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LETTER
A Computationally Efficient Leaky and Regularized RLS Filter for
Its Short Length

Eisuke HORITA†a), Senior Member

SUMMARY A Tikhonov regularized RLS algorithm with an exponen-
tial weighting factor, i.e., a leaky RLS (LRLS) algorithm was proposed by
the author. A quadratic version of the LRLS algorithm also exists in the
literature of adaptive filters. In this letter, a cubic version of the LRLS fil-
ter which is computationally efficient is proposed when the length of the
adaptive filter is short. The proposed LRLS filter includes only a divide
per iteration although its multiplications and additions increase in number.
Simulation results show that the proposed LRLS filter is faster for its short
length than the existing quadratic version of the LRLS filter.
key words: adaptive filter, RLS, computational complexity, regularization,
Tikhonov

1. Introduction

Regularization in least-squares estimation provides a com-
promise between a bias of the solution and an algorithmic
stability. The standard RLS algorithm with an exponen-
tial weighting factor has the regularization matrix which
fades exponentially to zero [1]. As a result, numerically ro-
bust RLS variants, such as the Square-Root RLS (SR-RLS)
[1], [2], are not suitable for applications where maintain-
ing regularization throughout the adaptive process is impor-
tant, such as adaptive beamforming [3]. The RLS filters
by using a nonfading regularization matrix are known as a
Levenberg-Marquardt regularization [4] or a Tikhonov [6]
regularized RLS algorithm with an exponential weighting
factor, i.e., a leaky RLS (LRLS) algorithm [7] proposed by
the author, which was mentioned in [8] by Waterschoot et
al. In [8], a quadratic version of the LRLS algorithm with
the regularization method in [4] was introduced, and a leaky
kernel affine projection algorithm was also proposed in [9].
In addition, the quadratic version of the LRLS algorithm
was applied to an adaptive filter in [10] in order to track
a time-varying regularization parameter of the correlation
matrix of [10] in [11].

The quadratic version of the LRLS algorithm is more
useful than a cubic version of the LRLS algorithm in [7].
However, it includes two divides per iteration although the
standard RLS algorithm in [1], [2] has one divide per itera-
tion.

In this letter, a cubic version of the LRLS filter which is
computationally efficient is proposed when the length of the
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adaptive filter is short. The proposed LRLS filter includes
only a divide per iteration although its multiplications and
additions increase in number. Simulation results show that
the proposed LRLS filter is faster for its short length than
the quadratic version of the LRLS filter in [8].

2. Existing Leaky RLS Filters

We define a cost function of the LRLS filter [7] which is a
criterion of the ridge regression [12] as

J(k) =

k∑
i=1

λk−i{d(i) − wT (k)u(i)}2 (1)

+α||w(k)||22

where λ, d(i), i = 1, 2, . . . , k and α denote the exponen-
tial weighting factor, the desired response and the regu-
larization parameter, respectively. The vectors w(k) and
u(i), i = 1, 2, . . . , k in (1) consist of coefficients and inputs
of the LRLS filter, respectively defined by

wT (k) = [ w0(k), w1(k), . . . , wN−1(k) ], (2)
uT (i) = [ u(i), u(i − 1), . . . , u(i − N + 1) ]. (3)

2.1 Conventional O(N3) LRLS Filter: LRLS1

The conventional LRLS filter [7] is expressed as follows:
Initialize the filter by setting

Φ(0) = αI, w(0) = O (4)

For each instant of time k = 1, 2, . . ., compute

Φ(k) = λΦ(k − 1) + u(k)uT (k) + α(1 − λ)I (5)
ε(k) = d(k) − wT (k − 1)u(k) (6)
w(k) = w(k − 1) − α(1 − λ)Φ−1(k)w(k − 1) (7)

+Φ−1(k)u(k)ε(k)

where the correlation matrix Φ(k) is defined by

Φ(k) =

k∑
i=1

λk−iu(i)uT (i) + αI. (8)

The above LRLS filter is not the Levenberg-Marquardt
regularization [4] but the Tikhonov [6] regularized RLS al-
gorithm with the exponential weighting factor, which was
pointed out by Waterschoot et al. in [8] since (7) is not
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Table 1 Estimated computational cost of the quadratic LRLS filter per iteration.

Equations Divides Multiplications Additions

β(k) = ((α(1 − λ)N)−1 + λ−1[P(k − 1)]l,l 0 1 1

R(k) = λ−1 P(k − 1) − β−1(k)λ−2[P(k − 1)]:,l[P(k − 1)]l,: 1 2N2 + N N2

g1(k) = R(k)u(k)(1 + uT (k)R(k)u(k))−1 1 2N2 + 2N 2N2 − N

P(k) = R(k) − g1(k)uT (k)R(k) 0 N2 N2

ε(k) = d(k) − wT (k − 1)u(k) 0 N N

w(k) = w(k − 1) − α(1 − λ)P(k)w(k − 1) + g1(k)ε(k) 0 N2 + 2N N2 + N

total 2 6N2 + 6N + 1 5N2 + N + 1

Table 2 Estimated computational cost of the proposed LRLS filter per iteration.

Equations Divides Multiplications Additions

gλ(k) = P(k)u(k)(λ + uT (k)P(k)u(k))−1 1 2N2 + 2N 2N2 − N

C(k) = λ−1 P(k) − λ−1gλ(k)uT (k)P(k) 0 2N2 + N N2

P(k) = C(k) − α(1 − λ)C2(k) 0 N3 + N2 N3

ε(k) = d(k) − wT (k − 1)u(k) 0 N N

w(k) = w(k − 1) − α(1 − λ)P(k)w(k − 1) + P(k)u(k)ε(k) 0 2N2 + 2N 2N2

total 1 N3 + 7N2 + 6N N3 + 5N2

equivalent with λ , 1 to

w(k) = w(k − 1) +Φ−1(k)u(k)ε(k). (9)

2.2 Existing O(N2) LRLS Filter: LRLS2

We can obtain the quadratic version of the LRLS filter [8]
by introducing the regularization method in [4] as follows:
Initialize the filter by setting

P(0) = α−1I, w(0) = O (10)

For each instant of time k = 1, 2, . . ., compute

β(k) = ((α(1 − λ)N)−1 + λ−1ξT
k,N P(k − 1)ξk,N (11)

R(k) = λ−1 P(k − 1) − (12)
β−1(k)λ−2 P(k − 1)ξk,Nξ

T
k,N P(k − 1)

g1(k) = R(k)u(k)(1 + uT (k)R(k)u(k))−1 (13)
P(k) = R(k) − g1(k)uT (k)R(k) (14)
ε(k) = d(k) − wT (k − 1)u(k) (15)
w(k) = w(k − 1) − α(1 − λ)P(k)w(k − 1) (16)

+ g1(k)ε(k)

where P(k) denotes the inverse matrix of Φ(k) and ξk,N is
an N × 1 zeros vector except for its ((k − 1) mod N) + 1
element which is 1. If we define the index of ξk,N as l, i.e.,
l = ((k − 1) mod N) + 1, we can obtain (17) and (18) in
exchange for (11) and (12), respectively,

β(k) = ((α(1 − λ)N)−1 + λ−1[P(k − 1)]l,l, (17)
R(k) = λ−1 P(k − 1) − (18)

β−1(k)λ−2[P(k − 1)]:,l[P(k − 1)]l,:,

where the vectors [P(k−1)]:,l and [P(k−1)]l,: are respectively

defined by

[P(k − 1)]:,l =


p(k − 1)1l
p(k − 1)2l

...
p(k − 1)Nl

 , (19)

[P(k − 1)]l,: = [p(k − 1)l1, p(k − 1)l2, . . . , p(k − 1)lN].
(20)

We show in Table 1 estimated numbers of real divi-
sions, multiplications and additions that are required in com-
puting specific equations of the quadratic LRLS filter in
which we used parts of version II of the standard RLS algo-
rithm summarized in Table 13.2 of [2] for preventing its ex-
plosive divergence [5]. The quadratic LRLS filter includes
two divides per iteration although the standard RLS algo-
rithm in [1], [2] has a divide per iteration.

3. Proposed LRLS Filter

We derive an LRLS filter that has only one divide per itera-
tion in this section.

First, we rewrite (5) as the next two equations.

C−1(k) = λΦ(k − 1) + u(k)uT (k) (21)
Φ(k) = C−1(k) + α(1 − λ)I (22)

= (I + α(1 − λ)C(k))C−1(k)

Moreover, we obtain (23) from the matrix inversion of the
second line of (22),

Φ−1(k) = C(k)(I + α(1 − λ)C(k))−1 (23)

where C(k) is given by using the matrix inversion lemma for
(21) as
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gλ(k) = P(k − 1)u(k)(λ + uT (k)P(k − 1)u(k))−1, (24)
C(k) = λ−1 P(k − 1) − λ−1gλ(k)uT (k)P(k − 1). (25)

In addition, we accept Lemma 2.3.3 in [12] as follows:

Lemma 1: If F ∈ Rn×n and ||F||p < 1, then I− F is nonsin-
gular and

(I − F)−1 =

∞∑
l=0

Fl (26)

with

||(I − F)−1||p ≤
1

1 − ||F||p.
(27)

If we accept Lemma 1 for the matrix (I + α(1 − λ)C(k))−1

of (23) and neglect Fl, l ≥ 2 of (26), then we can obtain the
matrix P(k) = Φ−1(k) as

P(k) ≈ C(k)(I − α(1 − λ)C(k)) (28)
= C(k) − α(1 − λ)C2(k),

subject to

||α(1 − λ)C(k)||p < 1. (29)

In this letter, we set the parameters α and λ to appropriate
values in advance to satisfy (29) with p = 1.

We show in Table 2 estimated numbers of real divi-
sions, multiplications and additions that are required in com-
puting specific equations of the proposed LRLS filter. The
proposed LRLS filter includes only one divide per iteration
although it has more multiplications and additions than the
quadratic version of the LRLS filter. In the next section,
simulation results are shown that the proposed LRLS filter
is faster for small N than the quadratic version of the LRLS
filter.

4. Simulation Results

In this section, the proposed LRLS filter is compared with
the existing LRLS algorithms in 2. I used Scilab 6.0.0 on
an Intel(R) Core(TM)i5-7300U CPU @2.50 GHz processor
with 8.00 GB RAM in all the experiments.

The unknown system was produced by using a first-
order Markov model as [13]

wo(k) = wo(k − 1) + uw(k) (30)

where uw(k) was a white Gaussian noise with variance σ2
vw

and the initial value wo(0) was given as 10*h0 in the follow-
ing Scilab command:

[h0,hm,fr]=wfir("lp",N,[.2 0],"hm",[0 0]);

The input signal was a colored noise, generated by filtering
a white Gaussian signal of unit variance with an IIR filter
which had a transfer function [13], [14]

Fig. 1 Differences between learning curves with α = 0.001 for a color
Gaussian input signal (Experiment 1).

Fig. 2 Differences between learning curves with α = 0.01 for a color
Gaussian input signal (Experiment 2).

Fig. 3 Average CPU time per iteration of each adaptive filter in µs (Ex-
periment 2).

H(z) =
1

1 − 0.95z−1 − 0.19z−2 − 0.09z−3 + 0.5z−4

In Experiment 1, I set σ2
vw

= 10−4 and N =

5, 10, . . . , 40. The desired signal was corrupted by a white
Gaussian measurement noise with variance σ2

v = 10−4. The
weight vector of the unknown system was multiplied by -1
at iterations 300 and 600 so as to examine the convergence
performance of each adaptive filter. The forgetting factor λ
and the regularization parameter α were respectively set to
0.98 and 0.001.
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In Experiment 2, I repeated Experiment 1 except that
the regularization parameter α was set to 0.01 in order to
check the stability performance of each adaptive filter.

I compared the performance of the proposed LRLS
filter with that of the RLS and the existing LRLS filters
by the mean-square-deviation (MSD) curves. The MSD
was computed as ||w(i)

o (k)−w(i)(k)||2/||w
(i)
o (k)||2 averaged over

i = 1, 2, . . . , 1000 independent trials in each algorithm as
follows:

MS D(k) =
1

1000

1000∑
i=1

||w(i)
o (k) − w(i)(k)||2
||w(i)

o (k)||2
(31)

e1(k) = MS D(k)RLS − MS D(k)LRLS 1 (32)
e2(k) = MS D(k)Proposed − MS D(k)LRLS 1 (33)
e3(k) = MS D(k)Proposed − MS D(k)LRLS 2 (34)

The curves of e1(k), e2(k) and e3(k) with N = 10 for Ex-
periment 1 and Experiment 2 were illustrated in Fig. 1 and
Fig. 2, respectively. The average CPU time per iteration in
microseconds of each adaptive filter for Experiment 2 was
plotted in Fig. 3. Figs. 1 and 2 show that the stability perfor-
mance of the proposed LRLS filter is as good as that of the
existing LRLS filters and better than that of the RLS filter
although the steady-state performance of the proposed filter
with the larger α is inferior to that of the RLS filter. Fig. 3
clearly shows the increase in computational efficiency of the
proposed filter when the length of the adaptive filter is short.

5. Conclusion

In this letter, we have obtained the cubic version of the
LRLS filter which is computationally more efficient than the
quadratic version of the LRLS filter in [8] when the length
of the adaptive filter is short. The proposed LRLS filter in-
cludes only a divide per iteration although the quadratic ver-
sion of the LRLS filter has two divides per iteration. Sim-
ulation results demonstrate that the proposed LRLS filter is
faster for its short length than the quadratic version of the
LRLS filter.

When a possible maximum length of the unknown sys-
tem is not given in advance, however, we would select

the quadratic LRLS algorithm of [8].
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