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Abstract 

Head computed tomography (CT) can be acquired by using both the axial and helical 

scan modes (AS and HS, respectively) that implemented in all of the clinical scanners. 

The equivalency between these modes has been clinically demonstrated in various 

previous studies. This study aimed to validate the clinically demonstrated equivalency 

of the AS and HS for head computed tomography (CT) using physical image quality 

measures and artifact indices (AIs).  

 

Two 64-row multi-detector row CT systems (CT-A and CT-B) were used for comparing 

AS and HSs with detector rows of 64 and 32. The modulation transfer function (MTF), 

noise power spectrum (NPS), and slice sensitivity profile were measured using a CT 

dose index corresponding to clinical use. The system performance function (SPF) was 

calculated as MTF
2
/NPS. The AI of streak artifacts in the skull base was measured using 

an image obtained of a head phantom, while the AI of motion artifacts was measured 

from images obtained during the head phantom was in motion.  

 

For CT-A, the 50%MTFs were 7 to 9 % higher in the HS than the AS, and the higher 

MTFs of HS associated NPS increases. For CT-B, the MTFs and NPSs were almost 
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equivalent between the AS and HS, respectively. Consequently, the SPFs of AS and HS 

were nearly identical for both CT systems. For both CT systems, the skull base AI did 

not differ significantly between AS and HS, while the motion AIs of HS were 

significantly better than of AS. The superior motion AI in the HS indicated the 

effectiveness of HS on moving patients. 
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1 Introduction 

Head computed tomography (CT) can be acquired by using both the axial and helical 

scan modes (AS and HS, respectively) that implemented in all of the clinical scanners. 

The AS and HS have been evaluated as clinically equivalent, for the head computed 

tomography (CT) scans using multi-detector row CT (MDCT) systems with 64 or more 

rows [1-4]. Despite this general equivalency, reports have described three discrepancies 

in subjective evaluations. One such discrepancy involves the advantage of HS for the 

quality of multiplanar reformation images [5-7]. Another discrepancy involves artifacts 

in the posterior fossa, which were significantly worse in the AS relative to the HS for a 

64-row MDCT system [1]. Although thin detector collimations can reduce artifacts [8], 

a previous report did not provide the detector configuration for the AS. The other 

discrepancy involves visualization of the cerebral cortex adjacent to the calvarium 

cephalad, which was evaluated lower in HS than in AS on a 128-row MDCT system [2]. 

This discrepancy appears to have resulted from a difference in the slice thickness and/or 

beam hardening correction. However, the slice sensitivity profiles (SSPs) and details of 

beam hardening correction were not previously reported. In the previous studies 

comparing AS and HS, the quantitative evaluations were limited to standard deviations 

(SD) and contrast-to-noise ratios (CNR). To the best of our knowledge, no studies have 
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compared the AS and HS for head CT in terms of physical image qualities such as the 

modulation transfer function (MTF), noise power spectrum (NPS), and SSP. Therefore, 

this study aimed to use multiple parameters, including the MTF, NPS, and SSP, to 

validate the equivalency between the AS and HS for head CT. Artifact indices (AIs) of 

beam hardening streak artifacts in the skull base, with and without head motion, were 

also compared.  

 

2 Methods and Materials 

2.1 Scan and reconstruction parameters 

Two 64-row MDCT systems were used. One CT system (CT-A) had detector rows of 

0.5 mm  64, and the other system (CT-B) had detector rows of 0.625 mm  64. Table 1 

shows scan and reconstruction parameters of AS and HS for CT-A and CT-B, used in 

this study. These parameters corresponded to ones for clinical use. The detector 

configurations for AS were 4 mm  4 for CT-A and 5 mm  4 for CT-B. The detector 

configurations for HS were the 32-row (HS-32) and 64-row modes (HS-64), which were 

0.5 mm  32 and 0.5 mm  64, respectively, for CT-A and 0.625 mm  32 and 0.625 

mm  64, respectively, for CT-B. The tube currents were adjusted such that the 

weighted CT dose index (CTDIw) for AS and the volume CT dose index (CTDIvol) for 
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HS were approximately 60 mGy. The CT images were reconstructed using nominal slice 

thicknesses of 4 and 5 mm for CT-A and CT-B, respectively. The filter back projection 

(FBP) was used as reconstruction algorithms for both CT systems. We did not use  

higher pitch factors (e.g., ≥0.8) because these were not recommended by the 

manufacturers [3], and because the HS scan durations are sufficiently short (~7 s for 

HS-64) in most clinical situations based on 64-row MDCT systems. 
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Table 1 Scan and reconstruction parameters used in this study 

  

 CT-A CT-B 

Scan mode AS HS HS AS HS HS 

Axial configuration (mm) 4 x 4   32 x 0.5  64 x 0.5  4 x 5    32 x 0.625  64 x 0.625  

Peak voltage (kVp) 120 120 120 120 120 120 

Tube current (mA) 260 170 190 300 160 160 

CTDI vol. (mGy) 59.2 59.6 60.1 59.1 60.4 59.7 

Rotation time (s) 1.0 1.0 1.0 1.0 1.0 1.0 

Pitch factor － 0.656 0.641 － 0.531 0.516 

Reconstruction slice 

thickness (mm) 
4 4 4 5 5 5 

Reconstruction kernel FC21 FC21 FC21 Standard Standard Standard 
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2.2 Modulation transfer function 

MTFs were measured using a handmade metal wire phantom constructed with a metal 

(Cu) wire with a diameter of 0.15 mm and a cylindrical acrylic case (diameter = 50 mm). 

The case was filled with water. The small phantom size (50 mm) was used to improve 

the measurement accuracy of MTF by reducing image noise, which was valid because it 

is known that FBPs yield CT images with linear properties independent of detector dose. 

This phantom was carefully positioned such that its central axis was exactly parallel to 

the rotation axis of the CT system. Next, the position of the wire was set with a 10-mm 

offset in the y-direction to avoid a specific (typically, somewhat lower) MTF induced by 

the coaxial position of the central axis of the phantom with the rotation axis of the CT 

system [9]. CT images were reconstructed using minimally available display fields of 

view (DFOVs) of 50 mm for CT-A and 100 mm for CT-B to precisely detect the point 

spread functions from the thin wire. A 256-pixel × 256-pixel sub-image around the wire 

was analyzed using a 2D fast Fourier transform. Then, the radial averaging technique, in 

which the fx and fy frequencies in two dimensional (2D) data were collapsed to a one 

dimensional (1D) radial frequency fr (distance from center point in frequency 

coordinate), was applied to generate the final 1D MTF [9-11]. 
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2.3 Noise power spectrum 

The NPS was measured using a water phantom (diameter = 20 cm) with an absorption 

similar to that of the adult head [12]. Uniform noise images were obtained by scanning 

the water phantom, and a central 256-pixel × 256-pixel region on each image was 

processed using an established method with the 2D fast Fourier transform [13-15]. The 

CT number in Hounsfield units (HU) is used to calculate the NPS. 2D NPS 

measurements were converted to a 1D NPS using the radial averaging technique 

mentioned in the method subsection of MTF. The 1D data were binned into 40 

frequency bins to mitigate the data fluctuations in NPS. To reduce the variability of the 

NPS results, we considered the average value of at least 80 slices obtained from four 

scans of the phantom. Although this phantom has a homogeneous content of water, the 

influences of skull attenuation correction on the images for both CT systems were slight 

and negligible. 

 

2.4 System performance function 

The noise equivalent quanta (NEQ) is the effective number of photons acquired by the 

detector; for CT, the NEQ, as a function of the spatial frequency u, can be calculated as: 
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)(/)()( 2 uNPSuMTFuuNEQ A ,                              (1) 

 

where NPSA(u) is another version of the NPS calculated using the linear attenuation 

coefficient  instead of the CT number in HU [16]. For the purpose of this study, the 

absolute NEQ-derived value was not required; accordingly, the NPS(u) calculated using 

the CT number in HU was used for relative evaluations of imaging performance. 

Moreover, focusing on the image quality term MTF
2
(u)/NPS(u) in equation (1), we 

defined this measure as a system performance function (SPF) as follows: 

 

)(/)()( 22 uNPSuMTFuSPF                                (2) 

 

This calculation is based on the principle of the pre-whitening theorem [17]; thus SPF is 

independent of filter kernel because the MTF
2
 term has the same spatial frequency 

dependence as NPS. Thus, by using the SPF, the image qualities can be compared 

between systems with different MTFs. 
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2.5 Slice sensitivity profile 

The SSP was measured using a bead phantom [11, 18]. This phantom, which contains a 

small (diameter: 0.2 mm) bead of lead, was included in the JCT II phantom set (Kyoto 

Kagaku Co., Kyoto, Japan) provided for quality control. The same z-collimations and 

reconstruction slice thicknesses as those of other measurements were used. CT images 

were reconstructed with a DFOV of 100 mm and increments in table position of 0.2 mm. 

The average value of a region of interest (ROI) placed circumferentially around the 

bead was measured in each image, and the values with respect to the table position were 

plotted after normalization based on the peak ROI value. The full width at half 

maximum (FWHM), which is usually defined as the effective slice thickness, and full 

width at tenth maximum (FWTM) values were obtained from the measured SSP. 

 

2.6 Artifacts in the skull base 

Artifacts in the skull base were measured from images obtained by scanning a head 

phantom composed of a dry human skull bone and an acrylic case resembling the 

outline of a head (PH-34; Kyoto Kagaku Co., Ltd, Kyoto, Japan), as shown in Fig. 1(a). 

The internal space in the phantom was filled with water. As previously reported [19], 

the AI was calculated as: 
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22

ba SDSDAI  ,                                                        (3) 

 

where SDa is the average SD of circular ROIs placed at four locations in the skull base 

and SDb is the average SD measured at the supratentorial region where artifacts usually 

do not occur {Fig. 1(b) and 1(c)}. This AI calculation is based on a well-known 

principle of noise addition [20]. All ROI sizes were set to 500 mm
2
. We repeated the 

phantom scans 10 times and compared the average AI results from the AS, HS-64, and 

HS-32. 
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Fig. 1 (a) A photo of the head phantom. (b and c) Representative CT images used to 

measure artifact index (AI) of skull base. The average standard deviation (SD) was 

calculated from four regions of interest (ROIs, dotted line circles) in each of (b) the 

skull base image with artifacts and (c) supratentorial image without artifacts. The 

artifact index (AI) was calculated from these two average SD values 

 

 

  

(a) (b) (c)
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2.7 Motion artifact 

Motion artifacts were measured on scanned images of the above mentioned head 

phantom with motion. As shown in Fig. 2, the phantom was axially rolled during the 

scan using lateral force delivered via a self-made mechanism comprising a 20-ml  

syringe (SS-20ESZ; Terumo Corporation, Tokyo, Japan) and a power injector (Dual 

Shot GX7; Nemoto Kyorindo Co., Ltd., Tokyo, Japan) with a dedicated syringe. Water 

in the dedicated syringe was injected into the 20-ml syringe to push the plunger out. The 

plunger speed was set to 10 mm/s by adjusting the injection speed. The AI was 

measured at four locations, as described for the measurement of skull base artifacts, and 

the same SDb values were reused in the calculation. As described for the skull base 

artifacts, the phantom scans were repeated 10 times. The average AI results were 

compared between the AS, HS-64, and HS-32. 
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Fig. 2 Schematic of the experimental configuration used to measure motion artifacts. 

The phantom was rolled axially during the scan by lateral force delivered via a 

self-made mechanism. The speed of the plunger used to push the phantom was set to 10 

mm/s 

 

  

Rubber band

Head phantom
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x

y
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2.8 Statistical evaluation 

The AI results were statistically compared between AS, HS-64, and HS-32 for each of 

the skull base and the motion using SPSS software, version 17.0 (IBM, Tokyo, Japan). 

A Wilcoxon signed-rank test was applied to the data. The Bonferroni correction was 

required to counteract the problem of multiple comparisons using three samples (AS, 

HS-64, and HS-32). Differences with p values < 0.05 were considered statistically 

significant. 

 

3 Results 

3.1 Modulation transfer function 

Figure 3 presents the MTF results. The reproducibility of our MTF measurements was 

sufficiently high because the contrast-to-noise ratio of Cu wire images were very high 

(> 400); accordingly, error bars are not indicated on the MTF results. CT-A yielded 

slightly higher MTFs in the HS than in the AS, whereas the MTFs in the HS-64 and 

HS-32 were very similar. The 50%MTF and 10%MTF (50%MTF/10%MTF) for AS, 

HS-64, and HS-32 were 0.40/0.74, 0.43/0.76, and 0.44/0.77 cycles/mm, respectively. 

The CT-B yielded almost identical MTFs in the AS and HS.  
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3.2 Noise power spectrum 

Figure 4 depicts the resultant NPSs. The CT-A yielded slightly higher NPSs in the HS 

than in the AS.  

 

3.3 System performance function 

Figure 5 presents the calculated SPFs. The SPFs did not differ noticeably between AS, 

HS-64, and HS-32 on either the CT-A or CTB. 

 

3.4 Slice sensitivity profile 

Figure 6 shows SSPs. Table 2 presents the corresponding FWHMs and FWTMs of the 

SSPs and relative values compared to each value of AS. The two CT systems had almost 

identical effective slice thicknesses (FWHMs) in the AS and HS. However, the FWTMs 

in both HS-64 and HS-32 were increased relative to the AS by 7% on the CT-A and by 

21% on the CT-B. 

 

3.5 Artifacts in the skull base 

Figure 7 presents the AI data measured from the skull base images obtained by 

scanning the PH-34 head phantom composed of dry human skull bone. The AIs of the 
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AS, HS-64, and HS-32 did not differ significantly for either CT system. Figure 8 

depicts representative CT images of the skull base. Corresponding to the AI results, no 

notable differences were observed. 

 

3.6 Motion artifact 

Figure 9 presents the results of the motion AI measured on scanned images of the head 

phantom with the rolling motion. Notably, the AS was significantly inferior to the HS on 

both the CT-A and CTB (p < 0.05). Consistent with the results, severe artifacts are 

visible on AS images, as shown in Fig. 10. The motion artifacts were well suppressed 

on images obtained using the HS-64 and HS-32. 
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Fig. 3 Measured modulation transfer functions (MTFs) 
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Fig. 4 Measured noise power spectra (NPSs) 
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Fig. 5 System performance functions (SPFs) calculated by dividing MTF
2
 by NPS 
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Fig. 6 Measured slice sensitivity profiles (SSPs) 
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Table 2 Full width of half maximum (FWHM) and Full width of tenth maximum 

(FWTM) of slice sensitivity profiles for AS and HS. The values in parentheses represent 

relative values compared to each value of AS 

 

 CT-A CT-B 

 FWHM (mm) FWTM (mm) FWHM (mm) FWTM (mm) 

AS 4.0 (1.00) 4.5 (1.00) 5.3 (1.00) 6.8 (1.00) 

HS-64 4.0 (1.00) 4.8 (1.07) 5.3 (1.00) 8.2 (1.21) 

HS-32 4.0 (1.00) 4.8 (1.07) 5.2 (0.98) 8.2 (1.21) 
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Fig. 7 Skull base AI values measured from images obtained by scanning a head 

phantom composed of a dry human skull bone shown in Fig. 1. ns: not significant 
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Fig. 8 Representative skull base images generated using the (a) AS, (b) HS-64, and (c) 

HS-32 for the CT-A and (d) AS, (e) HS-64, and (f) HS-32 for the CT-B 
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Fig. 9 Motion AI values measured on scanned images of the PH-34 phantom with a 

rolling motion. *: P <0.05, ns: not significant 
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（a）

（d）

（c）

（f）

（b）

（e）

 

Fig. 10 Representative images of motion artifacts generated using the (a) AS, (b) HS-64, 

and (c) HS-32 for the CT-A and (d) AS, (e) HS-64, and (f) HS-32 for the CT-B 
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4 Discussion 

This study measured MTF, NPS, and SSP as indices of in-plane spatial resolution, noise, 

and z-directional spatial frequency (slice thickness), respectively for the AS and HS. For 

the CT-A scanner, the MTFs were slightly higher in the HS than in the AS, and the 

NPSs were also slightly higher in the HS, especially at middle to high frequencies. the 

NPS increases in the HS were attributable to the enhanced noise caused by the higher 

MTFs of HS because the SPF results of HS and AS were nearly identical, meaning that 

the difference in MTFs was canceled out by the calculation of SPF. Accordingly, the 

SPF results from the CT-A revealed the equivalent imaging performances of the AS and 

HS. On the CTB, the MTFs of the HS and AS were almost identical, and the NPSs were 

also nearly equivalent. Consequently, the SPFs were equivalent between the AS and HS. 

These results demonstrate that the imaging performances of both the HS and AS were 

nearly equivalent under the same CTDI, indicating that the HS does not cause any loss 

of dose efficiency during the acquisition and reconstruction processes. 

We did not perform CNR measurements generally using a low-contrast phantom 

because we determined preliminarily that the MTFs of the AS and HS differed when 

using the CT-A; basically, the CNR is not appropriate for comparing systems with 

different MTFs [21]. Two previous studies based on 64-row CT systems presented 
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significant differences of CNR, where CNR of AS was higher than that of HS in one 

report [1], and, in contrast, CNR of AS was lower than that of HS in the other report [2]. 

However, it remains unclear whether the AS and HS differed substantially because the 

MTFs were not measured in these studies. 

The skull base AI results did not differ significantly between the AS and HS when 

either the CT-A or CT-B was used, and the observed phantom images of the skull base 

were consistent with the AI results (Fig. 8). These findings indicate that the 

reconstruction algorithms of the CT-A and CT-B were sufficiently sophisticated and 

could reduce the artifacts and equalize the degrees of artifact between the AS and HS. 

Although the appearances of the brain peripheral regions adjacent to the skull bone 

differed between the images produced by the CT-A and CT-B, we considered this 

variation to be within the range of image characteristics usually accepted by most 

radiologists. Though, in Fig. 8, some edge artifacts were observed in thick spaces 

between the skull bone and the outer perspex, we presumed that these artifacts would 

disappear in actual images of human heads. It is possible that these artifacts were caused 

by data correction processes (e.g. skull attenuation correction) for head protocols. 

We note that the motion artifacts caused by the AS were effectively suppressed by 

the HS on both CT systems. The AI values in the AS were significantly higher than 
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those in the HS. The pitch factors used for HS were quite low on both CT systems 

(0.65 for CT-A and 0.52 for CT-B). The effective temporal resolutions of such low 

pitch factors may be inferior to those of AS even under the same rotation speed [22]. 

Thus, it was suggested that the effective temporal resolutions of HS were somewhat 

inferior to that of AS for both systems. Nevertheless, fewer motion artifacts were 

observed on HS images than on AS images.  

We presume that this suppression effect was attributable to the implementation of 

projection data interpolation in the helical interpolated reconstructions performed using 

both CT systems. We hypothesize that the helical interpolation process acted as a time 

domain interpolation process wherein which the projection data inconsistencies caused 

by patient motion were smoothed and suppressed. This effect must be imperfect because 

the interpolation was not designed to reduce motion artifact. Moreover, there are various 

motion patterns in clinical situations. Accordingly, we presume that the reduction of 

artifacts depends strongly on the degree of motion and the motion pattern. In fact, some 

streaking, multiple bone edges, and image blurring can be observed in the HS image in 

Fig. 10. To our knowledge, this motion suppression effect of HS has not previously 

been reported clinically or quantitatively, although some impressions regarding the 

motion artifact suppressing effect of HS have been discussed within our community of 
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Japanese radiological technologists. In this study, our ability to demonstrate this effect 

quantitatively using an AI measured using a moving head phantom is notable. 

This study had some limitations. First, only two CT systems were used, and 

therefore different systems may not be able to achieve the image quality equivalency 

between AS and HS presented herein. Second, we also used only one type of head 

phantom. Again, the equivalency between AS and HS demonstrated in this study may 

not be achievable with different phantoms, given the individual differences in the bone 

structure and density distribution of the human head. Third, we examined only one 

pattern of rolling motion. Further investigations of different motion patterns 

corresponding to clinical situations are needed to characterize the motion artifact 

reducing effect of the HS. 

 

5 Conclusion 

Consistent with previous reports of clinical similarities between the AS and HS, we 

observed nearly identical physical image qualities obtained using these two modes. 

Although we did not observe significant differences in the skull base artifacts, the 

motion artifacts were reduced significantly with the HS relative to the AS on both CT 

systems, suggesting that HS is recommendable for patients who find it difficult to 
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maintain a static posture. 
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