijpq

∂up

∂xq

∂ui

∂xj

+ cijpq
∂up

∂xq

∂uj

∂xi

+ cijpq
∂uq

∂xp

∂ui

∂xj

+ cijpq
∂uq

∂xp

∂ui

∂xj

)
=

1

4
(cijpq + cjipq + cijqp + cqpji)

∂up

∂xq

∂ui

∂xj

= cijpq
∂up

∂xq

∂ui

∂xj

.

We shall consider the following stationary obstacle problem in linear elasticity:

−divσ[u] = 0 in Ω, (2.6)

u = 0 on ΓD, (2.7)(
σ[u]n

)
1
= 0 on ΓC , (2.8)(

id+ u
)
2
≥ g on ΓC , (2.9)(

σ[u]n
)
2
≥ 0 on ΓC , (2.10)((

id+ u
)
2
− g
)(
σ[u]n

)
2
= 0 on ΓC , (2.11)

where n is unit outer normal vector of ∂Ω. The condition (2.8) tells free slip. The condition
(2.9) means that the position should be above from obstacle. The condition (2.10) describes
that normal components must be compressive. Summarizing (2.9)–(2.11), it means that at
least one of (2.9) and (2.10) holds equality.

For equation (2.6)–(2.11), we consider the minimizing the functional

E(u) := 1

2

∫
Ω

σ[u] : ϵ[u] dx (2.12)

over to the admissible set

K :=
{
u ∈ W 1,2(Ω;R2); u = 0 a.e. on ΓD, (id+ u)2 ≥ g a.e. on ΓC

}
. (2.13)

Here, σ : ϵ := σijϵij. By calculating the first variation of E over K, we obtain that any
minimizer satisfies (2.6)–(2.11). The existence of a unique minimizer follows from the facts
that E is weakly lower semi–continuous on W 1,2(Ω;R2), is bounded from below, has bounded
sublevel sets, and that K is convex and closed in W 1,2(Ω;R2) (see §4.3 for the details).

Let us check that the sufficiently smooth minimizer u satisfies (2.6)–(2.11) by the analogy
of [9]. The minimizer u satisfies the inequality

E(v) ≥ E(u) for all v ∈ K.

Taking any w ∈ C∞(Ω;R2) such that v = u+sw ∈ K for small s ≥ 0, expanding E(u+sw)
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CHAPTER 2. OBSTACLE PROBLEM

in terms of s, we deduce that the first-order term in s must be non-negative, that is,

0 ≤ E(u+ sw)− E(w),

0 ≤ 1

s
(E(u+ sw)− E(w)) ,

0 ≤ d

ds
E(u+ sw)

∣∣∣∣
s=0

=

∫
Ω

σ[u] : ϵ[w] dx.

Integrating by parts, we have

0 ≤ −
∫
Ω

divσ[u] ·w dx+

∫
ΓC

(σ[u]n) ·w dx (2.14)

Choosing w ∈ C∞
0 (Ω;R2), (2.14) implies (2.6). Thus for w ∈ C∞(Ω;R2), we deduce from

(2.14)

0 ≤
∫
ΓC

(σ[u]n) ·w ds (2.15)

If we choose w such that
w2 = 0 on ΓC ,

we deduce (2.8). And if we choose a function w such that

w2 ≥ 0 on ΓC ,

then v = u + sv ∈ K for small s ≥ 0 and (2.15) yields (2.10) Finally, suppose that
(id+ u)2 − g > 0 at a point x ∈ ΓC . Then there exists w ∈ C∞(Ω;R2) such that

w2(x) < 0 and (id+ u+ sw)2 − g ≥ 0 on ΓC for small s ≥ 0.

Condition (2.15) together with (2.10) implies((
id+ u

)
2
− g
)(
σ[u]n

)
2
= 0

and therefore (2.11) holds.
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Chapter 3

Rolling contact problem

In this section, we introduce our notation and the set of governing equations (P).

3.1 Geometry

Let Ω ⊂ R2 be a bounded domain representing the area occupied by an elastic body. The
closure Ω of the set Ω is called the reference configuration. We denote by φ : Ω → R2 the de-
formation of the reference configuration Ω, and refer to φ(Ω) as the deformed configuration.
We call the components of x the Lagrangian coordinates, and the components of X = φ(x)
the Eulerian coordinates (see Figure 3.1) in the deformed configuration.

At each point x ∈ Ω, the deformation gradient is given by

F (x) := ∇φ(x) =


∂φ1

∂x1

(x)
∂φ1

∂x2

(x)

∂φ2

∂x1

(x)
∂φ2

∂x2

(x)

 . (3.1)

We require that the determinant of the deformation gradient is positive at all points of the
reference configuration, that is

J(x) := detF (x) > 0, (3.2)

for all x ∈ Ω. As a consequence, the matrix F (x) is invertible.
Before linearizing, we describe the equations for mechanical equilibrium in terms of non-

linear elasticity. The Cauchy stress tensor T = (Tij) is defined in the deformed configuration

T (X) :=
1

J(x)

{
µ
(
F (x)F T (x)− I

)
+

λ

2

(
J(x)2 − 1

)
I

}
, (3.3)

for all x ∈ Ω, where X = φ(x), µ and λ are the Lamé constants (λ+ µ ≥ 0, µ > 0), F T (x)
is the transpose matrix of F (x), and I is the identity matrix.

In our model for the roller, the deformation naturally decomposes as

φ = R(id+ ξ) in Ω, (3.4)

7



CHAPTER 3. ROLLING CONTACT PROBLEM

where the matrix R = (Rij) describes the counter-clockwise rotation by angle θ (see Figure
3.1), id : R2 → R2 denotes the identity map, and ξ : Ω → R2 is assumed to have small
derivatives. More precisely, we assume that∣∣∣∣ ∂ξi∂xj

(x)

∣∣∣∣ < ε,

∣∣∣∣ ∂2ξi
∂xj∂ξk

(x)

∣∣∣∣ < ε, (3.5)

for some ε > 0 small enough, uniformly for x ∈ Ω and 1 ≤ i, j, k ≤ 2.

Figure 3.1: Sketch of the decomposition of the deformation φ.

3.2 Equations of motion

To derive the equations of motion, we change variables in (3.3) by writing it in terms of ξ on
Ω, and expand it in terms of ε by relying on (3.5). Since ∇ξ plays the role of the deformation
in linearized elasticity, we introduce the strain tensor

ϵ[ξ] :=
1

2

(
∇ξ +∇ξT

)
, (3.6)

and the stress tensor
σ[ξ] := 2µϵ[ξ] + λ(div ξ)I, (3.7)

in the reference configuration. The Cauchy stress tensor T (X) in Lagrangian coordinates is
given as

Tij =
1

J

{
µ

[
Rik

(
δkℓ +

∂ξk
∂xℓ

)(
δmℓ +

∂ξm
∂xℓ

)
Rjm − δij

]
+

λ

2

[(
1 + div ξ + det(∇ξ)

)2
− 1

]
δij

}
=

1

J

{
µRik

(
∂ξk
∂xm

+
∂ξm
∂xk

+
∂ξk
∂xℓ

∂ξm
∂xℓ

)
Rjm

+
λ

2

[
2
(
div ξ + det(∇ξ)

)
+
(
div ξ + det(∇ξ)

)2]
RikδkmRjm

}
=

1

J
Rikσkm[ξ]Rjm +

1

J
Rik

{
µ
∂ξk
∂xℓ

∂ξm
∂xℓ

+
λ

2

[
2 det(∇ξ) +

(
div ξ + det(∇ξ)

)2]
δkm

}
Rjm.
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CHAPTER 3. ROLLING CONTACT PROBLEM

Here and henceforth we use the convention to sum over repeated indices. The divergence of
the tensor T is then

(divX T )i :=
∂Tij

∂Xj

= Rik

(
1

J

∂

∂xm

σkℓ[ξ]−
1

J2
σkℓ[ξ]

∂J

∂xm

)
∂(φ−1)m

∂xj

Rjℓ +O(ε2)

= Rik

(
1−

(
div ξ + det(∇ξ)

)
+O(ε2)

) ∂

∂xm

σkℓ[ξ]RjmRjℓ +O(ε2)

= Rik
∂

∂xℓ

σkℓ[ξ] +O(ε2),

(3.8)
where φ−1 is the inverse function of φ.

Next we derive the equations of motion. We encode the forced rotation of the elastic
body by a given smooth function θ : [0, T ) → R that corresponds to the rotation angle of R.
Then, by (3.4), the now time-dependent fields φ : Ω× [0, T ) → R2 and ξ : Ω× [0, T ) → R2

satisfy
φ(x, t) = R(θ(t))(x+ ξ(x, t)), (3.9)

for all x ∈ Ω and all t ≥ 0. After neglecting higher order terms of ε in (3.8), the conservation
of linear momentum yields the equation of elastodynamics,

ρφ̈ = divX T ≈ R(θ)divσ[ξ] in Ω× (0, T ), (3.10)

where ρ > 0 is the density, superposed dots denote partial differentiation with respect to
time (i.e., φ̈ := ∂2φ/∂t2), and

divσ :=


∂σ11

∂x1

+
∂σ12

∂x2

∂σ21

∂x1

+
∂σ22

∂x2

 . (3.11)

To write the left hand side of (3.10) in terms of ξ, we use (3.9) to compute

φ̈ = θ̈
d

dθ
R(θ)(id+ ξ) + θ̇2

d2

dθ2
R(θ)(id+ ξ) + 2θ̇

d

dθ
R(θ)ξ̇ +R(θ)ξ̈

= R(θ)
{
θ̈R(π/2)(id+ ξ) + θ̇2R(π)(id+ ξ) + 2θ̇R(π/2)ξ̇ + ξ̈

}
= R(θ)

{
−θ̈R(−π/2)(id+ ξ)− θ̇2(id+ ξ)− 2θ̇R(−π/2)ξ̇ + ξ̈

}
.

In the above calculation, we have used that d
dθ
R(θ) = R(θ)R(π/2). Inserting the result in

(3.10), we obtain

ρξ̈ = divσ[ξ]+ρ
(
θ̈R(−π/2)(id+ ξ) + θ̇2(id+ ξ) + 2θ̇R(−π/2)ξ̇

)
in Ω×(0, T ). (3.12)

We note that if θ is linear in time, then in the right-hand side the second term vanishes, the
third term is the centrifugal force, and the last term is the Coriolis force. To abbreviate the
term in parentheses, we define the function f by

f(t,x, ξ, ξ̇) := θ̈(t)R(−π/2)(x+ ξ) + θ̇(t)2(x+ ξ) + 2θ̇(t)R(−π/2)ξ̇. (3.13)

We remark that the time dependence of the rotation angle is not covered by the setting in
[21, 16].
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3.3 Total energy

In this section, we discuss the preserving quantity of this model in the case with Dirichlet
zero and Neumann zero boundary conditions. Therefore, we have the following problem:

ρφ̈ = R(θ)divσ[ξ] in Ω× (0, T ), (3.14)

ξ = 0 on ΓD × (0, T ), (3.15)

σ[ξ]n = 0 on ΓN × (0, T ). (3.16)

Now, the deformation is decomposed by

φ = R(θ)(id+ ξ) (3.17)

Then φ̇ and φ̈ are calculated as following.

φ̇ =
∂

∂t
{R(θ)(id+ ξ)}

= R(θ)R(π/2)θ̇(id+ ξ) +R(θ)ξ̇

= R(θ)
{
θ̇R(π/2)(id+ ξ) + ξ̇

}
=: R(θ)v.

And we have

φ̈ = R(θ)R(π/2)θ̇
{
θ̇R(π/2)(id+ ξ) + ξ̇

}
+R(θ)

{
θ̈R(π/2)(id+ ξ) + θ̇R(π/2)ξ̇ + ξ̈

}
= R(θ)

{
θ̇2R(π)(id+ ξ) + θ̇R(π/2)ξ̇ + θ̈R(π/2)(id+ ξ) + θ̇R(π/2)ξ̇ + ξ̈

}
= R(θ)

{
−θ̇2(id+ ξ)− 2θ̇R(−π/2)ξ̇ − θ̈R(−π/2)(id+ ξ) + ξ̈

}
,

=: R(θ)a.

where v := θ̇R(π/2)(id+ ξ) + ξ̇, a := −θ̇2(id+ ξ)− 2θ̇R(−π/2)ξ̇− θ̈R(−π/2)(id+ ξ) + ξ̈.
Multiplying φ̇ in the both side of (3.14), and integrating over Ω, we obtain∫

Ω

ρφ̈ · φ̇ dx =

∫
Ω

divσ[ξ] · φ̇ dx. (3.18)

Then we get

(l.h.s of (3.18)) =
1

2

d

dt

∫
Ω

ρ|φ̇| dx

=
1

2

d

dt

∫
Ω

ρR(θ)v ·R(θ)v dx

=
1

2

d

dt

∫
Ω

ρ|v|2 dx

=
1

2

d

dt

∫
Ω

ρ
∣∣∣θ̇R(π/2)(id+ ξ) + ξ̇

∣∣∣2 dx

=
1

2

d

dt

∫
Ω

ρ

{∣∣∣θ̇2R(π/2)(id+ ξ)
∣∣∣2 + 2

[
θ̇2R(π/2)(id+ ξ)

]
· ξ̇ + |ξ̇|2

}
dx

=
1

2

d

dt

∫
Ω

ρ
{[

θ̇2(id+ ξ) + 2θ̇2R(−π/2)φ̇
]
· (id+ ξ) + |ξ̇|2

}
dx,

10



CHAPTER 3. ROLLING CONTACT PROBLEM

moreover

(r.h.s of (3.18))

=

∫
Ω

R(θ)divσ[ξ] ·R(θ)v dx

=

∫
Ω

divσ[ξ] · v dx

=

∫
Ω

divσ[ξ] ·
[
ξ̇ + θ̇R(π/2)(id+ ξ)

]
dx

= −
∫
Ω

σ[ξ] : ϵ[ξ̇] dx−
∫
Ω

σ[ξ] : ϵ
[
θ̇R(π/2)(id+ ξ)

]
dx+

∫
ΓD

σ[ξ]n ·
[
θ̇R(π/2)(id+ ξ)

]
ds

= −1

2

d

dt

∫
Ω

σ[ξ] : ϵ[ξ] dx−
∫
Ω

σ[ξ] : ϵ
[
θ̇R(π/2)(id+ ξ)

]
dx+

∫
ΓD

θ̇|id| (σ[ξ]n · t) ds,

where n and t are unit outer normal vector and unit tangential vector of ∂Ω, respectively.
We define the total energy by

E[ξ] :=
1

2

∫
Ω

ρ
{[

θ̇2(id+ ξ) + 2θ̇2R(−π/2)φ̇
]
· (id+ ξ) + |ξ̇|2

}
dx+

1

2

∫
Ω

σ[ξ] : ϵ[ξ] dx.

(3.19)
Now we get the equations

d

dt
E[ξ](t) = −

∫
Ω

σ[ξ] : ϵ
[
θ̇R(π/2)(id+ ξ)

]
dx+

∫
ΓD

θ̇|id| (σ[ξ]n · t) ds (3.20)

for all t > 0.

3.4 Boundary conditions

We subdivide the boundary ∂Ω into ΓD and ΓC (see Figure 3.2), where

ΓD ∪ ΓC = ∂Ω, ΓD ∩ ΓC = ∅, ΓD ̸= ∅. (3.21)

On the boundary ΓD we model the forced rotation of Ω by imposing the Dirichlet boundary
condition

φ(x) = Rx for x ∈ ΓD, (3.22)

which is equivalent to
ξ = 0 on ΓD. (3.23)

We describe the height of the obstacle by a smooth function g : [0, T ) → R. The condition
that the deformed configuration remains above the obstacle is given by

φ2(x) = (x+ ξ(x)) ·
(
RTe2

)
≥ g for all x ∈ ΓC , (3.24)

where ei ∈ R2 are the unit vectors of the canonical basis in the Lagrangian frame. We call

{φ(x);x ∈ ΓC , φ2(x) = g},

11



CHAPTER 3. ROLLING CONTACT PROBLEM

the contact zone, and note that it is an unknown subset of ΓC .
Using the contact zone, we describe the boundary conditions on ΓC . Outside of the

contact zone, we impose homogeneous Neumann boundary conditions (i.e., zero traction).
At the contact zone, we impose zero traction in tangential direction (i.e., no friction force
between the elastic body and the obstacle), and require the normal force of the obstacle on
the elastic body to be non-negative. This leads to the following boundary conditions on ΓC :

(id+ ξ) ·
(
RTe2

)
≥ g

(σ[ξ]n) ·
(
RTe1

)
= 0

(σ[ξ]n) ·
(
RTe2

)
≥ 0(

(id+ ξ) ·
(
RTe2

)
− g
)
(σ[ξ]n) ·

(
RTe2

)
= 0

on ΓC , (3.25)

where n is the unit outward normal vector to ΓC .

	
contact	zone

Figure 3.2: Sketch of the boundary components ΓD, ΓC and the contact zone.
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3.5 Full model

Summarizing the equations above, and adding initial conditions, we obtain the complete
system

(P)



ρξ̈ − divσ[ξ] = ρf(·, ·, ξ, ξ̇) in Ω× (0, T ),

ξ = 0 on ΓD × [0, T ),

(id+ ξ) ·
(
RT (θ)e2

)
≥ g on ΓC × [0, T ),

(σ[ξ]n) ·
(
RT (θ)e1

)
= 0 on ΓC × [0, T ),

(σ[ξ]n) ·
(
RT (θ)e2

)
≥ 0 on ΓC × [0, T ),(

(id+ ξ) ·
(
RT (θ)e2

)
− g
)
(σ[ξ]n) ·

(
RT (θ)e2

)
= 0 on ΓC × [0, T ),

ξ(·, 0) = ξ0 in Ω,

ξ̇(·, 0) = η0 in Ω.

where θ, g : [0, T ) → R and ξ0,η0 are given functions, and f is defined in (3.13). (P)
describes the complete set of equations of motion for ξ which we solve numerically in the
remainder of this paper.

13



Chapter 4

Numerical method

In this section, we describe and apply the discrete Morse flow (DMF) to discretize (P). The
idea is to discretize (P) in time by using the implicit Crank-Nicolson scheme (§4.1 This
results in a scheme where at each time step an elliptic obstacle problem needs to be solved.
In §4.2 we derive a variational structure of this elliptic obstacle problem. In §4.4 we adjust
the nonlinear conjugate gradient method to find a minimizer of the related minimization
problem.

4.1 Time-discretized problem

For the discretization in time, let T > 0 be the end time, M ∈ N be the number of time
steps, and ∆t := T/M the time step size. For each time step k = 0, 1, · · · ,M , we set

θk := θ(k∆t), gk := g(k∆t),

and denote by ξk : Ω → R2 the time-discretized approximation of the solution ξ of (P) at
time k∆t. For convenience, we set ξk|k=−1 := ξ

0 −∆tη0.
Using the Crank-Nicolson scheme, we discretize the elastodynamics equation in time as

ρ
ξk − 2ξk−1 + ξk−2

(∆t)2
= divσ

[
ξk + ξk−2

2

]
+ ρfk−1 in Ω, (4.1)

where we define

fk−1(x) := f((k − 1)∆t,x, ξk−1, (ξk−1 − ξk−2)/∆t). (4.2)

Using the definition of f , (4.2) reads

fk−1(x) = θ̈k−1R(−π/2)(x+ ξk−1)+ (θ̇k−1)2(x+ ξk−1)+2θ̇k−1R(−π/2)
ξk−1 − ξk−2

∆t
. (4.3)

The advantage of the Crank-Nicolson scheme in contrast to the purely implicit scheme
used in previous works [28] is that it conserves the time-discrete energy in the case when
θ ≡ 0 with homogeneous Dirichlet boundary conditions:

14



CHAPTER 4. NUMERICAL METHOD

Theorem 1. (K.Švadlenka) If θ ≡ 0, ξk = 0 on ∂Ω for k = 0, 1, · · · ,M , and ξk satisfies
(4.1) for k = 1, 2 · · · ,M , then the time-discrete energy

Ek :=
1

2

∫
Ω

|ξk − ξk−1|2

(∆t)2
dx+

1

2

∫
Ω

σ[ξk] : ϵ[ξk] + σ[ξk−1] : ϵ[ξk−1]

2
dx for k = 1, 2, · · · ,M

(4.4)
does not depend on k. Here, σ : ϵ := σijϵij.

Proof. Multiplying both sides of (4.1) by ξk − ξk−2, integrating over Ω and integrating by
parts, we get∫

Ω

ξk − 2ξk−1 + ξk−2

(∆t)2
· (ξk − ξk−2) dx =

∫
Ω

divσ

[
ξk + ξk−2

2

]
· (ξk − ξk−2) dx,

moreover we obtain∫
Ω

|ξk|2 − |ξk−2|2 − 2ξk · ξk−1 + 2ξk−1 · ξk−2

(∆t)2
dx = −

∫
Ω

1

2

(
σ[ξk] : ϵ[ξk]− σ[ξk−2] : ϵ[ξk−2]

)
dx.

Summing over k = 2 to K, we obtain

E1 = EK , (4.5)

for K = 2, 3, · · · ,M .

The Crank-Nicolson discretization above yields the following time-discretized scheme for
(P). The choice of (ξk + ξk−2)/2 in the boundary conditions is motivated by the variational
formula that we explain in detail in the next §4.2. Let ξ0,η0 ∈ W 1,2(Ω;R2) be given, and
set ξk|k=−1 := ξ0 − ∆tη0. For k = 1, 2, · · · ,M , find ξk : Ω → R2 such that the following
equations are satisfied:

(Pk)



ρ
ξk − 2ξk−1 + ξk−2

(∆t)2
− divσ

[
ξk + ξk−2

2

]
= ρfk−1 in Ω,

ξk = 0 on ΓD,

(id+ ξk) ·
(
RT (θk)e2

)
≥ gk on ΓC ,(

σ

[
ξk + ξk−2

2

]
n

)
·
(
RT (θk)e1

)
= 0 on ΓC ,(

σ

[
ξk + ξk−2

2

]
n

)
·
(
RT (θk)e2

)
≥ 0 on ΓC ,(

(id+ ξk) ·
(
RT (θk)e2

)
− gk

)(
σ

[
ξk + ξk−2

2

]
n

)
·
(
RT (θk)e2

)
= 0 on ΓC .

The convergence of the proposed numerical scheme based on the Crank-Nicolson time
discretization is the subject of future work. However, the purely implicit time discretization
was used previously to show the existence of a weak solution for a system of hyperbolic
equations without a constraint in [30], and with constraint for a single equation in [28].
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4.2 Variational structure of the time-discretized prob-

lem

For any k = 1, 2, · · · ,M , problem (Pk) is an elliptic problem with an obstacle. It is the
Euler-Lagrange equation for the minimizer of the functional

J k(ξ) := ρ

∫
Ω

|ξ − 2ξk−1 + ξk−2|2

2(∆t)2
dx+

1

2

∫
Ω

(
1

2
σ[ξ] + σ[ξk−2]

)
: ϵ[ξ] dx− ρ

∫
Ω

fk−1 · ξ dx,

(4.6)
over to the admissible set

Kk :=
{
ξ ∈ W 1,2(Ω;R2); ξ = 0 a.e. on ΓD, (id+ ξ) ·

(
RT (θk)e2

)
≥ gk a.e. on ΓC

}
. (4.7)

Indeed, by calculating the first variation of J k over Kk we obtain that any minimizer ξk

satisfies (Pk). The existence of a unique minimizer follows from the facts that J k is weakly
lower semi–continuous on W 1,2(Ω;R2), is bounded from below, has bounded sublevel sets,
and that Kk is convex and closed in W 1,2(Ω;R2). Let us check that the sufficiently smooth
minimizer ξk satisfies (Pk) by the analogy of [9]. The minimizer ξk satisfies the inequality

J k(η) ≥ J k(ξk) for all η ∈ Kk.

Taking any ψ ∈ C∞(Ω;R2) such that η = ξk + sψ ∈ Kk for small s ≥ 0, expanding
J k(ξk + sψ) in terms of s, we deduce that the first-order term in s must be non-negative,
that is,

ρ

∫
Ω

(ξk − 2ξk−1 + ξk−2) ·ψ
(∆t)2

dx+

∫
Ω

σ

[
ξk + ξk−2

2

]
: ϵ[ψ] dx− ρ

∫
Ω

fk−1 ·ψ dx ≥ 0. (4.8)

Integrating by parts, we have

0 ≤
∫
Ω

(
ρ
(ξk − 2ξk−1 + ξk−2)

(∆t)2
− divσ

[
ξk + ξk−2

2

]
− ρfk−1

)
·ψ dx

+

∫
ΓC

(
σ

[
ξk + ξk−2

2

]
n

)
·ψ ds. (4.9)

Choosing ψ ∈ C∞
0 (Ω;R2), (4.9) implies the first equation in (Pk). Thus for ψ ∈ C∞(Ω;R2),

we deduce from (4.9)

0 ≤
∫
ΓC

(
σ

[
ξk + ξk−2

2

]
n

)
·ψ ds

=

∫
ΓC

2∑
i=1

{(
σ

[
ξk + ξk−2

2

]
n

)
·
(
RT (θk)ei

)}{
ψ ·
(
RT (θk)ei

)}
ds.

(4.10)

If we choose ψ such that
ψ ·
(
RT (θk)e2

)
= 0 on ΓC ,

16
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we deduce the fourth equation of (Pk). And if we choose a function ψ such that

ψ ·
(
RT (θk)e2

)
≥ 0 on ΓC ,

then η = ξk + sψ ∈ Kk for small s ≥ 0 and (4.10) yields the fifth equation of (Pk).
Finally, suppose that (id+ ξk) ·

(
RT (θk)e2

)
− gk > 0 at a point x ∈ ΓC . Then there exists

ψ ∈ C∞(Ω;R2) such that

ψ ·
(
RT (θk)e2

)
(x) < 0 and (id+ξk+sψ)·

(
RT (θk)e2

)
−gk ≥ 0 on ΓC for small s ≥ 0.

Condition (4.10) together with the fifth equation implies(
σ

[
ξk(x) + ξk−2(x)

2

]
n(x)

)
·
(
RT (θk)e2

)
= 0,

and therefore the last equation in (Pk) holds.

4.3 Existence of the minimizer

In this section, we discuss the existence of the minimizer of J k on Kk defined by (4.6) and
(4.7). We apply the general theory (see [5]).

Theorem 2. Suppose V , K and J : K → R satisfy the following hypothesis:

(H1) V is reflexive Banach space,

(H2) K is weakly closed,

(H3) K is bounded and

(H4) J : K ⊂ V → R is weakly lower semi–continuous.

Then J has a global minimum in K.

Proof. We take a minimizing sequence {vn}n∈N ⊂ K:

J (vn) ↘ inf
v∈K

J (v)

Since K is bounded, {vn}n∈N is also bounded. V is reflexive Banach space, therefore there
exists a weakly converging subsequence {vnj

}j∈N and w ∈ V such that

vnj
⇀ w in V as j → ∞.

Since K is weakly closed, w belongs to K. Using the weakly lower semi–continuity of J , we
have

J (w) ≤ lim inf
j→∞

J (vnj
) = inf

v∈K
J (v).

Therefore w is the minimizer of J in K.

17
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Theorem 3. If V , K and J : K → R satisfy the hypothesis (H1), (H2), (H4) and J
satisfies

(H3)′ lim
∥v∥V →∞

J (v) = ∞,

then J has a global minimum in K.

Proof. Let v0 ∈ K be arbitrary fixed, and define a admissible set

K0 := {v ∈ K;J (v) ≤ J (v0)}

If there exists a minimizer of J in K0, the minimizer is also a minimizer of J in K. Indeed,
let w be a minimizer of J in K0.

J (w) ≤ inf
v∈K0

J (v) = inf
v∈K

J (v),

hence w is a minimizer of J in K. Our goal is that we show the existence of a minimizer of
J in K0. As the goal, we show K0 is bounded and weakly closed in V . Suppose K0 is not
bounded then there exists {vn}n∈N ⊂ K0 such that

∥vn∥V → ∞ as n → ∞.

Then by (H3)′, J (vn) → ∞ as n → ∞ which is contradiction for the definition of K0. Hence
K0 is bounded. As last step, we show that K0 is weakly closed. Let {vn} ⊂ K0; vn ⇀ w in
V as n → ∞. Since J is weakly lower semi–continuous, we obtain

J (w) ≤ lim inf
n→∞

J (vn) ≤ J (v0).

Hence w ∈ K0. Now K0 and J satisfy all the hypothesis of Theorem 2.

Theorem 4. There exists a minimizer of J k on Kk defined by (4.6) and (4.7).

Proof. W 1,2(Ω;R2) is reflexive Banach space. We claim that Kk is closed and convex set. To
show that Kk is closed, let {ξn} ⊂ Kk; ξn → ξ in W 1,2(Ω;R2) as n → ∞.

γ((ξn)i) = 0 a.e. on ΓD,(
id+

(
γ((ξn)i)

))
·
(
RT (θk)e2

)
≥ gk a.e. on ΓN .

Since the trace operator γ : W 1,2(Ω) → L2(∂Ω) is bounded linear operator, we have

γ((ξ)i) = 0 a.e. on ΓD,(
id+

(
γ((ξ)i)

))
·
(
RT (θk)e2

)
≥ gk a.e. on ΓN .

Hence Kk is closed. To show that Kk is convex, let ξ,η ∈ Kk and α ∈ (0, 1).(
id+

(
αξ + (1− α)η

))
·
(
RT (θk)e2

)
=
(
α
(
id+ ξ

)
+ (1− α)

(
id+ η

))
·
(
RT (θk)e2

)
= α

(
id+ ξ

)
·
(
RT (θk)e2

)
+ (1− α)

(
id+ η

)
·
(
RT (θk)e2

)
≥ αgk + (1− α)gk = gk,

18
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for almost everywhere on ΓC . Hence Kk is convex. We apply the theorem by Mazur’s that
Kk is weakly closed. As next step, we claim that J k is weakly lower semi–continuous in
W 1,2(Ω;R2) and satisfies

lim
∥ξ∥W1,2(Ω;R2)→∞

J k(ξ) = ∞.

To prove that J k satisfies (H3)′, we estimate J k from the below.

J k(ξ)

≥ ρ

2(∆t)2

(∥∥ξ + ξk−2
∥∥
L2(Ω;R2)

− 2
∥∥ξk−1

∥∥
L2(Ω;R2)

)2
+

1

4

∫
Ω

σ[ξ + ξk−2] : ϵ[ξ + ξk−2] dx

− 1

4

∫
Ω

σ[ξk−2] : ϵ[ξk−2] dx− ρ
∥∥fk−1

∥∥
L2(Ω;R2)

∥ξ∥L2(Ω;R2)

≥ ρ

2(∆t)2

(∥∥ξ + ξk−2
∥∥2
L2(Ω;R2)

− 4
∥∥ξk−1

∥∥
L2(Ω;R2)

∥∥ξ + ξk−2
∥∥
W 1,2(Ω;R2)

)
+

µ

2

∥∥∇(ξ + ξk−2)
∥∥2
L2(Ω;R2)

− 1

4

∫
Ω

σ[ξk−2] : ϵ[ξk−2] dx− ρ
∥∥fk−1

∥∥
L2(Ω;R2)

∥ξ∥W 1,2(Ω;R2)

≥ Cm

∥∥ξ + ξk−2
∥∥2
W 1,2(Ω;R2)

− C̃M ∥ξ∥W 1,2(Ω;R2) − C0

≥ Cm ∥ξ∥2W 1,2(Ω;R2) − CM ∥ξ∥W 1,2(Ω;R2) − C0,

where we set

Cm := min

{
ρ

2(∆t)2
,
µ

2

}
,

C̃M :=
2ρ

(∆t)2
∥∥ξk−1

∥∥
L2(Ω;R2)

+ ρ
∥∥fk−1

∥∥
L2(Ω;R2)

,

CM := 2Cm

∥∥ξk−2
∥∥
W 1,2(Ω;R2)

+
2ρ

(∆t)2
∥∥ξk−1

∥∥
L2(Ω;R2)

+ ρ
∥∥fk−1

∥∥
L2(Ω;R2)

,

C0 := − 2ρ

(∆t)2
∥∥ξk−1

∥∥
L2(Ω;R2)

∥∥ξk−2
∥∥
W 1,2(Ω;R2)

− 1

4

∫
Ω

σ[ξk−2] : ϵ[ξk−2] dx.

Hence (H3)′ holds. As the last step, we show the weakly lower semi–continuous of J k in
W 1,2(Ω;R2). We expand J k as following.

J k(ξ) =
ρ

2(∆t)2

(∫
Ω

|ξ|2 dx− 2

∫
Ω

ξ · (2ξk−1 − ξk−2) dx+

∫
Ω

|2ξk−1 − ξk−2|2 dx
)

+
1

4

∫
Ω

σ[ξ] : ϵ[ξ] dx+
1

2

∫
Ω

σ[ξk−2] : ϵ[ξ] dx− ρ

∫
Ω

fk−1 · ξ dx

Now the second, the fifth and last terms of the above equation are clearly weakly continuous.
Hence it is enough to show that weakly lower semi–continuity of the functional

I(ξ) :=
∫
Ω

|ξ|2 dx+

∫
Ω

σ[ξ] : ϵ[ξ] dx.
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To show it, let {ξn}n∈N ⊂ W 1,2(Ω;R2); ξn ⇀ ξ in W 1,2(Ω;R2) as n → ∞ be arbitrary weakly
converging sequence.

0 ≤ I(ξn − ξ)

= I(ξn)− 2

∫
Ω

ξ · ξn dx+

∫
Ω

|ξ|2 dx− 2

∫
Ω

σ[ξ] : ϵ[ξn] dx+

∫
Ω

σ[ξ] : ϵ[ξ] dx

I(ξ) ≤ I(ξn)− 2

∫
Ω

ξ · (ξn − ξ) dx− 2

∫
Ω

σ[ξ] : ϵ[ξ] dx

I(ξ) ≤ lim inf
n→∞

I(ξn).

In the end, W 1,2(Ω;R2), Kk and J k satisfy all the hypothesis of Theorem 3.

4.4 Numerical method for solving the minimization

problem

The aim is to minimize J k over Kk numerically using the finite element method.
Given a space discretization parameter ∆x > 0, the domain Ω is approximated by a tri-

angular mesh giving a numerical domain Ω̃. We first distribute equispaced nodes of distance
approximately ∆x on ΓD and ΓC and then we generate the interior nodes by applying the
Poisson disk sampling algorithm due to [4] with parameter r = 2

3
∆x. The triangular mesh

is then given by the Delaunay triangulation [25] on the constructed nodes.

��������������
	�
�����������
�����
��������

Figure 4.1: Sketch of a numerical domain Ω̃
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We approximate the minimizer of J k by a continuous function on Ω̃ that is linear on
each element of the mesh. We denote the space of such functions V . Let N ∈ N be the
number of the nodes, {xn}Nn=1 be the nodes, and ID and IC be defined

ID := {n;xn ∈ ΓD}, IC := {n;xn ∈ ΓC}. (4.11)

We define the basis functions ζn : R2 → R as the continuous functions, linear on each
element, satisfying

ζn(xm) = δnm. (4.12)

For the vector
ξ̃ = (ξ̃1,1, ξ̃1,2, · · · , ξ̃1,N , ξ̃2,1, · · · , ξ̃2,N) ∈ R2N ,

we define the operator P : R2N → V as

P (ξ̃)(x) :=

(
N∑

n=1

ξ̃1,nζn(x),
N∑

n=1

ξ̃2,nζn(x)

)
. (4.13)

We set ξ̃0, ξ̃−1 ∈ R2N as
ξ̃0d,n := ξ0d(xn), ξ̃−1

d,n := ξ−1
d (xn), (4.14)

for d = 1, 2, n = 1, 2, · · · , N . Then for any k = 1, 2, · · · ,M , we seek inductively a minimizer
ξ̃k of the discrete functional

J̃ k(ξ̃) := ρ

∫
Ω̃

∣∣∣P (ξ̃)− 2P (ξ̃k−1) + P (ξ̃k−2)
∣∣∣2

2(∆t)2
dx

+
1

2

∫
Ω̃

(
1

2
σ[P (ξ̃)] + σ[P (ξ̃k−2)]

)
: ϵ[P (ξ̃)] dx

− ρ

∫
Ω̃

f
(
(k − 1)∆t, ·, P (ξ̃k−1), (P (ξ̃k−1)− P (ξ̃k−2))/∆t

)
· P (ξ̃) dx,

(4.15)

over the admissible set

K̃k :=
{
ξ̃ ∈ R2N ; ξ̃1,n = ξ̃2,n = 0 for n ∈ ID, (xn + (ξ̃1,n, ξ̃2,n)) ·

(
RT (θk)e2

)
≥ gk for n ∈ IC

}
.

(4.16)

For fixed k ≥ 1, we approximate the minimizer of the functional J̃ k in the admissible
set K̃k using a variant of the nonlinear conjugate gradient method with a projection given
by the following steps (ε > 0 is a given stopping tolerance):

(1) initial guess ξ̃0 ∈ K̃k (for example, ξ̃0 = ProjK̃k(ξ̃k−1))

(2) g1 = −∇J̃ k(ξ̃0)

(3) p1 = T k
ξ̃0
(g1)

(4) e = ∥p1∥; if e ≤ ε then set ξ̃k = ξ̃0 and proceed to next time step k + 1
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(5) For m = 1, 2, . . .:

(i) αm = argminα>0J̃ k(ξ̃m−1 + αpm) (Exact solution as the function is quadratic.)

(ii) ξ̃m = ProjK̃k(ξ̃m−1 + αmpm)

(iii) gm+1 = −∇J̃ k(ξ̃m)

(iv) βm = max
{
0, (gm+1−gm)·gm+1

∥gm∥2

}
(v) pm+1 = T k

ξ̃m
(gm+1 + βmpm)

(vi) e = ∥T k
ξ̃m
(gm+1)∥; if e ≤ ε then set ξ̃k = ξ̃m and proceed to next time step k + 1

where(
ProjK̃k(ξ̃)

)
(n,n+N)

:=

 (ξ̃1,n, ξ̃2,n)−min
{
0, gk − (xn + (ξ̃1,n, ξ̃2,n)) · (RT (θk)e2)

}
(RT (θk)e2) if n ∈ IC ,

(ξ̃1,n, ξ̃2,n) otherwise

for any ξ̃ ∈ R2N and

(
T k
ξ̃
(p)
)
(n,n+N)

:=


(p1,n, p2,n)−min

{
0, (p1,n, p2,n) · (RT (θk)e2)

}
(RT (θk)e2)

if n ∈ IC , (xn + (ξ̃1,n, ξ̃2,n)) · (RT (θk)e2) ≤ gk,

(p1,n, p2,n) otherwise,

for any p ∈ R2N . The operator ProjK̃k is the orthogonal projection onto the set K̃k. The
operator T k

ξ̃
(p) restricts the search direction (p)(n,n+N) for n ∈ IC so as not to jump over

the obstacle gk.
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Figure 4.2: Sketch of the operator ProjK̃k and T k
ξ̃
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Chapter 5

Numerical results

In this section we present numerical results based on the method proposed in Chapter 4. We
choose the domain Ω as the annulus

Ω := {x ∈ R2; rD < |x| < rC}, ΓD := {x ∈ R2; |x| = rD}, ΓC := {x ∈ R2; |x| = rC},

where rD = 0.25 and rC = 0.5. We further set the initial data as ξ0 = 0 and η0 = 0. The
Lamé constants are given by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

where E and ν are Young’s modulus and Poisson’s ratio, respectively. We set ∆x as the
mesh size. Table 5.1 shows the reference values of the involved parameters.

E ν ρ ω ∆x

0.1 0.49 1 π/10 0.0125

Table 5.1: Reference values for the parameters involved in the simulations.

We simulate two cases. In the first case we remove the obstacle, and study the sensitivity
of the roller’s dynamics with respect to the parameters. In particular, we are interested in
the vibrations in the radial and tangential displacements, because the understanding of these
vibrations might help in removing the squeaking sound of printer rollers. As feedback on
these simulations, we add a vibration to the given rotation θ(t) to investigate the occurrence
of resonance.

In the second case we add the obstacle. We are interested in the shape of the deformed
domain and the size of the stress tensor σ[ξ] as a function on the deformed domain, especially
in the region close to the contact zone.
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5.1 The case without an obstacle

We set g small enough to remove any effect from the obstacle. We are interested in the average
radial displacement R and the average tangential displacement α of the roller defined by

R(t) =
1

|ΓC |

∫
ΓC

ξ(x, t) · x
|x|

ds, (5.1)

α(t) =
1

|ΓC |

∫
ΓC

ξ(x, t) · x⊥

|x|
ds. (5.2)

We set the parameter values as in Table 5.1 unless mentioned otherwise.
In the first set of simulations, we consider the four values ∆x = ∆xi := 2i−1∆x̃ for

i = 1, 2, · · · , 4, ∆x̃ := 0.0125 and set the corresponding time step size as ∆t = ∆x. We
consider a linear time-dependence for the rotation angle given by

θ(t) = ωt. (5.3)

Figures 5.1 and 5.2 show the corresponding graphs of R(t) and α(t), which resemble waves.
These should correspond to the vibration modes in the radial and tangential directions, see
[2]. We can estimate the periods of the first modes by assuming that the roller can be
approximated by a infinite strip of thickness d = rC − rD of an elastic material whose one
side is fixed (boundary ΓD) and the other is free to move (boundary ΓC). The first mode
then has wavelength Λ ≈ 4d. The wavelength is related to the period τ as Λ = cτ , where c
is the speed of sound. Elastic material has primary (pressure) and secondary (shear) waves
with speeds

cp =

√
λ+ 2µ

ρ
, cs =

√
µ

ρ
, (5.4)

which yields for our parameters

τp =
4d

cp
≈ 0.764, τs =

4d

cs
≈ 5.46.

The short period waves therefore correspond to the radial vibration mode (primary wave)
and the long period waves correspond to the tangential vibration mode (secondary wave).
The radial vibration is initiated by the centrifugal force. Once there is a motion in the radial
direction, the Coriolis effect causes the tangential vibration.

Firstly, we observe that the amplitude of the waves does not change in time. We expect
this from Theorem 1, which shows in a simplified setting that the time-discrete energy is
conserved. Secondly, we observe a phase-shift when ∆x varies. The phase-shift decreases as
∆x decreases. It is curious that the phase shift of α(t) is much higher than the phase shift
of R(t); we did not find an explanation for this effect.
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Figure 5.1: The average radial displacement R(t) (see (5.1)) as a function of time for four
values of the mesh size ∆x.
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Figure 5.2: The average tangential displacement α(t) (see (5.2)) as a function of time for
four values of the mesh size ∆x.
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In the next set of simulations, we vary Young’s modulus by E = Ei := 2i−1Ẽ (i =

1, 2, · · · , 4Ẽ := 0.05) instead. Figures 5.3 and 5.4 show the graphs of R(t) and α(t) again.
Firstly, we observe that the amplitude of the wave of R(t) is halved when E is doubled, which
is expected from the physical meaning of Young’s modulus. Secondly, the frequency of the
wave of R(t) seems to scale as the square root of E, which we expect from (5.4). Thirdly,
we observe that the amplitude of the wave of α(t) decreases when E increases. Indeed, since
the amplitude of the radial wave decreases with increasing E and the tangential vibration is
caused by the Coriolis effect whose magnitude depends on the radial velocity, as discussed
above, this is the expected behavior. Finally, the frequency of the wave of α(t) seems to
scale as the square root of E, which we expect from (5.4).
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Figure 5.3: The graph of R(t) for three values of Young’s modulus E.
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Figure 5.4: The graph of α(t) for three values of Young’s modulus E.
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In the case that Young’s modulus is smaller, Figure 5.5 and 5.6 show that the value of R
and α do not come back to the zero in time. Moreover, Figure 5.7 and 5.8 show that similar
results are obtained when the thickness d = rC − rD is double.

��

����

����

����

����

����

�� ��� ���

�

t

E1 E4

��

�����

�� ���

Figure 5.5: The graph of R(t) for two values of Young’s modulus E.
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Figure 5.6: The graph of α(t) for two values of Young’s modulus E.
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Figure 5.7: The graph of R(t) for two values of the radius rC .
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Figure 5.8: The graph of α(t) for three values of the radius rC .
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Figure 5.9: Reference domain/The red vectors display ξ. Young’s modulus E = E4.

In the final simulation for the roller without obstacle, we try to enforce resonance by
perturbing the rotation angle by a wave, i.e., we set

θ(t) = ωt+ a cos(bt). (5.5)

Based on Figure 5.4, the period of α is 9.75 approximately when E = E2. We set b = 2π/9.75
for the frequency of the perturbation in Figure 5.10. We choose a = 0.001 for the amplitude
to ensure that the perturbation only amounts to a small contribution to θ̇(t). Figure 5.10
shows the resulting graph of α(t). Even though the perturbation is small, we observe a
significant increase in the amplitude of α(t) over time. Such resonance effect can be the key
for understanding the squeaking sound of rollers.
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Figure 5.10: The graph of α(t) for the perturbed rotation given by (5.5). The graph in
Figure 5.2 is repeated here for reference.
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Figure 5.11: The graph of α(t) for the perturbed rotation given by (5.5). The graph in
Figure 5.2 is repeated here for reference. We set b = 7.25.

5.2 The case with an obstacle

We set the height of the obstacle g as

g(t) = min

{
0.005t,

rC − rD
10

}
− rC . (5.6)

With the choice, at t = 0, the contact zone between the obstacle and the deformed configu-
ration consists of a single point. Then, the obstacle compresses the roller by moving upwards
with constant velocity until the time t at which g(t) = rC−rD

10
−rC . From this time t onwards,

g remains constant in time.
It turns out that the obstacle creates high frequency waves in the stress field in Ω. To
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suppress these waves, we add a damping term to the energy functional J k:

J k
η (ξ) := J k(ξ) + η

∫
Ω

|ξ − ξk−2|2

4∆t
dx, (5.7)

where we set η = 1. The corresponding change to (Pk) is that the first equation is replaced
by

ρξ̈ + ηξ̇ = divσ[ξ] + ρf(·, ·, ξ, ξ̇) in Ω× (0, T ). (5.8)

Figure 5.12 and 5.13 illustrate the magnitude of the stress defined by

|σ| :=
√∑

ij

σ2
ij, (5.9)

on the deformed configuration. In the simulations, we consider the two values ω = 0, π/10.
Figure 5.12 illustrates the simple compression. The shock of the contact of the obstacle
propagates symmetrically.

In Figure 5.13, we observe that the stress is initially concentrated near the boundary ΓD;
this is natural for Dirichlet boundary conditions. The shock propagates more rapidly in the
direction of the rotation. We conjecture that the complicated stress distribution at t = 5
is caused by the interaction of the radial waves (see Figures 5.1 and 5.3) with the forced
compression by the obstacle.
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Figure 5.12: Simple compression (ω = 0). Here, the magnitude of the stress (see (5.9)) is
displayed.
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Figure 5.13: The direction of rotation is counter-clockwise with the rotation speed ω = π/10.
The magnitude of the stress (see (5.9)) is displayed.
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Chapter 6

Discrete Morse flow

6.1 Construction of weak solution for a linear elasticity

problem

Let Ω ⊂ Rd be a bounded domain representing the area occupied by an elastic body. We
denote by u : Ω → Rd the displacement of the domain Ω,

We shall consider the conservation of linear momentum with the homogeneous Dirichlet
boundary condition and initial conditions u0 and v0 as follows:

ρü = divσ[u] in Ω× (0, T ) =: QT (6.1)

u = 0 on ∂Ω× [0, T ) (6.2)

u(·, 0) = u0 in Ω, (6.3)

u̇(·, 0) = v0 in Ω, (6.4)

where ρ > 0 is the density, superposed dots denote partial differentiation with respect to
time (i.e., ü := ∂2u/∂t2).

We explain the details of the discrete Morse flow on the example of the linear elasticity
equation (6.1)–(6.4). It is considered in a bounded domain Ω ⊂ Rd with smooth boundary
∂Ω. The initial data u0,v0 ∈ W 1,2

0 (Ω;Rd) are given.
We define the functional E by

E(v) :=
∫
Ω

σ[v] : ϵ[v] dx, (6.5)

for any v ∈ W 1,2(Ω;Rd). The functional E is weakly lower semi continuous in W 1,2
0 (Ω;Rd).

Indeed, for arbitrary weakly converging sequence {un}n∈N ⊂ W 1,2
0 (Ω;Rd) and the weak limit
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u ∈ W 1,2
0 (Ω;Rd), we have

0 ≤ E(un − u)

=

∫
Ω

σ[un] : ϵ[un] dx− 2

∫
Ω

σ[u] : ϵ[un] dx+

∫
Ω

σ[u] : ϵ[u] dx,

E(u) ≤
∫
Ω

σ[un] : ϵ[un] dx− 2

∫
Ω

σ[u] : ϵ[un − u] dx

=

∫
Ω

σ[un] : ϵ[un] dx− 2

∫
Ω

cijpq
∂up

∂xq

∂(un − u)i
∂xj

dx,

E(u) ≤ lim inf
n→∞

E(un).

Let M > 0 be a natural number, h = T/M be the time step. We determine u−1 :=
u0 − hv0. We define the approximate solution uk on time levels t = kh for k = 1, 2, · · · ,M ,
to be the minimizer of the following functional in W 1,2

0 (Ω;Rd):

J k(v) :=
1

2h2

∥∥v − 2uk−1 + uk−2
∥∥2
L2(Ω;Rd)

+
1

2
E(v) (6.6)

Lemma 1. There exists a minimizer of J k on W 1,2
0 (Ω;Rd).

Proof. Since J k is bounded from below, there exists {un}n∈N ⊂ W 1,2
0 (Ω;Rd) such that

J k(un) ↘ inf
v∈W 1,2

0 (Ω;Rd)
J k(v). (6.7)

We show the boundedness of {un}n∈N in W 1,2(Ω;Rd). Since there exists CP , CK > 0 such
that

∥ui∥L2(Ω) ≤ CP

∥∥∥∥∂ui

∂xj

∥∥∥∥
L2(Ω)

, (6.8)∫
Ω

∂vi
∂xj

∂vi
∂xj

dx ≤ CK

∫
Ω

ϵij[v]ϵij[v] dx, (6.9)

for any v ∈ W 1,2
0 (Ω;Rd) from the Poincaré inequality and Korn inequality, we have

∥un∥2W 1,2(Ω;Rd) ≤ (C2
P + 1)

∫
Ω

∣∣∣∣∂(un)i
∂xj

∣∣∣∣2 dx

≤ (C2
P + 1)CK

∫
Ω

ϵij[un]ϵij[un] dx

≤ (C2
P + 1)CK

2µ

∫
Ω

cijpqϵpq[un]ϵij[un] dx

=
(C2

P + 1)CK

µ
E(un)

≤ (C2
P + 1)CK

2µ
J k(un)

≤ (C2
P + 1)CK

2µ
J k(u0).
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Therefore there exists subsequence {unj
}j∈N and uk ∈ W 1,2

0 (Ω;Rd) such that

unj
⇀ uk in W 1,2(Ω;Rd) as j → ∞. (6.10)

From Rellich-Kondrashov theorem, we take subsequence {unjr
}r∈N converging to uk strongly

in L2(Ω;Rd). We rewrite the subsequence by {unj
}j∈N for simplify.

Then uk is a minimizer of J k on W 1,2
0 (Ω;Rd). Indeed, we have

inf
v∈W 1,2

0 (Ω;Rd)
J k(v) = lim inf

j→∞
J k(unj

)

= lim inf
j→∞

{
1

2h2

∥∥unj
− 2uk−1 + uk−2

∥∥2
L2(Ω;Rd)

+ E(unj
)

}
=

1

2h2

∥∥uk − 2uk−1 + uk−2
∥∥2
L2(Ω;Rd)

+ lim inf
j→∞

E(unj
)

≥ J k(uk).

As the next step, we define the approximate solutions uh and ûh interpolated in time
with the minimizers {uk}Mk=−1.

uh(x, t) = uk(x), t ∈ ((k − 1)h, kh], k = 0, · · · ,M, (6.11)

ûh(x, t) =
t− (k − 1)h

h
uk(x) +

kh− t

h
uk−1(x), t ∈ ((k − 1)h, kh], k = 0, · · · ,M. (6.12)

Since uk is a minimizer of J k on W 1,2
0 (Ω;Rd) for any w ∈ W 1,2

0 (Ω;Rd) we have

0 =
d

ds
J k(uk + sw)

∣∣∣∣
s=0

= lim
s→0

1

s

{
J k(uk + sw)− J k(uk)

}
= lim

s→0

1

2sh2

∫
Ω

(
|uk + sw − 2uk−1 + uk−2|2 − |uk − 2uk−1 + uk−2|2

)
dx

+ lim
s→0

1

2s

∫
Ω

(
σ[uk + sw] : ϵ[uk + sw]− σ[uk] : σ[uk]

)
dx

= lim
s→0

1

2h2

∫
Ω

(
2uk + sw − 4uk−1 + 2uk−2

)
·w dx

+ lim
s→0

1

2

∫
Ω

(
2σ[uk] : ϵ[w] + sσ[w] : ϵ[w]

)
dx

=

∫
Ω

uk − 2uk−1 + uk−2

h2
·w dx+

∫
Ω

σ[uk] : ϵ[w] dx (6.13)

Using (6.11) and (6.12), we rewrite

0 =

∫
Ω

1

h

{
∂ûh

∂t
(t)− ∂ûh

∂t
(t− h)

}
·w dx+

∫
Ω

σ[uh(t)] : ϵ[w] dx, (6.14)

for almost everywhere t ∈ (0, T ), for any w ∈ W 1,2
0 (Ω;Rd).
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Lemma 2. Suppose Ω is a bounded domain with smooth boundary. Let J k, k = 1, 2, · · · ,M ,
be the functionals defined by (6.6) and let uk be corresponding minimizers in W 1,2

0 (Ω;Rd).
Define functions uh and ûh by (6.11) and (6.12) and assume h ≤ 1. Then the following
estimate holds ∥∥∥∥∂ûh

i

∂t
(t)

∥∥∥∥
L2(Ω)

+

∥∥∥∥∂uh
i

∂xj

(t)

∥∥∥∥
L2(Ω)

≤ CE for a.e. t ∈ (0, T ), (6.15)

where constant CE depend on W 1,2
0 -norms of the initial data but is independent of h.

Proof. We substitute w = uk−uk−1 into (6.13). Using the inequality (a− b)a ≥ a2/2− b2/2
for a, b ∈ R, we get

0 =

∫
Ω

uk − uk−1 + uk−2

h2
· (uk − uk−1) dx+

∫
Ω

σ[uk] : ϵ[uk − uk−1] dx

≥
∫
Ω

1

h2
(uk − uk−1 − uk−1 + uk−2) · (uk − uk−1) dx+ 2µ

∫
Ω

∂uk
i

∂xj

∂(uk
i − uk−1

i )

∂xj

dx

≥ 1

2

∫
Ω

(∣∣∣∣uk − uk−1

h

∣∣∣∣2 − ∣∣∣∣uk−1 − uk−2

h

∣∣∣∣2
)

dx+ µ

∫
Ω

(∣∣∣∣∂uk
i

∂xj

∣∣∣∣2 − ∣∣∣∣∂uk−1
i

∂xj

∣∣∣∣2
)

dx.

Summing over k = 1 to ℓ ≤ M , we obtain∫
Ω

(
1

2

∣∣∣∣uℓ − uℓ−1

h

∣∣∣∣2 + µ

∣∣∣∣∂uℓ
i

∂xj

∣∣∣∣2
)

dx ≤
∫
Ω

(
1

2

∣∣∣∣u0 − u−1

h

∣∣∣∣2 + µ

∣∣∣∣∂u0
i

∂xj

∣∣∣∣2
)

dx (6.16)

Therefore we get

1

2

∥∥∥∥∂ûh
i

∂t
(t)

∥∥∥∥2
L2(Ω)

+µ

∥∥∥∥∂uh
i

∂xj

(t)

∥∥∥∥2
L2(Ω)

≤ 1

2

∥∥v0i ∥∥2L2(Ω)
+µ

∥∥∥∥∂u0
i

∂xj

∥∥∥∥2
L2(Ω)

for a.e. t ∈ (0, T ). (6.17)

Lemma 3. Let uh and uh be defined by (6.11) and (6.12). Then the following relations hold.

∥∥uh
i (t)− ûh

i (t)
∥∥
L2(Ω)

≤ h

∥∥∥∥∂ûh
i

∂t
(t)

∥∥∥∥
L2(Ω)

for a.e. t ∈ (0, T ), (6.18)∥∥∥∥∂ûh
i

∂xj

∥∥∥∥2
L2(QT )

≤
∥∥∥∥∂uh

i

∂xj

∥∥∥∥2
L2(QT )

+
h

2

∥∥∥∥∂u0
i

∂xj

∥∥∥∥2
L2(Ω)

(6.19)
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Proof. We have∥∥∥∥∂ûh
i

∂xj

∥∥∥∥2
L2(QT )

−
∥∥∥∥∂uh

i

∂xj

∥∥∥∥2
L2(QT )

=

∫ T

0

∫
Ω

{(
∂ûh

i

∂xj

)2

−
(
∂uh

i

∂xj

)2
}

dxdt

=
M∑
k=1

∫ kh

(k−1)h

∫
Ω

{(
t− (k − 1)h

h

∂uk
i

∂xj

+
kh− t

h

∂uk−1
i

∂xj

)2

+

(
∂uk

i

∂xj

)2
}

dxdt

=
M∑
k=1

∫ kh

(k−1)h

∫
Ω

{
(t− (k − 1)h)2 − h2

h2

(
∂uk

i

∂xj

)2

+2
(t− (k − 1)h)(kh− t)

h2

∂uk
i

∂xj

∂uk−1
i

∂xj

+
(kh− t)2

h2

(
∂uk−1

i

∂xj

)2
}

dxdt

=
M∑
k=1

∫
Ω

{
−2h

3

(
∂uk

i

∂xj

)2

+
h

3

∂uk
i

∂xj

∂uk−1
i

∂xj

+
h

3

(
∂uk−1

i

∂xj

)2
}

dx

≤ h

6

M∑
k=1

∫
Ω

{
−4

(
∂uk

i

∂xj

)2

+

(
∂uk

i

∂xj

)2

+

(
∂uk−1

i

∂xj

)2

+ 2

(
∂uk−1

i

∂xj

)2
}

dx

=
h

2

M∑
k=1

∫
Ω

{
−
(
∂uk

i

∂xj

)2

+

(
∂uk−1

i

∂xj

)2
}

dx

=
h

2

∫
Ω

{
−
(
∂uM

i

∂xj

)2

+

(
∂u0

i

∂xj

)2
}

dx

≤ h

2

∥∥∥∥∂u0
i

∂xj

∥∥∥∥2
L2(Ω)

.

Let t ∈ ((k − 1)h, kh). Then we obtain

∥∥uh
i (t)− ûh

i (t)
∥∥2
L2(Ω)

=

∫
Ω

(
uk
i −

t− (k − 1)h

h
uk
i −

kh− t

h
uk−1
i

)2

dx

=

∫
Ω

(
kh− t

h

)2 (
uk
i − uk−1

i

)2
dx

≤
∫
Ω

(
uk
i − uk−1

i

)2
dx

= h2

∫
Ω

(
∂ûh

i

∂t
(t)

)2

dx.

Theorem 5. Suppose Ω is a bounded domain with smooth boundary. Then a limit function
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u belongs to W 1,2(QT ;Rd) and satisfies∫ T

0

∫
Ω

(
−∂u

∂t
· ∂w
∂t

+ σ[u] : ϵ[w]

)
dx dt−

∫
Ω

v0 ·w(0,x) dx = 0 (6.20)

for all w ∈ C∞
0 ([0, T )× Ω;Rd). We call u a weak solution.

Proof. Using (6.15), we can apply the theorem by Eberlein and Shmulyan to construct a

subsequence {∂u
hℓ
i

∂xj
}ℓ∈N converging weakly in L2(QT ) to a function vij. From the sequence

{hℓ}ℓ∈N, we construct another subsequence {hℓr}r∈N such that {∂û
hℓr
i

∂t
}r∈N converges weakly

in L2(QT ) to a function Ui. We omit this lengthy explanation and subscripts and simply
write

∂uh
i

∂xj

⇀ vij in L2(QT ), (6.21)

∂ûh
i

∂t
⇀ Ui in L2(QT ). (6.22)

From Poincaré’s inequality we know that there is a constant CP so that∥∥ûh
i

∥∥
L2(QT )

≤ CP

∥∥∥∥∂ûh
i

∂xj

∥∥∥∥
L2(QT )

. (6.23)

Now, (6.15), (6.18) and (6.23) imply that ûh
i is uniformly bounded in W 1,2(QT ). There-

fore, there is a weakly convergent subsequence in W 1,2(QT ) and, by Rellich theorem, a
strongly converging subsequence in L2(QT ). Let us denote the cluster function as ui:

ûh
i ⇀ ui in W 1,2(QT ). (6.24)

Because of (6.22), Ui =
∂ui

∂t
holds almost everywhere. Moreover, from (6.21), for any w ∈

C∞
0 (QT )∫ T

0

∫
Ω

(
∂uh

i

∂xj

− ∂ûh
i

∂xj

)
w dxdt →

∫ T

0

∫
Ω

(
vij −

∂ui

∂xj

)
w dxdt as h → 0+, (6.25)

while at the same time∫ T

0

∫
Ω

(
∂uh

i

∂xj

− ∂ûh
i

∂xj

)
w dxdt = −

∫ T

0

∫
Ω

(
uh
i − ûh

i

) ∂w

∂xj

dxdt → 0 as h → 0+, (6.26)

by (6.19). This means that vij =
∂ui

∂xj
almost everywhere in QT .

We have shown in this way that there is a function ui ∈ W 1,2(QT ), such that

∂uh
i

∂xj

⇀
∂ui

∂xj

in L2(QT ) (6.27)

∂ûh
i

∂t
⇀

∂ui

∂t
in L2(QT ). (6.28)
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The relation (6.13) holds also when multiplied by any function w̃ ∈ C([0, T ]). Hence,
integrating over the time interval (0, T ) and using a standard density argument, we arrive
at ∫ T

0

∫
Ω

{
1

h

(
∂ûh

∂t
(t)− ∂ûh

∂t
(t− h)

)
·w + σ[uh] : ϵ[w]

}
dx = 0 (6.29)

for all w ∈ L2(0, T ;W 1,2
0 (Ω;Rd)). Now, we can pass to limit in (6.29) as h → 0+. We shall,

for the time being, consider a test function w belonging to C∞
0 ([0, T )× Ω). To begin with,

we have ∫ T

0

∫
Ω

σ[uh] : ϵ[w] dxdt =

∫ T

0

∫
Ω

cijpq
∂uh

p

∂xq

∂wi

∂xj

dxdt

→
∫ T

0

∫
Ω

cijpq
∂up

∂xq

∂wi

∂xj

dxdt as h → 0

=

∫ T

0

∫
Ω

σ[u] : ϵ[w] dxdt.

Moreover, we have∫ T

0

∫
Ω

1

h

{
∂ûh

∂t
(t)− ∂ûh

∂t
(t− h)

}
·w(t) dxdt

=

∫ T

0

∫
Ω

1

h

∂ûh

∂t
(t) ·w(t) dxdt−

∫ T−h

−h

∫
Ω

1

h

∂ûh

∂t
(t) ·w(t+ h) dxdt

= −
∫ T

0

∫
Ω

∂ûh

∂t
(t) · w(t+ h)−w(t)

h
dxdt−

∫ 0

−h

∫
Ω

1

h

∂ûh

∂t
(t) ·w(t+ h) dxdt

+

∫ T

T−h

∫
Ω

1

h

∂ûh

∂t
(t) ·w(t+ h) dxdt (6.30)

For the first therm of (6.30), we have

−
∫ T

0

∫
Ω

∂ûh

∂t
(t) · w(t+ h)−w(t)

h
dxdt → −

∫ T

0

∫
Ω

∂u

∂t
· ∂w
∂t

dxdt as h → 0 + .

For the second term of (6.30), since ∂ûh

∂t
(t) = (u0 − u−1)/h = v0 for t ∈ (−h, 0) we have

−
∫ 0

−h

∫
Ω

1

h

∂ûh

∂t
(t) ·w(t+ h) dxdt → −

∫
Ω

v0 ·w(x, 0) dx as h → 0 + .

For the third term of (6.30), since w(t+ h) = 0 for t ∈ (T − h, T ) we obtain∫ T

T−h

∫
Ω

1

h

∂ûh

∂t
(t) ·w(t+ h) dxdt → 0 as h → 0 + .

Thus, we can finally state (6.20).
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Chapter 7

Conclusion

In the thesis we attempt to study a dynamical rolling contact problem based on a varia-
tional method, starting from the derivation of suitable model equations, developing numerical
scheme and obtaining numerical results.

Decomposing deformation into rotation and small displacement, we described dynamical
rolling contact problem as a linear elasticity problem with outer force coming from rotation.
We were not able to proof the existence of weak solutions of the problem. We proved the
existence of minimizers for the time-discrete minimization problem by the general theory.
We proposed the numerical scheme which preserves the discretized total energy and a variant
of nonlinear conjugate gradient method which is possible to treat constraint. The proposed
time discrete scheme haves O(∆t2)–accuracy for the acceleration part, but the oder of the
approximation of the outer force is O(∆t). We need further consideration. Based on these
numerical results, the proposed method shows promise to help with the understanding of
the source of the squeaking sound in a scanner’s roller.

The investigation of dynamical contact problem is not closed. To achieve the goal that
analyze the squeaking sound, it is necessary to further improve the model. We consider
the resonance coming from the interactions of contact between rubber roller and paper is
important. For example, friction and adhesion force are candidate as such interactions. An
implementation that includes the stick-slip friction force at the contact is under development.
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[9] I.Hlaváček, J.Haslinger, J.Nečas, J.Lov́ı̌sek, Solution of Variational Inequalities in Me-
chanics, Springer, New York (1988)

[10] G.Hu, P.Wriggers, On the adaptive finite element method of steady-state rolling contact
for hyperelasticity in finite deformations, Comput. Methods Appl. Mech. Engrg. 191
(2002), 1333–1348.

[11] H.Imai, K.Kikuchi, K.Nakane, S.Omata, T.Tachikawa, A numerical approach to the
asymptotic behavior of solutions of a one-dimensional hyperbolic free boundary problem,
JJIAM 18 (1), 2001, pp. 43-58.
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