Effect of Patch Area and Interaction Length on
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Particles in Thin Systems
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ABSTRACT: Assuming that the interaction between particles is given by the Kern—Frenkel
potential, Monte Carlo simulations are performed to study the clusters and structures formed by
one-patch particles in a thin space between two parallel walls. In isothermal—isochoric systems
with a short interaction length, tetrahedral tetramers, octahedral hexamers, and pentagonal
dipyramidal heptamers are created with increasing patch area. In isothermal—isobaric systems, the
double layers of a triangular lattice, which is the (111) face of the face-centered cubic (fcc) lattice,
form when the pressure is high. For a long interaction length, a different type of cluster, trigonal
prismatic hexamers, is created. The structures in the double layers also changed as follows: a
simple hexagonal lattice or square lattice, which is the (100) face of the fcc structure, is created in

isothermal—isobaric systems.

B INTRODUCTION

Patchy particles are the particles having several patch areas,
whose properties are different from other surface areas. The
patchy particles are potential materials because the anisotropy
caused by patch areas makes various structures which are not
formed by isotropic particles. Many groups'~* tried to create
various types of self-assemblies with patchy particles. For
example, triple helix strings formed by one-patch particles® and
the kagome lattice formed by triblock Janus spherical particles’
were observed by Chen and coworkers. Using silica particles
with a gold patch, Iwashita and Kimura'” observed the clusters
formed by one-patch particles on a two-dimensional plane. The
authors examined how the cluster shape changed and how the
ordering of direction of the patch area depended on the size of
patch area.

In simulations and theoretical studies, the Kern—
Frenkel (KF) potential’* has been often used as the interaction
potential between patchy particles. Many kinds of clusters and
crystal structures were predicted by controlling the interaction
length and the size of the patch area. Previously, assuming that
one-patch particles move on a two-dimensional plane rotating
three-dimensionally, isothermal—isobaric Monte Carlo (MC)
simulations®” were performed to study the dependence of two-
dimensional structures formed by one-patch particles on the
interaction length in the KF potential. The author showed that
square tetramers, which do not form with a short interaction
length, were produced when the interaction length was long.”

For one-patch particles in the thin space constructed by two
walls, crystal structures and the orientational order of patch
direction were studied experimentally.””** In the experiments,
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pentagonal dipyramid heptamers

monomers
dimers. ‘ chain-like clusters

tetrahedral tetramers.
{/ octahedral hexamers

islands with triangular lattice

the thickness of the space between the two walls changed
gradually because the two walls were set to be tilted with a small
angle. The structures formed in the thin space depended on the
patch area. The orientational order of the direction of patch area
changed with the change in crystal structures. MC simulations
were also performed by the same papers,””** and the ordering of
the direction of patch area was studied for several crystal
structures observed in the experiment. The results of the
simulations agreed well with those of the experiment. In their
simulations,””** however, the orientational order of the
direction of patch area was studied only for supposed structures.
The possibility of the formation of other structures was not
examined, and the reason why the crystal structures observed in
their experiment were created is not clear yet.

In previous simulations,””** it was assumed that the
interaction length between patchy particles was short. The
assumption was reasonable because silica particles with a gold
patch were kept in mind as one-patch particles. In a previous
study on spherical one-patch particles constructed in a two-
dimensional plane,® clusters and structures which were not
created with a short interaction length formed when the
interaction range was long. Also, a study on a free three-
dimensional system by another group’' showed that cluster
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Figure 1. Dependence of the number of clusters on the cluster size and 0 for A = /10, where €/kg T is set to (a) 8.0, (b) 6.0, (c) 4.0, and (d) 2.0. The
color bars show kN(k), where N(k) is the number of clusters with the cluster size k.

shapes and crystal structures were strongly affected by the
interaction length. Experimentally, long-range interactions may
be possible to be synthesized by some fabrication methods. For
example, the interaction length may be controlled if DNA
strands are used in the patchy area because DNA strands are
designed freely.**~>* Thus, it is also interesting to study how the
interaction length affects clusters and structures formed by
patchy particles in thin systems.

In this paper, considering the spherical one-patch particles
constructed in the thin space between two parallel walls, how the
cluster types and structures formed by one-patch particles
depend on the patch area and the interaction length is studied.
First, the model used is introduced. Second, the results of the
simulations are shown. Isothermal—isochoric MC simulations
are performed in dilute systems to show how the cluster shape
depends on the interaction length, the interaction strength, and
the patch area. Then, isothermal—isobaric MC simulations are
performed and how the structures formed by one-patch particles
change with pressure is shown. Finally, the results are
summarized in Conclusions.

B RESULTS AND DISCUSSION

In the simulations, the z-axis is set perpendicular to the two
parallel walls and the xy-plane is parallel to them. The periodic
boundary conditions are used in both x- and y-directions. In
constructed systems, walls affect structures formed by the
particles with an isotropic interaction. The structures which are
not expected by the free three-dimensional system are
reported”* ™" when the distance between the two walls is
smaller than twice the value of the particle diameter. To avoid
the strong effect of walls, the distance between the two parallel
walls [, is set to 2.16, which is a little larger than twice the value of
the particle diameter. The number of particles used in the

simulations N is 512. The diameter of the particles o is set to
unity.

Clusters Forming in Isothermal—Isochoric Systems.
First, by performing isothermal—isochoric MC simulations, the
dependence of the cluster size on the interaction energy, the
interaction length, and the patch area is studied for a short
interaction length. The particle density 76°N/ (6lxlylz) and the
interaction length A are set to 0.2 and 0/10, respectively. The
relationship between @ and cluster types is examined by
changing @ every 10° from 20 to 100° for e¢/kgT = 8.0, 6.0,
4.0, and 2.0. Initially, particles are put at random. In one MC
trial, the translation and rotation are tried for one particle. To
avoid making the success rate of MC trials too low, the
maximum values of translation and rotation of particles are
tuned every 100N MC trials.”’

Clusters with a Short Interaction Length. Figure 1 shows
how the number of clusters depends on 8 and the cluster size,
that is, the number of particles in a cluster. The color strength is
proportional to kN(k), where N(k) is the number of clusters
with the cluster size k. N(k) is averaged over 10 times every 10°N
MC trials after 3N X 10" MC trials. For €/kT = 8.0 Figure 1a),
the distribution of the cluster size is narrow as the effect of
thermal fluctuations is small, and the appropriate cluster size is
determined by the patch area. For § < 60° or y < 2.5 X 107", the
cluster size increases with increasing 8. When 8 > 70° or y > 3.3
X 1077, the clusters smaller than 30 particles are not seen
because many particles assemble and long string-like clusters
form.

For ¢/kT = 6.0 (Figure 1b), the distribution of cluster size is
similar to that for €¢/k; T = 8.0 when 0 < 60°, but the distribution
is broader than that with €/kz T = 8.0 and various sizes of clusters
from when 6 = 70°. The formation of these clusters is caused by
thermal fluctuations. As they make the rotation and translation
of particles frequent, the connections in clusters are cut easily
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and the long string-like clusters are broken into small clusters.
For €/kgT = 4.0 (Figure 1c) and €/kgT = 2.0 (Figure 1d), the
distribution starts to be broad with a small @ owing to the further
increase in the effect of thermal fluctuations.

Figure 2 shows several typical snapshots for €/kzT = 8.0,
where the system is seen from the positive z-direction. Figure 3
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Figure 2. Typical snapshots for a short interaction length, where €/kpT
=8.0and fissetto (a) 40, (b) 60, (c) 70, and (d) 100°. y is given by (a)
1.7 x 107}, (b) 2.5 x 107, (¢) 3.3 x 107/, and (d) 5.9 X 107". The
interaction length is set to A = ¢/10.

shows the zoomed snapshots of several clusters in Figure 2.
When 6 = 40° or y = 1.2 X 107" (Figure 2a),most numerous
clusters are tetrahedral tetramers such as A (Figure 3A). As I, is

set to 2.16 in the simulations, I, is large enough for the

Figure 3. Zoomed snapshots for clusters (A—C) in Figure 2. The upper
figures show the zoomed snapshots for the clusters. The lower figures
show the connections in the clusters, where the connections are drawn
with yellow lines. Red and yellow particles are put at the centers of
patchy particles whose z-coordinates are larger and lower than L_/2,
respectively.

tetrahedral tetramers to rotate freely in the thin space. Thus, the
tetrahedral tetramers orient in many directions. For the KF
potential,”* the interaction energy is simply proportional to the
number of interacting particles. As each particle in the observed
tetrahedral tetramers interacts with other three particles, the
interaction energy per particle for the tetrahedral tetramers, U,,
satisfies U,/kyT = —3¢/(2kzT) = 12.0.

When 6 = 60° or y = 2.5 X 107" (Figure 2b), two types of
clusters, octahedral hexamers such as B (Figure 3B) and
pentagonal dipyramidal heptamers such as C (Figure 3C),
coexist in the system. For the octahedral hexamers, each particle
in a cluster connects with other four particles, while for the
pentagonal dipyramidal heptamers, each particle in the
pentagonal plane connects with four neighboring particles and
the two vertexes connect with all the particles in the pentagonal
plane. The interaction energies per particle for the octahedral
hexamers, Uy, and the pentagonal dipyramidal heptamers, U,,
satisfy Ug/kgT = —2¢/(kgT) = 16.0 and U, /kz T = =3¢/ (ks T) =
24.0. As the number of connections per particle in the
pentagonal dipyramidal heptamers is slightly larger than that
in the octahedral hexamers, the pentagonal dipyramidal
heptamer is considered to be more energetically favorable
than the octahedral hexamer. However, the latter was more
numerous than the former: the average numbers of octahedral
hexamers and pentagonal dipyramidal heptamers were 45 and
24, respectively.

The unexpected relationship between the two cluster
numbers is caused by small [, When one of the triangular
planes in octahedral hexamers is parallel to the xy-plane as
observed in my simulations, the octahedral hexamers have
enough space in the z-direction. Thus, they can move without
bumping against the walls by thermal fluctuations. On the other
hand, the pentagonal planes in the pentagonal dipyramidal
heptamers are a bit tilted from the xy-plane, as seen in Figure 2b,
which means that [, is too narrow compared with the distance
between two vertexes of the pentagonal dipyramidal heptamers
and that the heptamers probably bump against the walls with a
small motion. Thus, the dipyramidal heptamers cannot move
freely in the systems and may be easily broken by thermal
fluctuations.

When 0 = 70° or y = 3.3 X 10~" (Figure 2c), one large cluster
is created. The shape of this cluster is like a mesh formed by
meandering strings. The z-coordinates of particles are separated
into two levels. The patch direction of almost all the lower side
particles is the positive z-direction and that of almost all the
upper side particles is the negative z-direction. Taking into
account the patch area, it can be observed that the particles
cannot connect with the neighbors in the same z-level as the
patch direction is parallel to the z-axis.

The mesh-like pattern formed by string-like clusters is also
created for @ = 80 and 90°. The cluster shape is different from the
string-like one for @ = 100° or y = 5.9 X 107" (Figure 2d): the
cluster shape becomes compact and the number of voids
decreases compared with that in Figure 2c. As the system sizes in
our simulations are not so large, all the particles gather and one
large island with some voids is created. As the patch area is
sufficiently large, the particles can connect with the neighbors at
the same z-level. The particles in each z-level make a triangular
lattice to increase the number of connected particles as much as
possible. In the triangular lattice, particles connect with nine
particles, six particles in the same z-level and three particles in a
different z-level. The interaction energy per particle U, satisfies
Up/ksT = —9¢/(2kT) = 36.0.
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The effect of thermal fluctuations on the cluster shape for
string-like clusters is shown. Figure 4 shows snapshots (Figure
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Figure 4. Typical snapshots and connections between particles in these
snapshots with 8 = 70° for A = ¢/10. €/kgT is 6.0 (a,b) and 4.0 (c,d).
The connections are drawn with yellow lines. In (a,b), the orange area is
the patch area. In (c,d), red particles and yellow particles are put at the
centers of patchy particles in the lower and upper regions, respectively.

4a,c) and the connections between particles (Figure 4b,d) with
€/kgT = 6.0 and 4.0 for @ = 70°. A long string-like cluster forms

when €/kgT = 8.0 (Figure 2c), but the cluster shape becomes
short when €/kgT = 6.0 (Figure 4a,b). The short string-like
clusters seem to be formed by the connection of a few
pentagonal dipyramidal heptamers. For ¢/ksT = 4.0 (Figure
4c,d), the size of string-like clusters is smaller than that with ¢/
kgT = 6.0 and the form of the unit of sting-like clusters becomes
obscure as the effect of thermal fluctuations increases.

Clusters with a Long Interaction Length. In a previous
study,”® the author studied how the two-dimensional structures
formed by one-patch particles depend on the interaction length.
When the interaction length is A = 6/2 and the pressure is low,
two types of square tetramers form, which are not created with a
short interaction length. Here, assuming that A = o6/2
simulations are performed to study how the interaction length
affects the cluster shape in thin systems.

First, how the distribution of cluster size depends on the
interaction length is examined. Figure 5 shows the distribution
of cluster size for the long interaction length. For ¢/kpT = 2.0
(Figure Sc) and €/kgT = 4.0 (Figure 5d), the distributions seem
to be similar to those with the short interaction length (Figure
1c,d). On the other hand, for ¢/kzT = 8.0 (Figure Sa) and 6.0
(Figure Sb), the distributions are broader and clusters forming
with the long interaction length are larger, compared to the
system with a sticky type of short interaction length.

To clarify the effect of the difference in the interaction length
in more detail, snapshots for €/kzT = 8.0 in Figure 6 and also
zoomed snapshots of several clusters observed in Figure 7are
shown. When 6 < 30° or y = 6.7 X 107, polyhedral clusters
hardly form, and dimers and trimers from instead. As the
polyhedral clusters also do not form in systems with a short
interaction length, the effect of the difference in the interaction
length on the cluster shape is small in this @ region. When 6 = 40°
or y = 1.2 x 107" (Figure 6a), trigonal prismatic hexamers such
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Figure 5. Dependence of the number of clusters on the cluster size and @ for A = /2, where €/kgT is set to (a) 8.0, (b) 6.0, (c) 4.0, and (d) 2.0. The
color bars show kN(k), where N(k) is the number of clusters with the cluster size k.
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Figure 6. Typical snapshots for A = 6/2, where €/k;T = 8.0 and 0 is set
to (a) 40, (b) S0, (c) 60, and (d) 80°. Yellow area represents the patch

area.

Figure 7. Zoomed snapshots for clusters (A—E) shown in Figure 6,
where the connections in the clusters are also shown by yellow lines.
Red and yellow particles are put at the centers of patchy particles whose
z-coordinates are larger and lower than L /2, respectively.

as A, which are not observed in systems with a short interaction
length (Figure 2a), are created. In cluster A (Figure 7A), particle
(i) connects with all the other particles in the same cluster expect
for particle (ii) as the interaction length A is long. Thus, the
interaction energy per particle, U, satisfies Ug,/kgT = —Se/
(2kzT) = 20.0, which is larger than Us.

The number of connections per particle is four in the cluster.
Hexamers also form when 6 = 50° (Figure 6b), but their shape is
a tetrahedron such as B (Figure 7B). Owing to the increase in the
patchy area, each particle in the cluster connects with all the
other particles. As the number of connections per particle is five,

the tetrahedral clusters are energetically preferred to the trigonal
prismatic clusters.

When 6 = 60° or y = 2.5 X 107" (Figure 6¢), clusters like the
chains of trigonal prismatic form. As [, is not too small, both
types of clusters such as C (Figure 7C) and D (Figure 7D) form.
In cluster C, particle (i) does not connect with particle (ii)
because the patch area is not so large. The number of
connections per particle is five in both C and D. The difference
in these two types of clusters is the orientation; the type of C is
the same as that of D when cluster C is rotated by 90°. These two
types of clusters are energetically equivalent to each other.

When 6 = 80° or y = 4.1 X 10~" (Figure 6d), one large cluster,
which seems to be an island with a few large voids, is created.
This cluster consists of a region with a simple hexagonal lattice
and region E (Figure 7E). Taking into account the patch area
and the interaction length, the number of connections per
particle is estimated to six in region E and seven in the simple
hexagonal lattice. As the region with the simple hexagonal lattice
is more energetically favorable than region E, it is reasonable that
the area of the former region is larger than that of the latter
region. Because the system size is not so large in our simulations,
only one island is created in the systems. If simulations are
performed in larger systems, some island-like clusters consisting
of the mixture of the hexagonal lattice and the structure such as
region E should be created.

How the types of mainly formed clusters change with €/kgT
and @ is summarized in Figure 8, where the cluster types
remarked in the snapshots are indicated for each set of
parameters. When A = ¢/10 (Figure 8a), the 6 region with
dimers increases with decreasing €/kzT. When €/kT < 4.0, the
monomers are included in the region with dimers. As the
interaction energy is not sufficiently large, the creation and
separation of dimers are probably repeated in these energies.
When €/kgT > 2.0, polygonal clusters with clear shapes are
created when 40° < 6 < 70°. When 6 = 60” and €/ksT = 8.0,
octahedral hexamers and pentagonal dipyramidal heptamers are
created as we have already shown in Figure 2b; when €/kpT =
2.0, those polygonal clusters do not form and the region with
monomers and dimers expands. Island-like clusters are not
created and the connection between particles in chain-like
clusters is looser than that with €¢/kgT > 2.0. When A = ¢/2
(Figure 8b), trigonal prismatic clusters, which are not observed
for A = 6/10, are created with €/kgT = 8.0 because of the long
interaction length. As the long interaction length makes the
connection between particles easier, polygonal clusters become
looser than those with the short interaction length. Thus, the
shapes of hexamers and tetramers are irregular with ¢/kzT < 6.0.
Another effect of the long interaction length is to increase the
region with island-like clusters. The structure in the island-like
clusters is the mixture of a simple hexagonal structure and a
square lattice, while the island-like clusters consist of a triangular
lattice with a short interaction length.

Structures Forming in Isothermal—Isobaric Systems.
In previous sections, isothermal—isochoric MC simulations are
performed and the dependence of cluster shape on 6 and €/kgT
is studied. Hereafter, performing MC simulations controlling
pressure, how structures formed by one-patch particles in a thin
space depend on the interaction energy and pressure is studied.
In the simulations, the scaled pressure Po”/ky T is changed every
S from $ to 50. Initially, the particle density is set to 0.2 and the
particle positions are at random. During the simulations, the
lengths of systems in x- and y-directions are changed
isotropically in each MC trial, while I, is kept as 2.1c.
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Figure 8. Dependence of the cluster type on €/kgT and 6 for (a) A = 6/10 and (b) A = 6/2.
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Figure 9. Dependence of ¢hs on P>/ kT and @ for A = 6/10, where €/ks T is set to (a) 8.0, (b) 6.0, (c) 4.0, and (d) 2.0. The color bars show the value of

bs

Structures Forming in Isothermal-Isobaric Systems
with a Short Interaction Length. If the pressure is sufficiently
high and the interaction length A is short, the double layers of a
triangular lattice, which is the same as the (111) face of the face-
centered cubic (fcc) lattice, should be formed to make the
particle density high. In each plane, the six-fold rotational
symmetry is expected to be high if the triangular lattice is
created. Thus, to estimate the six-fold rotational symmetry, ¢ is
introduced, which is given by

1 1

nn (i)

Z ' eXP(i6‘9i;‘)
j (1)

¢6_Ni

where n(i) is the number of neighboring particles in the same z-
level for the ith particle, §; represents the angle between r;; and
the x-axis, and Z}-’ is the summation of the neighboring particles
in the same z-level. In the simulations, the ith and jth particles
are considered to be in the same z-level when the difference in
their z-coordinates is smaller than 0.20, and the ith and jth
particles are regarded as neighbors when r;; is smaller than 1.1c.

j
The interaction length is 6/10 as a short interaction length.

Figure 9 shows the dependence of ¢s on Po’/kyT and 6.
When €/kgT is small, which means that the effect of thermal
fluctuations is large (Figure 9d), @ is large in the high-pressure
region. With the increase of the interaction energy, the region
with small ¢4 decreases because particles aggregate easily owing
to the attractive interaction, especially in the large @ region
(Figure 9c). However, with a further increase in €/kg T, ¢b¢ starts
to decrease again (Figure 9a,b) in the low-pressure region. When
€/kgT = 8.0 (Figure 9a), the increase in the low ¢ region is
remarked for 50° < 0 < 90° or 1.8 X 107 < y < 0.5. The
decrease in ¢ in this @ region is related to the anisotropy in the
attractive interaction. The clusters such as octahedral hexamers
and pentagonal dipyramidal heptamers form in this @ region.
These clusters do not have the six-fold symmetry, and they are
stable because the number of connections per particle is large.
Thus, it is hard to break them, and a large pressure is necessary to
form the triangular lattice with a large ¢s.

For €/kgT = 8.0, the change in ¢)4 is more drastic than that
with other interaction energies. To clarify the relationship
between ¢4 and the structures formed in the systems with this
energy, several typical snapshots for €/ky = 8.0 are shown in
Figure 10 and the interactions between particles in Figure 11.
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Figure 10. Typical snapshots for A = ¢/10, where €/kzT = 8.0 and 6
and P’/ kT are, respectively, set to (a) 40° and 10, (b)40° and 30, (c)
60° and S, and (d) 100° and 35. y is given by (a,b) 1.2 X 107", (c) 2.5 X
107", and (d) 5.9 X 107", Orange area represents the patch area.

Figure 11. Interactions between particles in Figure 10, where 6 and
P&/ kg T are, respectively, set to (a) 40° and 10, (b) 40° and 30, (c) 60°
and 5, and (d) 100° and 35. y is given by (ab) 1.2 X 107}, (c) 2.5 X
107}, and (d) 5.9 X 107", Yellow lines represent connections between
particles. Red particles and yellow particles are put at the centers of
patchy particles in the lower and upper regions, respectively.

For § = 40° or y = 1.2 X 107}, and P&’ /kzT = 10, a snapshot is
shown in Figure 10a and the connections between particles in
Figure 11a. From these figures, one can find that tetrahedral
tetramers form in the system with these parameters. ¢ should
be large if the tetrahedral tetramers are arranged regularly, but ¢b4

is low in the simulations because the pressure is not too large to
enable the tetramers placed in a regular manner.

When 6 is kept the same and Po’/kyT is increased (Figure
10b), the double layers of a triangular lattice with a large ¢,
which is the same as the (111) face of the fcc lattice, are created.
The connections between particles in this system shown in
Figure 11b are quite different from those with low pressures
shown in Figure 11a: the connections in tetrahedral tetramers
are broken and almost all the particles connect with their three
nearest neighbors in the different z-level, while in both
structures, the number of interacting particles per particle is
three and the interaction energy is estimated as 3¢/(2kT) =
12.0. When 0 = 60° or y = 2.5 X 107", and Po*/ksT = S (Figures
10c and 11c), many octahedral hexamers and a few pentagonal
dipyramidal heptamers form. These clusters are stable as the
number of connections per particle is large. As the rotational
symmetry of pentagonal dipyramidal heptamers is not six-fold,
the regular triangular lattice does not form easily, so that ¢ is
low even with high pressures.

For 0 = 100° or y = 5.9 X 107" (Figures 10d and 11d), the
patch area is so large that the particles can attract not only
particles in the different z-level but also those in the same z-level
if the patch direction is almost parallel to the z-axis. When the
double layers of the triangular lattice form, the number of
connections per particle is nine: the connections with the
particles in the same z-level are six and those with the particles in
the different z-level are three. Thus, the interaction energy per
particle is estimated as 9¢/(2kzT) = 36.0. As the number of
connections is large, the double layers of the triangular lattice are
created even with low pressures.

In previous studies,”””* structures formed by one-patch
particles in thin systems were studied. The system width was
thinner than our simulations, but the double layers of the
triangular lattice were observed. In the systems, the structure
given by Figure 10b and the regular structure formed by
octahedral hexamers are created. In those studies, the structures
formed by patchy particles with 8 > 90° were not studied.
However, if experiments are performed with patchy particles
with @ > 90°, the structure such as in Figure 10d may be
observed.

Structures Forming in Isothermal-Isobaric Systems
with a Long Interaction Length. We also examine what kinds
of structures form in the thin systems for A = 6/2 and show how
the interaction length affects the structures created in the
systems. Figure 12 shows how ¢s depends on P&*/kyT and 6.
For €/kgT = 2.0 (Figure 12d), ¢ is small with low pressures and
the dependence of (¢ on @ seems to be small. Except that ¢4 is
small in the small pressure region even with a large 6, and the
difference between Figures 12d and 9d is small.

For €/kgT = 4.0 (Figure 12c), ¢b6 is small when € is small and
the pressure is low or when 6 = 100°. Small ¢¢ with a low
pressure and a small 8 is also observed for the short interaction
length (Figure 9¢), but a small ¢bs with @ = 100° is observed only
for the long interaction length. ¢ is also small in these two
regions for larger energies, and the areas with a small ¢4 spread
with increasing €/ksT (Figure 12a,b).

Several snapshots are shown to clarify why ¢4 change, as
shown in Figure 12, and how ¢ is related to the structures
created in the thin systems. Figures 13 and 14 show snapshots
with €/kgT = 8.0 for a long interaction length and the
connections between particles in these snapshots, respectively.
For 6 = 20° or y = 3.0 X 107> (Figure 13a), double layers of
triangular lattices are created when the pressure is high. These
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Figure 12. Dependence of ¢ on Po>/kyT and @ for A = /2, where €/k; T is set to (a) 8.0, (b) 6.0, (c) 4.0, and (d) 2.0. The color bars show the value of
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Figure 13. Typical snapshots for A = 6/2, where €/kyT = 8.0, and @ and
P&/ kyT are, respectively, given by (a) 20° and 40, (b) 30° and 10, (c)
30° and 40, and (d) 100° and 10. y is given by (a) 3.0 X 1072, (b,c) 6.7 X
1072 and (d) 5.9 X 107", Yellow area represents the patch area.

double layers are the (111) face of the fcc lattice, which is the
same as that formed for A = ¢/10. As particles in the double
layers form dimers, the interaction energy per particle is given by
€/(2kgT) = 4.0. The directions of the connections between
particles are at random as shown in Figure 14a.

For 6 = 30° or y = 6.7 X 107%, with a low pressure (Figure
13b), the double layers are created, but their structures are more
irregular than those in Figure 13a: the mixture of short rows of

Figure 14. Interactions between particles in Figure 13, where 6 and
P& /kyT are, respectively, given by (a) 20° and 40, (b) 30° and 10, (c)
30° and 40, and (d) 100° and 10. y is given by (a) 3.0 X 1072, (b,c) 6.7 X
1072, and (d) 5.9 x 107". Red particles and yellow particles are put at
the centers of patchy particles in the lower and upper regions,
respectively.

triangles such as A (Figure 13b) and those of squares such as B
(Figure 13b) forms in a plane. The cause of the formation of
these structures is evident when one sees the connection of
particles in the thin system. As shown in Figure 14b, the mixture
of those rows is created by trigonal prismatic hexamers, whose
shape is the same as that of cluster A in Figure 6a. The normal
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directions of the bases of almost all the trigonal prismatic
hexamers are in the xy-plane. As the rows of prismatic hexamers
one of whose side faces appears in the lower layer and in the
upper layer alternatively, the rows of triangles such as A (Figures
13b and 14b) and those of squares such as B (Figures 13b and
14b) are created.

If the pressure is slightly larger, arrays of the trigonal prismatic
hexamers probably become more regular, and the long rows of
triangles and those of squares should appear alternatively.
However, when the pressure becomes further higher in Figures
13c and 14c, those arrays of triangular prismatic hexamers are
broken, and the double layers of a simple hexagonal lattice,
whose structure is the same as D in Figure 6c, are created. For
30° < 0 < 80° with sufficiently large pressures, similar double
layers are observed because the particle density can be high with
the structure.

For 8 > 90° or y > 0.5, as the double layers of the simple
hexagonal lattice are not created, ¢4 is small irrespective of the
pressure. In each layer, the mixture of a square lattice, which is
the (100) face of the fcc lattice, and a triangular lattice, which is
one of the bases of a simple hexagonal lattice, forms even in the
high pressure region (Figures 13d and 14d). When the patch
directions of all the particles are parallel to the z-axis for § = 100°
or y = 5.9 X 107", the number of connections per particle for the
(100) face of the fcc lattice is fourteen: the particles connect with
eight neighbors in the same layer and six neighbors in a different
layer. On the other hand, the number of connections per particle
for the simple hexagonal lattice is thirteen; particles connect six
neighbors in the same layer and seven neighbors in a different
layer. The number of connections per particle in the square
lattice, which is the (100) face of the fcc structure, is larger than
that in the triangular lattice, which is the basal plane of the simple
hexagonal lattice. The internal energy per particle in the square
lattice Ug is estimated as Ug,. = —7¢, and that in the triangular
lattice Uyp is estimated as Upp = —13€/2. Thus, owing to the
benefit of energy gain, the double layers of the square structure
become dominant in high pressures.

B CONCLUSIONS

In this paper, MC simulations were performed and the clusters
and structures formed by one-patch particles in a thin system
were studied. In the isothermal—isochoric simulations, the type
of numerous clusters changed into dimers, tetrahedral tetramers,
octahedral hexamers, and pentagonal dipyramidal heptamers
with the increase of the patch area for a short interaction length.
Taking into account the increase in the connections between
particles, it is natural that the cluster size increased with
increasing patch area. When the patch area was increased
further, the string-like clusters which consist of the connections
of the pentagonal dipyramidal heptamers formed. Finally, the
double layers of island-like clusters, in which the direction of the
patch area of almost all the particles is parallel to the z-axis, were
created when 6 = 100° or y = 5.9 X 107",

For the long interaction length, the cluster size also increased
with increasing patch area, but different types of clusters were
created: pentagonal bipyramidal heptamers did not form, but
triangular prismatic hexamers formed. When A > J30, the
particles in the diagonal positions in a regular hexahedron with
the lattice constant o can attract each other. Thus, one can
expect that the hexahedral octamers probably form to increase
the energy gain.

The difference in the interaction length also affected the
structures in the isothermal—isobaric systems. For the short
interaction length, the double layers of a triangular lattice, which
were the (111) face of the fcc lattice, formed when the pressure
was high. When 8 was around 70°, the double layers of triangular
lattice were difficult to form, which was because the pentagonal
dipyramidal heptamers observed in the isothermal isochoric
simulations were stable. Probably, much higher pressure is
needed to turn the system with pentagonal dipyramidal
heptamers into a simple hexagonal structure. For the long
interaction length, the double layers of the simple hexagonal
lattice did not form when 8 > 90°. Instead of this structure, the
double layers of a square lattice, which is the (100) face of the fcc
lattice, were created to increase the energy gains. As the
difference in the interaction energies per particles between the
two structures was small, the mixture of the two structures was
created in my simulations. However, only the double layers of
the square lattice can be created if the pressure is higher. In these
simulations, the interaction energy was set to €/kz T < 8.0, which
is not so large compared with that of the experiment,'” but the
system size was not large. Thus, one cannot completely wipe
away the concern that the systems were trapped in quasistable
states. To avoid the possibility that the systems did not reach the
equilibrium states, it might be better to use other algo-
rithmsl4,l9,21,6l—64

In these simulations, the width between the two walls I, was
set to 2.10. The restriction in the z-direction affected the
orientation of clusters. For example, one of the triangular planes
in octahedral hexamers and the pentagonal plane in the
pentagonal dipyramidal heptamers which were observed for
the short interaction length were almost parallel to the xy-plane.
When [, was thinner than that in the simulations, the orientation
of other clusters can be probably controlled. The direction of the
basal plane in the trigonal prismatic hexamer, which is observed
in Figure 6a, may be restricted to the xy-plane. In Figure 6c,
clusters such as C and D formed, but only clusters such as C are
probably created in a thinner system.

Even for systems where the interaction between particles is
simple and isotropic, structures created in thin systems
constructed by two parallel walls are strongly affected by the
width between the two walls.”* ™" Structures which are not
expected from the free three-dimensional system are created in
both experiments and simulations. When the attraction is
anisotropic like patchy particles, more various unique structures
may form when [, is controlled. The author intended to study
how the cluster shapes and structures formed by patchy particles
depend on [,.

B COMPUTATIONAL METHODS

As shown in Figure 15, spherical patchy particles with one patch
on their surface constructed in two parallel walls were
considered. It is assumed that the interaction between the
particles and the walls is hard-core repulsion. The interaction
potential between particles is given by the KF potential; the
interaction potential between the ith and jth particles, U< ( rij), is
expressed as™*

UKF(rij) = Urep(”ij) + Uvatt(rij)f(i;ij’ i, ﬁ,‘ (2)

where r; denotes the center of mass for the ith particle, r;=r,—r,

ry = Ir;l, and #; = r;/r;. The first term Uy, (r;) represents the

hard-core repulsive potential given by
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Figure 15. One-patch particles between two parallel walls. Orange area
is the patch area which causes the attractive interaction between
particles. The xy-plane is parallel to the walls and the z-axis is
perpendicular to them.

co (rij <o)
l]re (rl) =
Py 0 (o< rij) 3)

where o is the diameter of spherical patchy particles. The second
term in eq 2 represents the attractive part in the KF potential.
U,(ry) is the square-well potential given by
—e (6<r<o+A)
[]att(rij) =
0 (c+A<r )

where € is the positive parameter representing the strength of
attraction and A is the interaction length. The anisotropy of
attraction caused by the patch area is given by f(r;,n,#;), which is
defined as

1 (> cos & and fi;-#; > cos 0)

0 otherwise (5)

When the diameter of patchy particles is o, the patch area S is
estimated as S = 76>(1 — cos §) /2. The ratio of patch area on the
whole surface y is related to 8 as y = (1 — cos 8)/2. y changed
from 3.0 X 107" to 5.9 X 107 as & was changed from 20 and
100°.
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