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Abstract 

The loss of killer cell immunoglobulin-like receptor-ligands (KIR-Ls) due to the copy number 

neutral loss of heterozygosity of chromosome 6p (6pLOH) in leukocytes of patients with 

acquired aplastic anemia (AA) may alter the susceptibility of the affected leukocytes to NK cell 

killing in vivo. We studied 408 AA patients, including 261 who were heterozygous for KIR-Ls, 

namely C1/C2 or Bw6/Bw4, for the presence of KIR-L-missing (KIR-L[-]) leukocytes. KIR-L(-) 

leukocytes were found in 14 (5.4%, C1, n= 4, C2, n=3, and Bw4, n= 7) of the 261 patients, in 

whom corresponding KIR(+) licensed NK cells were detected. The incidence of 6pLOH in the 

261 patients (18.0%) was comparable to that in 147 patients (13.6%) who were homozygous for 

KIR-L genes. The percentages of HLA-lacking granulocytes (0.8-50.3%, median 15.2%) in the 

total granulocytes of the patients with KIR-L(-) cells were significantly lower than those (1.2-

99.4%, median 55.4%) in patients without KIR-L(-) cells. KIR2DS1 and KIR3DS1 were only 

possessed by three of the 14 patients, two of whom had C2/C2 leukocytes after losing C1 alleles. 

The expression of the KIR3DS1 ligand HLA-F was selectively lost on KIR-L(-) primitive 

hematopoietic stem cells (HSCs) derived from 6pLOH(+) iPS cells in one of the KIR3DS1(+) 

patients. These findings suggest that human NK cells are able to suppress the expansion of KIR-

L(-) leukocytes but are unable to eliminate them partly due to the lack of activating KIRs on NK 

cells and the low HLA-F expression level on HSCs in AA patients.  
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Introduction 

All normal blood leukocytes, including hematopoietic stem cells (HSCs), express killer cell 

immunoglobulin-like receptor (KIR) ligands (KIR-Ls) to protect themselves from autologous 

NK cell attacks, and malignant cells that lack KIR-Ls elicit NK cell-mediated killing of 

themselves (1). The engagement of inhibitory receptors by self MHC class I molecule leads to 

the transmission of an inhibitory signal to switch off the functions of NK cells. In contrast, target 

cells with the downregulation of major histocompatibility antigen molecules due to viral 

infection or malignant transformation are recognized and attacked by NK cells. There are four 

situations in predicting NK-cell activities that have been proposed based on the difference in the 

definition of KIR mismatches: the KIR-ligand missing model (2, 3), receptor-ligand mismatch 

model (4), missing-ligand model (3) and the presence of activating KIR model (5). The missing-

self mechanism and the presence of activating KIR are believed to play essential roles in the 

elimination of malignant cells in the setting of allogeneic hematopoietic stem cell transplantation 

(5, 6). However, whether or not the killing of KIR-L-missing (KIR-L[-]) tumor cells by 

autologous NK cells occurs in vivo still remains unclear due to the lack of appropriate human 

models. The heterogeneity of tumor cells in terms of their proliferative capacity and the 

expression of various accessory molecules—other than KIR-Ls—that are involved in the NK cell 

attacks makes it challenging to understand the interaction between NK cells and KIR-L(-) tumor 

cells.  

The lack of class I HLAs occurs not only in malignant cells but also in normal leukocytes of 

some patients with acquired aplastic anemia (AA). These HLA-lacking leukocytes, which are 

detectable in approximately 30% of patients with AA, are derived from HSCs that undergo copy 

number neutral loss of heterozygosity of the short arm of chromosome 6 (6pLOH) or loss-of-
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function mutations of HLA class I genes, and thereby escape the cytotoxic T-lymphocyte (CTL) 

attack against HSCs (7, 8). Since the HLA haplotypes lost due to 6pLOH usually contain HLA-B 

and -C alleles, 6pLOH(+) HSCs and their progenies that lose KIR-Ls may suffer a change in 

susceptibility to NK cell-mediated cell killing. Unlike malignant cells, HLA-lacking leukocytes 

are essentially the same as their wild-type (WT) counterparts, except for their HLA expression. 

Therefore, studying 6pLOH(+) AA patients with KIR-L(-) leukocytes is expected to be useful for 

clarifying the interaction between NK cells and KIR-L(-) target cells in vivo.  

To address this issue, we studied a large number of AA patients in remission for the presence 

of KIR-L(-) leukocytes as a result of 6pLOH and determined the influence of the KIR-L-missing 

status on the emergence and expansion of 6pLOH(+) leukocytes. This study revealed a 

paradoxical coexistence of KIR-L(-) leukocytes with licensed NK cells in vivo and provided 

evidence that the lack of activating NK receptors on NK cells and/or their ligands on target 

hematopoietic cells may contribute to the persistence of KIR-L(-) cells in AA patients.   
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Materials and methods 

Patients  

A total of 408 AA patients were enrolled in this study to determine the prevalence of HLA class I 

allele-lacking leukocytes, which was determined using GeneChip 500 K arrays (Affymetrix, 

Japan) and droplet digital polymerase chain reaction (PCR) using a QX200 AutoDG Droplet 

Digital PCR System (Bio-Rad, Hercules, CA, USA), and flow cytometry (FCM), as previously 

described (7-9). Table 1 shows the patients’ characteristics. The male to female ratio was 

210/198, and the median age was 54 years (range: 2-86 years). The diagnosis and severity of AA 

were determined according to the standard criteria (10). This study protocol was approved by the 

ethics committee of the Graduate school of Medical Science, Kanazawa University, and all 

patients provided their informed consent, in accordance with the Declaration of Helsinki, prior to 

their participation.  

 

Determination of 6pLOH in peripheral blood leukocytes 

The presence of 6pLOH(+) leukocytes and their percentages of total leukocytes were determined 

using either SNP arrays (7) or ddPCR using a QX200 AutoDG Droplet Digital PCR System 

(Bio-Rad, Hercules, USA) by comparing the copy number of each HLA allele in individuals 

heterozygous for the HLA allele. 6pLOH that involves HLA genes gives rise to a copy number 

imbalance between the two different alleles. The reaction mixtures were previously described in 

detail (9). The percentages of 6pLOH(+) leukocytes were calculated using the following 

equation:            

    % 6𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(+) =  (|𝐴𝐴−𝐵𝐵|)
𝐴𝐴+𝐵𝐵

× 100 

where A and B represent the absolute copy number of two alleles estimated by the Poisson 
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statistic. The HLA alleles in each mixture (probes and primers) are shown in Supplemental 

Table 1.  

 

Determination of the HLA class I allele expression by peripheral blood leukocytes  

AA patients who were heterozygous for HLA-A alleles or for HLA-Bw6 and HLA-Bw4 were 

assessed for the presence of HLA(-) leukocytes using FCM, as previously described in detail (7-

9). Four lineages of peripheral blood (PB) cells, including granulocytes, monocytes, T cells, and 

B cells were subjected to the analysis. PB samples after erythrocyte lysis were suspended in 

phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) and stained with 

anti-HLA-A allele-specific monoclonal antibodies (mAbs), and lineage marker mAbs specific for 

CD33, CD3, and CD19. The mAbs used for this study are provided in a previous report (7, 8). In 

summary, antibodies specific to HLA-A9/24 (FH0964; One Lambda), A2/28 (FH0037; One 

Lambda), A25/26 (BIH0048; One Lambda), A30/31 (BIH0087; One Lambda), A11 (BIH0084; 

One Lambda), Bw6-PE (130-099-835; Miltenyi), Bw6-FITC (FH0038; One Lambda), Bw4-PE 

(130-103-917; Miltenyi), and Bw4-FITC (FH0007; One Lambda) were used. Two non-classical 

HLA class I antigens were also examined using anti-HLA-E-PE (cat no.342603, clone 3D12; 

Biolegend) and anti-HLA-F-PE/APC, cat no. 373203/373207, clone 3D11; Biolegend).  

 

Determination of the expression of NK-cell receptor ligands by hematopoietic stem cells 

(HSCs) and hematopoietic stem progenitor cells (HSPCs) 

HSCs and hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) from AA 

and healthy volunteers, and umbilical cord blood (UCB) were identified according to the 

previous reports (11, 12). Six different populations were examined for the expression of HLA-F: 
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HSCs, multipotent progenitors (MPPs), multilymphoid progenitors (MLPs), common myeloid 

progenitor (CMPs), granulocyte-monocyte progenitor (GMPs) and megakaryocyte-erythroid 

progenitors (MEPs). The expression levels of HLA-F on HSCs and HSPCs were determined 

using mAbs specific to anti-human lineages cocktail-APC (cat no.348803; Biolegend), anti-

CD34-APC/Cy7 (cat no.343514; Biolegend), anti-CD38-PE/Cy7 (cat no.560677; Biolegend), 

anti-CD45RA-Pacific Blue (cat no.562885; Biolegend), anti-CD90-FITC (cat no.328108; 

Biolegend), anti-CD123-PerCP-Cy5.5 (cat no.45-1239-42; Invitrogen) and anti-CD49f-BV510 

(cat no.563271; BD Horizon). The expression levels of all surface proteins were analyzed using a 

FACSCanto II® instrument (BD Biosciences) with the Flowjo 10.0 software program.  

 

Differentiation of HSPCs from induced pluripotent stem cells (iPSCs) 

Induced pluripotent stem cell (iPSC) clones with different phenotypes from Cases 1 and 8 were 

cultured and differentiated into HSPCs using the previously described method (13, 14). The HLA 

expression of each clone in Case 1 was as follows: the WT clone (A02:01/A24:02, 

B35:01/B40:02, C08:01/C03:04), the B*40:02mut (B61-) clone (A02:01/A24:02, B35:01/─, 

C08:01/C03:04), and the 6pLOH clone (A02:01/A02:01, B35:01/B35:01, C08:01/C08:01) (14). 

The HLA alleles of each clone in Case 8 were as follows: WT clone (A24:02/A01:01, 

B54:01/B37:01, C01:02/C06:02), B*54:01mut (B54-) clone (A24:02/A01:01, ─ /B37:01, 

C01:02/C06:02), and 6pLOH clone (A01:01/A01:01, B37:01/B37:01, C06:02/C06:02) (13). The 

iPSCs from Case 1 and 8 were differentiated to HSPCs as described previously and collected 

after 21 days. The CD34+ cells were purified using a CD34 MicroBead Kit (cat no.130-046-702; 

Miltenyi Biotec) and stained with the specific lineage markers described above.  
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HLA haplotypes and KIR genotyping 

HLA haplotypes of 6pLOH(+) patients were determined by either an SNP analysis or estimation 

by taking advantage of common allelic combinations in the general Japanese population. HLA-C 

alleles were classified to the C1 or C2 ligand category based on the dimorphism (asparagine or 

lysine) at position 80 of the alpha-1 domain of the alpha helix (15, 16). HLA-B alleles were 

assigned as either Bw4 or Bw6, based on the amino acid positions spanning 77-83. HLA-A23, -

A24, and -A32 were defined as belonging to the HLA-Bw4 group of serological epitopes.  

Genomic DNA was extracted from 5 ml of EDTA anticoagulated PB samples with a 

Qiagen kit, according to the manufacturer’s instructions and was stored at –20°C before use. 

Genomic DNA of patients and the healthy group were genotyped for the 16 KIR genes 

(KIR2DP1, KIR3DP1, KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5, KIR3DL1, 

KIR3DL2, KIR3DL3, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, and KIR3DS1) by 

PCR with sequence-specific primers (SSP)-PCR, as previous described (17, 18). Samples from 

35 healthy individuals were subjected to the same KIR genotyping as well. 

 

Definition of KIR and KIR-ligand mismatch, activation and inhibitory receptors of NK cells, 

KIR haplotypes assignment and KIR ligand combination 

KIR and KIR-ligand missing-self were defined according to Ruggeri et al. (4), considering that 

the missing-self model requires the presence of the corresponding KIR to be detected. For 

example, a KIR2DL1-ligand missing self involves the presence of the KIR2DL1 gene and the 

absence of an HLA-C group 2 allele (C2+) in the target cells. 

Activating KIRs are encoded by KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, and 

KIR3DS1, whereas inhibitory KIRs are encoded by KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL5, 
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KIR3DL1, KIR3DL2, and KIR3DL3. It has been reported that KIR2DL4 can exert both activating 

and inhibitory functions (19).  

On the basis of gene content, KIRs are classified into group A and B haplotypes. Both 

groups A and B haplotypes are conserved with four framework genes (KIR3DL3, KIR3DP1, 

KIR2DL4, and KIR3DL2). The KIR B haplotype was assigned if one or more KIR B defining 

loci (activate KIR) were present: KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5, KIR3DS1, and the 

genes encoding inhibitory KIRs, KIR2DL5, and KIR2DL2. Group A haplotype consists of the 

four framework genes and KIR2DL3, KIR2DP1, KIR2DL1, KIR3DL1, and KIR2DS4. Due to 

difference in the gene contents and alleles, patients homozygous for KIR A haplotypes (KIR 

genotype AA) could be distinguished from patients heterozygous for KIR B haplotypes (KIR 

genotypes AB or BB, referred together as KIR genotype Bx) (15, 20). 

Genotyping of NKG2D 

NKG2D gene polymorphisms were genotyped using TaqMan-Allelic discrimination with a 

StepOne Plus Real-Time PCR system (Applied Biosystems, Foster City, CA, USA), as 

previously described (21, 22). We referred to the CC genotype as LNK/LNK, and the GC and 

GG genotypes as HNK/LNK and HNK/HNK, respectively. 

 

NK cell phenotyping 

Fresh PB or frozen peripheral blood mononuclear cell (PBMC) samples were stained and gated 

with mAbs as previously described (23-28). The cells were stained with the live and dead 

antibody (eBioscience™ Fixable Viability Dye eFluor™ 506, cat no. 65-0866-14, Thermo 

Fisher), anti-CD3-PerCP-Cy5.5 (cat no.340949; BD Biosciences), anti-CD56-APC/PE (cat 

no.555518/55516; BD Pharmingen), anti-CD158a-APC (KIR2DL1) (cat no.FAB1844A, clone 



11 
 

143211; R&D System), anti-CD158a/h-FITC (KIR2DL1/DS1) (cat no.130-119-150, clone 

11PB6; Miltenyi Biotec), anti-CD158b-PE-Cy7 (KIR2DL2/2DL3/2DS2) (cat no.312609, clone 

DX27; Biolegend), anti-CD158e1-FITC (KIR3DL1) (cat no.555966, clone DX9, BD 

Pharmingen), and anti-CD158e1/e2-APC (KIR3DL1/3DS1) (cat no.A60795, clone Z27, 

Beckman Coulter). The cells were analyzed by FCM using a FACSCanto II® instrument (BD 

Biosciences) with the Flowjo 10.0 software program. 

 

NK-cell degranulation and cytotoxicity assays 

Fresh PBMCs from healthy donors who had the same KIR-haplotype as Case 1 and 8 were  

collected and subjected to an NK-cell degranulation assay and cytotoxicity assay using WT and 

6pLOH(+) iPSC-HSPCs from Case 1 and 8 as targets, respectively. NK cells were isolated using 

a Dynabeads® Untouched™ Human NK Cells kit (cat no. 11349D; Invitrogen) and then co-

cultured with target cells at a 5:1 ratio. The NK cells were stained with 7-AAD (cat no. 51-6981E; 

BD Bioscience), anti-CD3-PerCP-CyTM5.5 (cat no. 340949; BD Bioscience), anti-CD56-PE, and 

anti-CD107a-FITC (cat no. 328605, clone H4A3; Biolegend) after 2 h for a CD107a degranulation 

assay (29-31). 

The target cells were collected after 6 h of co-culture with the NK cells to assess the cytotoxic 

activity. Target iPSC-HSCs were labeled with CFSE (CellTrace™ CFSE Cell Proliferation Kit, cat 

no. C34554; Thermo Fisher Scientific) and stained with 7-AAD after the co-culture. The K562 

cell line phorbol-12-Myristate-13-acetate (PMA) and Ca2+ Ionophore were used as stimulants for 

positive controls. The assay was considered valid if the following control conditions were met: 1) 

only effector cells (NK cells; negative control for the target cell death) were negative for CFSE 

signals and the percentage of dead cells was <5%; 2) only target cells suffered <15% target cell 
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death; 3) the Tween-mediated killing of target cells (positive control for target cell death) killed 

>85% of cells. NK cells + target cells + PMA + Ca2+ ionophore condition served as a positive 

control for NK-cell cytotoxicity (29). Every assay was repeated three times. The assays were 

analyzed by FCM using a FACSCanto II® instrument (BD Biosciences) with the Flowjo 10.0 

software program.  

 

Statistical analysis 

Categorical variables were analyzed using Fisher’s exact test. The t-test was used for the 

comparison of non-paired variables. All statistical analyses were performed using the Stata 12.0 

software program. Graphs were generated using GraphPad PRISM 7.0 (GraphPad Software Inc, 

CA, USA). P values of <0.05 (two-sided) were considered to indicate statistical significance. 
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Results 

Persistence of KIR-L(-) leukocytes in patients with AA 

Among 408 patients studied for the presence of 6pLOH(+) leukocytes, 261 patients were 

heterozygous for KIR-Ls, namely C1/C2 or Bw4/Bw6, while the other 147 were homozygous for 

KIR-L alleles. 6pLOH(+) leukocytes were detected in 47 (18.0%) of the 261 patients who were 

heterozygous for KIR-Ls. The incidence of 6pLOH(+) leukocytes was comparable to that 

detected in the other 147 patients (13.6%, 20 patients) who were homozygous for KIR-Ls 

(p=0.27), suggesting that the elimination of KIR-L(-) leukocytes by autologous NK cells is 

unlikely to occur in AA patients. 

A KIR-L missing status due to 6pLOH, which involved both HLA-C and-B alleles, was 

found to occur in the leukocytes of 14 (5.4%) of the 261 patients, based on the results of the SNP 

array and droplet digital PCR (Fig. 1A, B); this affected all PB leukocyte lineages (Fig. 1C). The 

HLA-A24 lacking status in Case 1’ leukocytes was thought to have occurred as a collateral result 

of 6pLOH, in order to delete HLA-B*40:02 (9), an HLA class I allele that is most closely 

involved in the antigen presentation of AA to T cells, in the A*24:02-B*40:02-C*03:04 

haplotype. The lost KIR-L genes were C1 (n=4, Cases 6, 8, 9 and 14), C2 (n=3, Cases 7, 10, and 

11), and Bw4 (n=7, Cases1, 2, 3, 4, 5, 12, and 13). The other 33 patients who were heterozygous 

for KIR-Ls lost Bw6 as a result of 6pLOH. The missing and retained HLA alleles of the 14 

patients with KIR-L(-) leukocytes are shown in Supplemental Table 2. Of the 14 patients with 

KIR-L(-) leukocytes, fresh blood cells were available from 9 patients to examine the HLA-A 

allele or Bw4 expression levels—which were included in the lost haplotype—using FCM. 

Consistent with their genotypes, granulocytes that lacked HLA-A or B alleles, which were 

included in the lost haplotype, were detected in all 9 patients. Figure 1D shows representative 
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scattergrams of two cases (Cases 3 and 8), which indicated the presence of A*24:02-B*40:01-

C*07:02-lacking granulocytes (Case 3) and A*24:02-B*54:01[Bw6]-C*01:02-lacking as well as 

B54-lacking granulocytes due to a loss-of-function mutation of B*54:01 (Case 8).  

 

Influence of the KIR-L missing status on the 6pLOH(+) clone size 

Of 67 patients with 6pLOH(+) leukocytes, the percentages of 6pLOH(+) cells in the PB 

leukocytes could be estimated in 40 patients based on the SNP array results. The percentages in 6 

patients with the KIR-L missing status (0.2-10.3%, median 5.6%) were significantly lower than 

those in 34 patients without the KIR-L missing status (0.7-53.9%, median 19.1%) (p<0.05, Fig. 

1E, left). Likewise, the percentages of HLA allele-lacking granulocytes could be determined 

using FCM for fresh PB samples in 45 patients (including 18 of the above 40 patients). The 

percentages were significantly lower in 11 patients with the KIR-L missing status (0.8-50.3%, 

median 15.2%) than in 34 patients without the KIR-L missing status (1.2-99.4%, median 55.4%) 

(p<0.05, Fig. 1E, right), suggesting that although KIR-L HSPCs and their progenies survive the 

NK cell attack, they may suffer from some inhibitory pressure from NK cells.  

 

NK cell subsets and KIR gene repertoires in patients possessing KIR-L(-) leukocytes 

To clarify the mechanisms underlying the resistance of KIR-L(-) leukocytes to NK cells, we 

analyzed NK cell subsets that are expected to attack corresponding KIR-L(-) blood cells through 

the “missing-self” mechanism in the 9 patients whose PB samples were available. The gating 

strategy for the eight NK-cell subsets and representative results of the subset identification are 

shown in Figure 2A. Phenotypic analysis of the NK cell subsets defined by anti-2DL1, anti-

2DL2/2DL3, and anti-3DL1 mAbs showed that all 9 patients had a similar percentage of the 



15 
 

eight different NK cell subsets, which included 0.2 to 8% effector NK cells capable of killing 

leukocytes that lacked corresponding KIR-Ls (Table 2), suggesting that licensed NK cells 

capable of killing KIR-L(-) target cells are present in their PB.   

KIR genotyping showed that all 14 patients possessed inhibitory KIR genes (2DL1, 

2DL3, and 3DL1) responsive to the corresponding KIR-Ls, as expected (Table 3). An activating 

KIR gene KIR2DS1, which is known to be associated with potent graft-versus-leukemia effects 

in allogeneic hematopoietic stem cell transplant recipients, was possessed by 3 (21.4%) of the 14 

patients, a lower percentage than that (40.8%) in a general Japanese population (17). In the three 

patients (Cases 3, 8, and 9) with KIR2DS1, Case 3 who lacked HLA-A24 (Bw4) did not possess 

C2, suggesting that the lack of the KIR2DS1’s ligand on 6pLOH(+) cells may be a reason for the 

persistence of KIR-L(-) leukocytes in this patient. In contrast, the remaining two patients (Cases 

8 and 9) whose 6pLOH(+) leukocytes lacked C1, causing them to become the C2/C2 phenotype,  

had the KIR2DS1 gene as well as 2DS1(+) NK-cell subsets in their PB (Fig. 2B).  

 

NKG2D polymorphism in patients possessing KIR-L(-) leukocytes 

NKG2D, an active and co-stimulatory receptor expressed on NK cells, has two gene 

polymorphisms, HNK and LNK; the former is associated with higher NK cell activity than the 

latter (21, 32). The frequencies of HNK/HNK, HNK/LNK, and LNK/LNK alleles in the 14 

patients (35.7%, 42.9%, and 21.4%) were similar to those in healthy Japanese individuals (34%, 

42%, and 24%) (32) (Table 3). Of note, the two patients (Cases 8 and 9) whose C2/C2 

leukocytes that lost C1 due to 6pLOH coexisted with 2DS1(+) NK cells, had an LNK/LNK 

combination, which is characterized by weak NK cell activity. 
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The expression of HLA-E and HLA-F by peripheral blood leukocytes in KIR-L(-) AA patients  

High expression levels of HLA-E, a primary ligand of the inhibitory NK receptor 

CD94/NKG2A, has been shown to reduce the sensitivity of KIR-L(-) target cells to NK-cell 

killing (33). In the 9 patients with KIR-L(-) leukocytes, HLA-E was strongly expressed by KIR-

L(-) leukocytes, to a similar degree to KIR-L-retaining (normal) granulocytes (Supplemental 

Figure S1A). On the other hand, in keeping with previous reports (34), HLA-F, a ligand of 

activating receptor KIR3DS1, was not expressed by granulocytes and monocytes, regardless of 

the presence or absence of KIR-Ls (Supplemental Figure S1B).  

 

The expression of HLA-F by iPS cell (iPSC)-derived HSCs with or without the KIR-L missing 

status 

In addition to KIR2DS1, Cases 8 and 9 possessed KIR3DS1, which is known to activate NK cells 

through binding to its cognate receptor of HLA-F on target cells. KIR3DL1+/KIR3DS1+ NK 

cells in the two patients accounted for 14.4/18.7% and 10.7%/14%, respectively (Fig. 2C).  

The HLA-F expression may affect the susceptibility of HSCs to killing by NK cells in 

individuals possessing KIR3DS1, given that the HLA-F gene expression in HSCs has been 

shown by previous studies (35), although little is known about the HLA-F expression on HSCs. 

We examined the HLA-F expression on HSCs and hematopoietic progenitor cells (HPCs) from 

healthy BM, UCB, and BM from an AA patient. The expression of HLA-F in HSCs was 

observed to be higher than that in HPCs in both BM and UCB from healthy individuals, 

suggesting that HSCs may become sensitive to killing by 3DS1+ NK cells (Fig. 3A). Similarly, 

the expression of HLA-F in HSCs was observed to be higher than that in HPCs in BM from an 

AA patient who did not possess KIR-L(-) leukocytes (data not shown).  
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As Case 8’s BM cells were unavailable for the examination of HLA-F, the iPSC-derived 

CD34+ cells were collected from three different iPSCs, including WT, HLA-B*54:01-mutated, 

and 6pLOH(+) iPSCs from Case 8, which had been established in our previous study (13). The 

iPSC-derived CD34+ cells showed different phenotypes (A24-Bw6- [6pLOH], A24+Bw6-, and 

A24+Bw6+ [WT]) compatible with HLA genotypes of each iPSC clone (Fig. 3B). The HLA-F 

expression level in iPSC-derived HSPCs (iPSC-HSPCs) was generally higher rather than that in 

HSPCs in primary BM or UCB (Fig. 3A, 3C). The 6pLOH(+) HSPCs virtually lacked the 

expression of HLA-F while KIR-L(+) A24+Bw6- HSPCs expressed HLA-F at a similar level to 

WT HSPCs (Fig. 3C).  

 

Sensitivity of iPSC-HSPCs to NK cells expressing 3DS1 

To determine whether or not the difference in the expression of HLA-F on HSPCs affected the 

sensitivity to NK-cell cytotoxicity, we compared the CD107a expression on NK cells induced by 

co-culture with different iPSC-HSPCs. CD107a was induced on NK cells assays to a lesser 

degree by 6pLOH(+) iPSC-HSPCs (5.6% ± 2.31% and 8% ± 3.05%) than by WT iPSC-HSPCs 

(13.3% ± 4.15% and 18.6% ± 2.34%) in Cases 8 and 1, respectively (p<0.05, Fig. 4A and 

Supplemental Figure 1D and 1F). When the cytotoxicity of NK cells from the healthy 

individual was assessed using the 7-AAD positivity in CFSE-labelled target cells, the NK cells 

killed 42.7% ± 5.95% of K562 cells (Supplemental Figure 1C). In accordance with the results 

of the NK-cell degranulation assay, 6pLOH(+) iPSC-HSPCs from Cases 1 and 8 were killed by 

NK cells less efficiently than their WT counterparts (18.8% ± 5.67% vs. 28.9% ± 6.89%, p<0.05, 

12.5% ± 6.75% vs. 31.5% ± 7.89%, p<0.05), respectively (Fig. 4B and Supplemental Figure 

1E and 1F).  
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Discussion 

This study identified 14 AA patients in remission whose leukocytes lost KIR-L genes, and which 

may thereby become vulnerable to autologous NK-cell attack in 67 6pLOH(+) patients. Indeed, 

KIR-L(-) leukocytes were detected in all 9 patients whose PB leukocytes were available for an 

FCM analysis. All of these patients were found to possess KIR+ licensed NK cells that are 

capable of killing corresponding KIR-L(-) blood leukocytes. Although the persistence of KIR-

L(-) leukemia cells due to 6pLOH has been shown in patients after HLA-mismatched allogeneic 

hematopoietic stem cell transplantation (36, 37), this study is the first to demonstrate the 

paradoxical coexistence of functional NK cells and KIR-L(-) target cells that do not have a 

proliferative advantage like leukemia cells. 

HSPCs that spontaneously suffer 6pLOH are thought to be present in a dormant state in the 

BM of healthy individuals. Some 6pLOH(+) HSPCs acquire a survival advantage over WT 

HSPCs when CTLs specific to autoantigens presented by particular HLA class I alleles were 

generated and attack HSPCs at the onset of AA, because the 6pLOH(+) cells lack the HLA 

alleles that are required for antigen presentation. This escape of 6pLOH(+) HSPCs was expected 

to occur less frequently in individuals who are heterozygous for C1/C2, Bw4/Bw6, or HLA-

A24/HLA-Ax and therefore have a lower risk of becoming NK-cell-sensitive as a result of the 

KIR-L missing status than those who were homozygous for C1, C2, Bw4, Bw6, or A24, or who 

lacked A24. However, the incidence of 6pLOH(+) cells (18.0%) in the former group was 

comparable to that (13.6%) in the latter group. This finding, and the persistence of KIR-L(-) 

leukocytes clearly indicate that the KIR-L missing status is not enough for the target cells to be 

killed by autologous NK cells in vivo. 

Then how do KIR-L(-) leukocytes protect themselves from the NK-cell attack? Mechanisms 
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underlying the resistance of KIR-L(-) leukemia cells to NK cells after HLA-mismatched stem 

cell transplantation have been a subject of extensive studies. High HLA-E expression levels were 

shown to inhibit NKG2A+ NK cells from killing KIR-L(-) leukemia cells (33). Although the 

HLA-E expression level of KIR-L(-) granulocytes was comparable to that of WT granulocytes, 

the high expression of HLA-E may play a role in protecting KIR-L(-) granulocytes from the NK-

cell attack. It is also possible that an augmented NKG2A expression may prevent missing-self-

reactive NK cells from killing KIR-L(-) leukocytes. However, we were unable to find evidence 

showing that a greater expression of NKG2A by patients’ NK cells than by healthy individuals’ 

NK cells attenuates the NK-cell cytotoxicity. Conversely, a previous study by Chen et al. showed 

that the NKG2A expression by NK cells was significantly lower in AA patients than in healthy 

controls (38). It is therefore unlikely that such an augmented NKG2A expression by NK cells 

was involved in the sparing of KIR-L(-) leukocytes.   

According to the “missing-self” hypothesis, the activation of NK cells occurs in contact with 

malignantly transformed cells that have lost MHC class I molecules and that have additionally 

acquired stress-induced ligands to activate NK cell receptors. The activation of receptors on NK 

cells such as 2DS1 and 3DS1 has been shown to play essential roles in the killing of target cells 

(39, 40). The lack of the KIR2DS1 and KIR3DS1 genes in 11 patients (Cases 1, 2, 4, 5, 6, 7, 10, 

11, 12, 13, and 14) and the lack of 2DS1 ligand C2 on leukocytes in Case 3 may in part explain 

the persistence of KIR-L(-) cells in these patients.  

On the other hand, Cases 8 and 9 possessed both 2DS1(+) and 3DS1(+) NK cells, and their 

6pLOH(+) leukocytes were homozygous for the 2DS1 ligand C2. One possible reason for the 

resistance of their leukocytes to NK cells is that they had an NKG2D allele combination 

LNK/LNK, which is known to be associated with lower NK cell activity. A current report 
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highlighted the role of NKG2D-L in the susceptibility of leukemic stem cells to NK-cell killing 

(41). The lower NK cell activity may be involved in the sparing of KIR-L(-) leukocytes by the 

two patients’ NK cells. Another plausible explanation is the disarming of NK cells in the two 

patients. 2DS1+ NK cells in individuals with KIR-L haplotypes C1/C2 and C2/C2 have been 

shown to exert lower NK cell activity against KIR-L(-) target cells than in those in individuals 

with C1/C1 (24). NK cell disarming may have affected the persistence of KIR-L(-) leukocytes in 

Cases 8 and 9, who originally had C1/C2 haplotypes.  

While HLA-E and -G have been well characterized as antigen-presenting molecules, both 

functionally and structurally, the role of HLA-F in regulating the immune system has remained 

uncovered until recently. The expression of HLA-F is strictly controlled and tissue-specific, with 

higher levels in lymphoid cells in comparison to non-lymphoid cells and is predominantly 

localized to the endoplasmic reticulum (42-44). A previous study showed that KIR3DS1+ NK 

cells exhibited the highest affinity to HLA-F and induced the most potent functional signaling 

upon engagement of HLA-F open conformers (OCs) on target cells (45, 46). We found that 

HLA-F was predominantly expressed on primary HSCs, and its expression decreased in other 

HSPCs during the differentiation of HSCs, a finding compatible with the available RNA seq 

dataset in HSPCs (35). Of note, 6pLOH(+) iPSC-HSPCs, which are considered to reflect the 

phenotype of the patient’s original HSPCs due to the epigenetic memory (47), showed lower 

HLA-F expression levels than WT HSPCs. Moreover, our NK-cell degranulation and 

cytotoxicity assays showed a decreased sensitivity of 6pLOH(+) iPSC-HSPCs from Cases 1 and 

8 to NK cells compared to their WT counterparts. These data suggest that a decreased HLA-F 

expression may be partially responsible for the persistence of KIR-L(-) HSCs.  

In conclusion, NK cells were able to inhibit the expansion of KIR-L(-) leukocytes, but were 
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unable to eliminate them through various mechanisms that weaken the NK cell activity (the lack 

of activating KIRs on NK cells, the LNK/LNK NKG2D alleles, and disarming of NK cells) or 

confer resistance to target cells (a decrease in the HLA-F expression level on HSCs) 

(Supplemental Figure S2). These findings indicate the limitation of the NK cells’ ability to 

control malignant cells or virally infected cells that lose KIR-Ls to escape the CTL attack in vivo.   
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Figure legends 

FIGURE 1. KIR-L-missing (KIR-L[-]) leukocytes due to 6pLOH in AA patients.   

A KIR-L-missing status due to 6pLOH, which involved both the HLA-C and-B alleles, was 

found to occur in the leukocytes of 14 of the 261 patients who were heterozygous for KIR-Ls. 

(A) Representative results (Case 1) of 6pLOH detected by SNP array. (B) Representative ddPCR 

plots are showing the presence of 6pLOH, which involved HLA-C alleles (Case 1) or HLA-B 

alleles (Case 9). 6-FAM-positive blue dots are detected if the following alleles were present in 

droplets: HLA-C03:04 for C3 mixture (Case 1) and HLA-B48:01 for B2 mixture (Case 9); while 

VIC-positive green dots were detected if the droplets contained other alleles. Orange dots 

represent the droplets carrying both two alleles. The percentage of 6pLOH in HLA-C (Case 1) 

and HLA-B (case 9) was 67.1% and 6.8%, respectively. (C) Representative flow cytometry 

(FCM) scattergrams are showing HLA-A24-lacking cells in the peripheral blood granulocytes, 

monocytes, B cells, and T cells of Case 1. (D) Representative scattergrams of two patients (Cases 

3 and 8) that indicated the presence of A*24:02-B*40:01-C*07:02 haplotype-lacking 

granulocytes (Case 3) and A*24:02-B*54:01[Bw6]-C*01:02 haplotype-lacking granulocytes, as 

well as B54-lacking granulocytes due to a loss-of-function mutation of  B*54:01 (Case 8). (E) 

The percentage of 6pLOH fractions determined by the SNP array analysis (left) and the 

percentage of HLA-lacking granulocytes detected by FCM (right) in 6pLOH(+) AA patients with 

or without a missing KIR-L. The asterisk indicates statistical significance (p<0.05). 
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FIGURE 2. NK cell subsets defined by the KIR expression in patients possessing KIR-L(-) 

leukocytes.  

(A) The identification of the eight different NK-cell subsets defined by the KIR expression in 

Case 8. (B) Representative dot plots showing the absence (Healthy 1) and the presence (Healthy 

2 and Cases 8 and 9) of KIR2DL1-KIR2DS1+ NK cells. (C) Representative dot plots showing the 

absence (Healthy 3) and presence (Healthy 4 and Cases 3, 8, and 9) of KIR3DL1-KIR3DS1+ NK 

cells.  

 

FIGURE 3. The HLA-F expression on bone marrow and cord blood HSPCs and iPSC-

derived HSPCs. 

(A) A gating strategy for HSCs and HSPCs in the bone marrow (BM) and the umbilical cord 

blood (UCB) (left), and HLA-F expression on healthy BM and UCB (right). HSC (hematopoietic 

stem cell; red line), MPP (multipotent progenitor; blue dotted line), MLP (multilymphoid 

progenitor; light green dashed line), CMP (common myeloid progenitor; dark green complex 

line), GMP (granulocyte-monocyte progenitor; violet long dashed line), MEP (megakaryocyte-

erythroid progenitors; pink dot-dashed line), and isotype control (grey shadow). (B) Scattergrams 

showing three different HLA phenotypes (A24-Bw6- [6pLOH], A24+Bw6-, and A24+Bw6+ 

[WT]) of iPSC-HSPCs from Case 8. (C) Histograms showing the different HLA-F expression 

levels between WT, HLA-B(-), and 6pLOH(+) iPSC-HSPCs from Case 8.  

 

FIGURE 4. Sensitivity of different iPSC-HSPCs to NK cells expressing 3DS1. 
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(A) Degranulation of NK cells in response to different target cells. CD3-CD56+ NK cells that 

express CD107a in response to different target cells, including K562 cells, WT iPSC-HSPCs, 

and 6pLOH(+) HSPCs, are shown. The left upper scattergram shows a gating method for CD3-

CD56+ cells that are derived from mononuclear cells compatible with NK cells on the side 

scatter (SSC-A) versus forward scatter (FSC-A) diagram. The bar plot represents the percentage 

of CD107a+ NK cells among total NK cells that were co-cultured with the indicated target cells. 

(B) Cytotoxicity against HSPCs from Case 8 by 3DS1+ NK cells. 7-AAD+ dead cells among 

different target cells, including K562 cells, WT iPSC-HSPCs, and 6pLOH(+) HSPCs, induced 

by NK cells are shown. The right bar plot represents the percentage of 7-AAD+ cells in each 

target cell population. Graph bars show the mean ± SEM. *indicates a significant difference 

p<0.05. 


