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Abstract

Number theory can be connected to coding theory via E-polynomials. By this
fact, we continue the investigation of E-polynomials associated to Type II Z4-
codes. In other side, from the invariant theory, we can construct a group related
to Type II Z4-codes. From the group constructed, we obtain the generators of
the ring appearing by the complete weight enumerators of Type II Z4-codes and
the E-polynomials. We also show that some invariant rings of some groups can
be generated by the E-polynomials.
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1 Introduction

The notion of E-polynomials was introduced in [7]. After the introduction,
the study of E-polynomials then was continued in [6]. In [6], the generators
of the rings generated by the E-polynomials were obtained.

We deal with the codes over Z4, denoted by Z4-codes. By some identity
in Type II Z4-codes, we can construct a group G8 of order 1536 generated
by three matrices. Then, we construct E-polynomials for the group G8 show
that the ring generated by them is minimally generated by E-polynomials of
the following weights:

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

The investigation is then continued by obtaining the invariant ring related
to the matrix group G8. We remember that the group G8 is related to the
complete weight enumerators of Z4-codes. The generators of the ring of E-
polynomials do not seem to be enough to generate the invariant ring for the
finite group G8 defined in the next section. Because of this condition, we
obtain the generators of that invariant ring by using the E-polynomials and
the complete weight enumerators of Z4-codes. For the dimension formulas
and the basic theory of E-polynomials used herein, we refer to [1, 6]. For the
computations, we use Magma [3] and SageMath [9]. The generator matrices
of the groups and the codes used can be found in [5].

2 Preliminaries

We start by giving three matrices as follows.

M1 =
η8
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ,M2 =


1 0 0 0
0 η8 0 0
0 0 −1 0
0 0 0 η8

 ,

M3 =


η8 0 0 0
0 η8 0 0
0 0 η8 0
0 0 0 η8

 .

Let G,G8 be the matrix groups defined by the following.

G := 〈M1,M2〉,

G8 := 〈M1,M2,M3〉
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The group G is of order 384, while G8 is of order 1536. It is known that
the complete weight enumerators of Z4-codes is left invariant by the matrix
group G8.

We denote by R and R8 the invariant rings of G and G8, respectively:

R = C[t0, t1, t2, t3]
G,

R8 = C[t0, t1, t2, t3]
G8

under an action of such matrices on the polynomial ring of four variables t0,
t1, t2, and t3. The dimension formulas of R and R8 are given as follows:∑
w

(dimRw) tw =
1 + t8 + 2t10 + 2t12 + 2t14 + 2t16 + t18 + t20 + t22 + t26 + t28 + t30

(1− t8)3 (1− t12)
,

∑
w

(
dimR8

w

)
tw =

1 + t8 + 2 t16 + 2 t24 + t32 + t40

(1− t8)3 (1− t24)
.

The dimension formula of an invariant ring give us the information related
to its generators. This formula can be found by the Molien series.

3 Codes

A code C over Z4 of length n, called a Z4-code, is an additive subgroup of
Zn4 . The inner product of two elements a, b ∈ C on Zn4 is given by

(a, b) = a1b1 + a2b2 + ...+ anbn mod 4

where a = (a1, a2, ..., an) and b = (b1, b2, ..., bn). The dual of C is code C⊥

satisfying
C⊥ = {y ∈ Zn4 |(x, y) ≡ 0 mod 4,∀x ∈ C}.

We say that C is self-orthogonal if C ⊂ C⊥ and self-dual if C = C⊥. A code
C is called Type II if it is self-dual and satisfies

(x, x) ≡ 0 mod 8

for all x ∈ C. Type II Z4-code can only exist when its length is multiple of
8.

In this dissertation, we deal with the complete weight enumerator. The
complete weight enumerator (CW) of a Z4-code C is defined by

CWC(t0, t1, t2, t3) =
∑
c∈C

t
n0(c)
0 t

n1(c)
1 t

n2(c)
2 t

n4(c)
3

where ni(c) denotes the number of c components which are equivalent to i

modulo 4. For every Type II Z4-code, CWC(t0, t1, t2, t3) is G8-invariant [2].
From the dimension formula of R8, we have the following proposition.
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Proposition 1. The invariant ring R8 can be generated by the set of complete
weight enumerators of Type II Z4-codes consisting of at most

4 codes of length 8,
2 codes of length 16,
3 codes of length 24,
1 code of length 32,
1 code of length 40.

Let p8a, p8b, o8, k8, p16a, p16b, q24a, q24b, g24, q32 be the complete weight enu-
merators of some codes. The numbers written as subscript denote the degree
of each weight enumerators. The codes o8, k8, and g24 are known as octacode,
Klemm code, and Golay code, respectively. The generator matrices of the
complete weight enumerators which are denoted by p are taken from [8]. The
reader interested in these generators can see [5]. The Klemm code has the
generator matrix 

1 1 1 · · · 1 1
2 0 · · · 0 2

2 · · · 0 2
. . . ...

...
2 2

 .

The numbers written as subscript indicate the weight of each complete weight
enumerator.

The explicit forms of the complete weight enumerators used are the fol-
lowing.

p8a = t80 + 4t30t
4
1t2 + 12t60t

2
2 + 4t0t

4
1t

3
2 + 38t40t

4
2 + 12t20t

6
2 + t82

+ 4t71t3 + 16t30t
3
1t2t3 + 16t0t

3
1t

3
2t3 + 24t30t

2
1t2t

2
3 + 24t0t

2
1t

3
2t

2
3

+ 28t51t
3
3 + 16t30t1t2t

3
3 + 16t0t1t

3
2t

3
3 + 4t30t2t

4
3 + 4t0t

3
2t

4
3

+ 28t31t
5
3 + 4t1t

7
3,

p8b = t80 + 8t30t
4
1t2 + 12t60t

2
2 + 8t0t

4
1t

3
2 + 38t40t

4
2 + 12t20t

6
2

+ t82 + 16t61t
2
3 + 48t30t

2
1t2t

2
3 + 48t0t

2
1t

3
2t

2
3 + 32t41t

4
3

+ 8t30t2t
4
3 + 8t0t

3
2t

4
3 + 16t21t

6
3,

k8 = t80 + t81 + 28t60t
2
2 + 70t40t

4
2 + 28t20t

6
2 + t82 + 28t61t

2
3

+ 70t41t
4
3 + 28t21t

6
3 + t83,

o8 = t80 + t81 + 14t40t
4
2 + t82 + 56t30t

3
1t2t3 + 56t0t

3
1t

3
2t3

+ 56t30t1t2t
3
3 + 56t0t1t

3
2t

3
3 + 14t41t

4
3 + t83.

In this dissertation, we omit writing some polynomials because the are too
large.
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Let W be a set of the the complete weight enumerators aforementioned.
We denote by W the ring generated by the complete weight enumerators. By
generating a ring generated by W , we have the following result.

Theorem 1. The invariant ring R8 can be generated by W .

Proof. It follows from Proposition 1. The comparison of the rings is shown
in Table 1.

Table 1: The dimensions of R8
k and Wk

k 8 16 24 32 40

dimR8
k 4 11 25 48 83

dimW 4 11 25 48 83

4 E-Polynomials

In this section, we define an E-polynomial for a 4 × 4 matrix group. Let t
be a vector containing 4 variables: t0, t1, t2, and t3. We understand that
the vector here means a column vector. An E-polynomial of weight k for a
matrix group G is defined by

ϕGk = ϕGk (t) =
1

|G|
∑
σ∈G

(σ0t)
k =
|K|
|G|

∑
K\G3σ

(σ0t)
k

where

K = {


1 0 0 0
? ? ? ?
? ? ? ?
? ? ? ?

 ∈ G}
and σ0 is the first row of σ. The definition of E-polynomial for the group G8

is similar. For simplicity, we write ϕk instead of ϕGk .
We denote by E8 the ring generated by ϕks for the group G8. Denote by

κ the cardinality of K\G. The numbers κ for G and G8 can be seen in Table
4.

Table 2: The number κ
Group Order K κ

G 384 8 48
G8 1536 16 96
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Theorem 2. The ring E (resp. E8) can be generated by the polynomials ϕk
where

k ≡ 0 mod 4, 8 ≤ k ≤ 48.

(resp. k ≡ 0 mod 8, 8 ≤ k ≤ 96).

Proof. Let σi be the representative of K\G8 (1 ≤ i ≤ κ). We define

xi = σi0t,

where σi0 is the first row of σi. For every ϕi, we express ϕi in C[x1, . . . , xκ]
and apply the fundamental theorem of symmetric polynomials. Therefore,
every ϕi can be written uniquely in εi, . . . , εκ ∈ C[x1, . . . , xκ] where

εr =
∑

i1<i2<···<ir

xi1xi2 · · · xir , (1 ≤ r ≤ κ).

We do not write all E-polynomials for this case. In 3, we show the number
of monomials of ϕk for G8.

Table 3: The number of monomials of ϕk

k l(ϕk) k l(ϕk)

8 24 56 4082
16 127 64 6009
24 374 72 8464
32 829 80 11511
40 1556 88 15214
48 1619 96 19637

From Theorem 2, we can understand that E8 is finitely generated. Under
this situation, the interesting point can be disscussed is the minimal gen-
erators of E8 can be obtained. In the next theorem, we show the minimal
generators of E and E8.

Theorem 3. The rings E, E8 are minimally generated by the E-polynomials
of weights

E : 8, 12, 16, 20, 24, 28, 32, 40, 48,

E8 : 8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

Proof. We do the proof the computation. The dimensions of E8 are shown in
Table 4.
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Table 4: The dimensions of R8
k and E8

k

k 8 16 24 32 40 48 56 64 72 80 88 96

dimR8
k 4 11 25 48 83 133 200 287 397 532 695 889

dimE8
k 1 2 3 5 7 11 15 22 30 42 52 61

From Table 4, it seems that the generators of the ring E8 is not sufficient
to generate R8. We can combine R8 and W to generate the ring R8. The
combination give us the following theorem.

Theorem 4. The invariant ring R8 can be generated by E8 and the complete
weight enumerators

p8, o8, k8, p16, p24, q24, p32.

More specifically, the set

{ϕk, p8, o8, k8, p16, p24, q24, p32 | k = 8, 16, 24}

generates ring R8.

Proof. This is by the computation. The result is shown in Table 5.

Table 5: The dimensions of R8
k and R̃

k 8 16 24 32 40

dimR8
k 4 11 25 48 83

dimR̃ 4 11 25 48 83

5 Other E-polynomials

We refer to [4] for the groups constructed in this section. We define two
groups H1 and H2.

Let C ⊂ Fn3 be a self-dual code. The (Hamming) weight enumerator
WC(x, y) of C is invariant under the transformation of (x, y) by the matrix
S1

S1 =
1√
3

(
1 2
1 −1

)
.

Using the fact that C is self dual, the weight of of every c ∈ C is multiple
of 3. Here, WC(x, y) is also invariant under transformation of (x, y) by the
matrix S2

S2 =

(
1 0

0 e
2πi
3

)
.
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Table 6: The number κ of H1, H2

Group Order K κ

H1 24 3 8
H2 120 10 12

We define three other matrices T1, T2, T3 by

T1 :=

1 2 2
1 η5 + η45 η25 + η35
1 η25 + η35 η5 + η45

 , T2 :=

1 0 0
0 η25 0
0 0 η35

 , T3 :=

1 0 0
0 0 1
0 1 0


where η5 denotes the 5-th root of unity. We can write

η5 =
1

4
(
√

5 + i

√
2
√

5 + 10− 1).

These matrices are related to the symmetric Hilbert modular form.
Let H1, H2 be the groups defined as follows.

H1 := 〈S1, S2〉,

H2 := 〈T1, T2, T3〉.
The details of the subgroup K of each group can be seen in Table 6.

Let R(H1),R(H2) be the invariant rings of H1, H2, respectively. The di-
mension formulas of R(H1),R(H2) are the following.

H1 :
1

(1− t4)(1− t6)
,

H2 :
1

(1− t2)(1− t6)(1− t10)
.

Following the method described in the previous section, we obtain that
the ring generated by ϕH1

k (resp. ϕH2

k ) is minimally generated by the E-
polynomials ϕ4 and ϕ6 (resp. ϕ2, ϕ6, and ϕ10). From the computation, the
rings of ϕH1

k (resp. ϕH2

k ) coincide with R(H1) (resp. R(H2)). Therefore, in
this situation we can write

R(H1) = C[ϕ4, ϕ6],

and
R(H2) = C[ϕ2, ϕ6, ϕ10].
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