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Abstract

Number theory can be connected to coding theory via E-polynomials. By this fact, we

continue the investigation of E-polynomials associated to Type II Z4-codes. In other side,

from the invariant theory, we can construct a group related to Type II Z4-codes. From

the group constructed, we obtain the generators of the ring appearing by the complete

weight enumerators of Type II Z4-codes and the E-polynomials. We also show that some

invariant rings of some groups can be generated by the E-polynomials.

iv



Contents

Preface ii

Abstract iv

1 Introduction 1

2 Basic Theories 3

2.1 Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Ring, Field, and Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Symmetric Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Invariant Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Computations 13

3.1 Defining the Matrix Group . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Constructing E-polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Obtaining the generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 E-Polynomials associated to Type II Z4-codes 18

4.1 Invariant Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 E-Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Other E-polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Conclusions and Discussions 28

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Generator Matrices 32

v



Chapter 1

Introduction

Eisenstein polynomial, E-polynomial for short, is combinatorial analogue of Eisenstein

series in number theory. E-polynomial was first defined by Oura in [16]. In his paper, Oura

gave the notion of E-polynomials related to coding theory. By analogy of E-polynomials

with Eisenstein series, he investigated the ring of E-polynomials which is a subring of the

ring generated by the weight enumerators of Type II codes.

After the notion given, there are some researches discussing E-polynomials. For ex-

ample, Miezaki [14] provided analogous properties of Eisenstein polynomials and zeta

polynomials.

The investigation of E-polynomials associated to codes then was continued by Moto-

mura and Oura [15]. Following the direction of E-polynomials in [16], they introduced

the E-polynomials associated to Z4-codes. As done in [16], the ring generated by E-

polynomials was determined.

With the difference in the group used, we continue the study of E-polynomials associ-

ated to Z4-codes. While in [16] the weight enumerator exploited is the symmetrized weight

enumerator, the weight enumerator taken here is the complete weight enumerator. In this

situation, the group mentioned here is of bigger order than in [16].

Besides the bigger order, one needs to consider is the number of variables of the polyno-

mials appearing. Since the complete weight enumerator is a polynomial of four variables,

we need to consider the computation to reduce the memory allocation.

In our case, we define an E-polynomial with respect to the complete weight enumerators

of Z4-codes. We obtain that the ring generated by them is minimally generated by E-

polynomials of the following weights:

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

Because these polynomials do not generate the invariant ring of a group related to Z4-

codes, we combine the E-polynomials and the complete weight enumerators of Z4-codes.

Combining the E-polynomials and the complete weight enumerators of Z4-codes, we

obtain that the invariant ring mentioned can be generated by the polynomials of weights

up to 32. Since by the dimension formula it is enough to compute up to degree 40, we

finish the computation up to this degree.

1



In the end of our results, we show other groups of degrees 24 and 120. The invariant

rings of both groups can be generated by the E-polynomials for each group. In this case,

the rings of E-polynomials coincide with the invariant ring of the groups.

In this dissertation, the computations are done by Magma [5] and SageMath [20]. Sage-

Math is a free open-source Mathematics software which is very useful for the computation.
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Chapter 2

Basic Theories

This chapter contains some definitions and examples. We give basic theories of group,

ring, field, and some materials related to coding theory. We refer to [12], [13], and [19] for

the details.

2.1 Group

In this section, we give basic theories of a group.

Definition 2.1.1. Let G be a non-empty set. Under the operation ∗, we call G a group

if the following conditions hold.

1. g1 ∗ g2 ∈ G for all g1, g2 ∈ G. (closed)

2. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) for all g1, g2, g3 ∈ G. (associative)

3. There exists 1 ∈ G such that 1 ∗ g = g ∗ 1 = g for all g ∈ G. (identity)

4. For every g ∈ G, there exists h ∈ G such that g ∗ h = h ∗ g = 1. (inverse)

The element 1 in 3 is called the identity element. The element h in 4 is called the

inverse of g. In general, the inverse of g is denoted by g−1. The operation ∗ is called the

law of composition. If the operation ∗ is understandable, the notation g1g2 is usually used

instead of g1 ∗ g2 for all g1, g2 ∈ G. If only conditions 1 and 2 are satisfied, then we call G

as a semigroup. We call the group G commutative or abelian if G is commutative under ∗.
By a monoid, we shall mean a set G with operation which is closed and associative, and

a unit element.

Let G be a group. The order of G, denoted by |G|, is the number of elements of G.

We say G finite if |G| is a finite number. Otherwise, we call G an infinite group.

Example 2.1.1. The set of integers, denoted by Z, is a group under addition, Z is not a

group under multiplication.

Example 2.1.2. The set of integers modulo n, denoted by Zn, is a group under addition.
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Example 2.1.3 (Cyclic groups). A group G is called cyclic if there is an element g ∈ G
such that every element in G can be written in the form gn (if under multiplication) or

ng (if under addition) for some integer n. Here, such element g is called a generator of G.

The group Z is one of cyclic groups. Its generator is only 1. We can write Z = 〈1〉.

Example 2.1.4. There is a group generated by e2πi/n. It can be written as 〈e2πi/n〉. The

generator of this group is called the primitive n-th root of unitary.

Example 2.1.5. If n is a prime number, Zn − {0} is a group under multiplication.

Example 2.1.6. Let GL(n,Zk) be the set of all invertible n× n matrices with entries in

Zk. Then GL(n,Zk) is a group under matrix multiplication.

Example 2.1.7 (The direct product). Let G1, G2 be groups. The direct product G1×G2

is defined by the set of all pairs (x1, x2) where x1 ∈ G1 and x2 ∈ G2. For all xi, yi ∈ Gi,
the law of composition of this set is defined by

(x1, x2)(y1, y2) := (x1y1, x2y2).

The G1 ×G2 is a group. The unit element of G1 ×G2 is (e1, e2) where e1, e2 are the unit

elements in G1, G2, respectively. More generally, the direct product G1 × · · · × Gn of n

groups G1, . . . , Gn is also a group.

We provide more for Example 2.1.7. Let I be an index set. For each i ∈ I, let Gi be

a group. By G =
∏
Gi, we mean the direct product of Gi for all i ∈ I. Then G is the set

all families (xi)i∈I where xi ∈ Gi.
Let {Ai}i∈G be a family of abelian groups. The direct sum of Ai:

A =
⊕
i∈I

Ai

is the subset of
∏
Ai consisting of all families (xi)i∈I with xi ∈ Ai such that xi = 0 for all

but finitely many i.

The next examples are taken from the matrix form.

Example 2.1.8. The set of all n × n matrices whose determinants are non-zero with

entries in C, denoted GL(n,C), is a group under multiplication. This group is called a

general linear group. The set of all elements of GL(n,C) whose determinants are equal to

1, called a special linear group and denoted by SL(n,C), is a subgroup of GL(n,C).

Let H be a subgroup of a group G. A left coset of K in G, denoted by K\G, is a

subset of G defined by

K\G := {ak : k ∈ K}

for some a ∈ G. An element of aK is called a coset representative of aH. We apply the

similar remark to right coset, denoted by G/K.

Proposition 2.1.1. Let K be a subgroup of a finite group G. Then

|K\G| = |G|
|K|

.
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2.2 Ring, Field, and Module

A set R with two binary operations, addition and multiplication, defined on R is called a

(commutative) ring if the following conditions are satisfied.

• Under addition, R is a (commutative) group.

• Under multiplication, R is closed, has identity, and satisfies the associative law.

• The distribution law holds. That is, a(b+ c) = ab+ ac for all a, b, c ∈ R.

Example 2.2.1. Let R[x1, . . . , xn] be the set of all polynomials in x1, . . . , xn with coeffi-

cients in R. The set R[x1, . . . , xn] is a ring and called a polynomial ring.

Example 2.2.2. The set of all polynomials in x1, . . . , xn with coefficients in C is a ring.

This ring is denoted by C[x1, . . . , xn].

We continue by giving the definition of a field. For the shorter word, we can say that a

field is a commutative ring such that 1 6= 0 which has a multiplicative inverse and whose

non-zero elements form a group under multiplication.

Definition 2.2.1. A field F is a non-empty set with two binary operations + and ∗ which

satisfies the following conditions.

1. Under +, F is a commutative group.

2. Under ∗, F− {0} is a group.

3. a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ F.

The finite field of q elements where q is a prime power is denoted by GF (q).

Example 2.2.3. The set Zn can be considered as a field if n is a prime number.

Example 2.2.4. The set F4 = {0, 1, ω, ω+1} is a field where ω2 = ω+1 and ω(ω+1) = 1.

Let R, called a base ring, be a ring whose elements are called scalars. A non-empty

set M is called a module over R (or an R-module) if the following conditions hold.

1. Under addition, M is an abelian group.

2. For all scalars a, b ∈ R and u, v ∈M , the set M fulfills the following conditions.

au ∈ R,

a(u+ v) = au+ av,

(a+ b)u = au+ bu,

(ab)u = a(bu),

1u = u.
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Let M be an R-module. A subset S of M is called a submodule of M if S is an

R-module. If S is a group under addition, we call S an additive subgroup of M .

One special type of a module is vector space. If a non-empty set V is a module over

a field F, then we say V a vector space over F. A subset S of V is called a subspace of V

if S is also vector space over F. We note that the notations on both module and vector

space are same. The difference is only on the base ring or field used.

Definition 2.2.2. Let S be a non-empty subset of a vector space V over F. An expression

of the form

f1s1 + · · ·+ fnsn

where s1, . . . , sn ∈ S and f1, . . . , fn ∈ F is called a linear combination of vectors in S.

If f1 = f2 = · · · = 0, then we say the linear combination trivial. Otherwise, it is called

non-trivial.

Definition 2.2.3. Let S be a subset of a vector space V . The set S is called a generator

of V if every v ∈ V can be expressed as a linear combination of S. In other words, we can

say for every v ∈ V , we can find k1, . . . , kn ∈ F such that

v = k1s1 + · · ·+ knsn

for s1, . . . , sn ∈ S. In this case, we say that V can be generated by S and can be denoted

by

V = 〈S〉.

Definition 2.2.4. Let S be a subset of V . We say that S is linearly independent if the

trivial linear combination of vectors in S is the only linear combination which is equal to

0.

Definition 2.2.5. Let V be a vector space. A basis S of V is a subset of V which is

linearly independent and generates V .

Let S be a basis of a vector space V . We call V is of dimension n if S is of cardinality

n. The vector space V is a finite dimensional vector space if S is finite.

Let A be a ring. We call A a graded ring if as an commutative group A can be

expressed as a direct sum

A =
∞⊕
r

Ar

such that ApAs ⊂ Ap+s for all integers p, s ≥ 0. In particular, A0 is a subring. Every set

Ar is an A0-module. The elements of Ar are called the homogeneous elements of degree

r.

If a (graded) ring A can be generated by elements f1, . . . , fk, then we use the notation

A = A0[f1, . . . , fk]. For example, we denote by W the ring of the weight enumerators

of self-dual binary codes. The details of self-dual codes will be discussed later. With

W0 = C, the ring W is generated by the polynomials

We8 = x8 + 14x4y4 + y8, Wg24 = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24, (2.1)

6



and can be written as

W = C[We8 ,Wg24 ].

2.3 Codes

Let F be a field. An [n, k] (linear) code C of length n over F is a k-dimensional subspace

of Fn. √
144 · · · 4︸ ︷︷ ︸
n times

Here Fn means the space of all n-tuples of elements of F. The element c of C is called

a codeword. If we use a ring R instead of the field F, then a code C means the additive

subgroup of R.

Example 2.3.1. The set of all vectors c = (c1, ..., cn) for c1, . . . , cn ∈ Z2 is a linear code.

In general, the code over Z2 is called a binary code.

We define some notations and terms for a code over F. For a code over R, the notations

and terms are similar.

Let C be a code over F. Because C is a subspace of Fn, we can find the basis of C. A

k×n matrix G whose rows are the basis vectors of C is called a generator matrix. All the

codewords in C can be obtained by the linear combination of row vectors of G.

For example, take the binary generator matrix G1:

G1 =


1 0 0 1 1

0 1 0 0 1

0 0 1 1 1

 .

Then, we can obtain a linear code by G1 containing the following codewords.

G1 = {(0, 0, 0, 0, 0), (1, 0, 0, 1, 1), (0, 1, 0, 0, 1), (1, 1, 0, 1, 0),

(0, 0, 1, 1, 1), (1, 0, 1, 0, 0), (0, 1, 1, 1, 0), (1, 1, 1, 0, 1)}.

Example 2.3.2 (Hamming code). The generator matrix of [7,4]-Hamming code is
1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 1 0 1 1

0 0 0 1 1 1 1


Example 2.3.3. The extended Hamming code e8 is the code with the generator matrix

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0
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Let u, v be codewords of a code C over F. The inner product u · v is defined by

u · v := u1v1 + · · ·+ unvn ∈ F.

We say that u and v are orthogonal to each other if u · v = 0. By the orthogonality, we

can define a new code called a dual code.

For a code C, the dual of C, denoted by C⊥, is a code containing vectors v ∈ Fn which

are orthogonal to all u ∈ C. It is straightforward to show that C⊥ is a code. In other

words, we can say that

C⊥ := {v ∈ Fn : u · v = 0,∀u ∈ C}.

If C⊥ = C, then we say C self-dual.

For a codeword c ∈ C, the (Hamming) weight wt(c) is defined as the number of non-

zero ci. A code C is called doubly even if wt(c) is divisible by 4 for all c ∈ C.

The weight enumerator WC of C is defined by

WC(x, y) :=
∑
c∈C

xn−wt(c)ywt(c).

For example, the weight enumerator of the extended Hamming code is

We8 = x8 + 14x4y4 + y8

The easiest example of a Type II code is the code d+n whose generator matrix is

1 1 1 1 0 0 . . . 0 0 0 0

0 0 1 1 1 1 . . . 0 0 0 0
...

...
. . .

. . .

0 0 0 0 0 0 . . . 1 1 1 1

1 0 1 0 1 0 . . . 1 0 1 0


.

For example, d+8 has generator matrix
1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0

 .

The weight enumerator of d+8 is

Wd+8
= x8 + 14x4y4 + y8.

Theorem 2.3.1 (MacWilliams identity for binary linear codes, [13]). Let C be an [n, k]

binary linear code. Then

WC⊥(x, y) =
1

|C|
WC(x+ y, x− y).

8



Now we discuss a code over F3 = {0, 1, 2}. We call a code C ⊂ Fn3 by a ternary code.

For example, we take the generator matrix(
1 0 2 2

0 1 2 1

)

for a code C. Then we have that C contains 9 elements

(0, 0, 0, 0), (1, 0, 2, 2), (2, 0, 1, 1), (0, 1, 2, 1), (1, 1, 1, 0),

(2, 1, 0, 2), (0, 2, 1, 2), (1, 2, 0, 1), (2, 2, 2, 0).

If we move to Z4-code C, there are several weight enumerators associated. They are

complete and symmetrized weight enumerators. Here are their definitions.

Definition 2.3.1. The complete weight enumerator of a code C is

CWC(t0, t1, t2, t3) :=
∑
c∈C

t
n0(c)
0 t

n1(c)
1 t

n2(c)
2 t

n3(c)
3

where

ni(c) = |{ci|ci = i (mod 4)}|.

Definition 2.3.2. The symmetrized weight enumerator of a code C is

SWC(t0, t1, t2) := CWC(t0, t1, t2, t1)

where SWC is the complete weight enumerator of C.

We give an example of Z4-codes and its complete and symmetrized weight enumerators.

The generator matrix used here is
1 1 1 0 1 0 0 2

1 1 0 1 2 1 2 2

1 0 1 1 2 0 1 0

0 1 1 1 0 0 2 1

 .

The code with that generator is called the octacode O8. The complete and the symmetrized

weight enumerators of O8 are the following.

CWO8 = t80 + 8t30t
4
1t2 + 8t0t

4
1t

3
2 + 14t40t

4
2 + t82 + 24t30t

3
1t2t3

+24t0t
3
1t

3
2t3 + 4t61t

2
3 + 48t30t

2
1t2t

2
3 + 48t0t

2
1t

3
2t

2
3

+24t30t1t2t
3
3 + 24t0t1t

3
2t

3
3 + 8t41t

4
3 + 8t30t2t

4
3 + 8t0t

3
2t

4
3

+4t21t
6
3,

SWO8 = t82 + 16t80 + 112t32t
4
0t1 + 112t2t

4
0t

3
1 + 14t42t

4
1 + t81.
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2.4 Symmetric Polynomial

Let f ∈ C[x1, . . . , xn] be a polynomial in variables x1, . . . , xn. We say that the polynomial

f is symmetric if

f(xi1 , . . . , xin) = f(x1, . . . , xn)

for every permutation xi1 , . . . , xin of the variables x1, . . . , xn. For example, the polynomials

x+ y+ z, x2 + y2 + z2, and xyz are symmetric. It is clear that the interchanging of x, y, z

positions does not bring up a new polynomial.

Let σ1, . . . , σn ∈ F[x1, . . . , xn] defined by the following formulas.

σ1 = x1 + · · ·+ xn,
...

σr =
∑

i1<i2<···<ir

xi1xi2 · · ·xir ,

...

σn = x1x2 · · ·xn.

We call the functions σ1, . . . , σn the elementary symmetric functions.

In fact, every symmetric polynomial can be expressed in elementary symmetric func-

tions. This is known as the fundamental theorem of symmetric polynomials. For example,

the function f = x2 + 2xy + y2 can be expressed as

f = σ21 − 2σ2.

Theorem 2.4.1 (The Fundamental Theorem of Symmetric Polynomials, [6]). Every sym-

metric polynomial in F[x1, . . . , xn] can be written uniquely as a polynomial in the elemen-

tary symmetric functions σ1, . . . , σn.

2.5 Invariant Theory

We give the definitions of invariant related to binary codes. The definition of invariant in

general is not so different from the following. We refer to [13] for the details.

For a self-dual binary code C, the MacWilliams identity is given by

W (x, y) = W

(
x+ y√

2
,
x− y√

2

)
. (2.2)

The equation (2.2) tells us that W (x, y) is unchanged or invariant under the linear trans-

formation T where T replaces x by
x+ y√

2

and y by
x− y√

2
.
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All codeword in C are of weights of a multiple 4. Here is also the known equation.

W (x, y) = W (x, iy). (2.3)

This equation also tells us that W (x, y) is invariant under the transformation U where U

does not move x but replaces y by iy.

From the previous chapter, we remember that the weight enumerator of a binary code

C can be expressed We8 and Wg24 where

We8 = x8 + 14x4y4 + y8, Wg24 = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24. (2.4)

Theorem 2.5.1. Any polynomial satisfying Equations (2.2) and (2.3) is a polynomial in

We8 and Wg24.

Since W (x, y) is invariant under T and U , W (x, y) must be invariant under any com-

bination T 2, TU , UTU , . . . of these transformation.

From the reference, there is information to know how many linearly independent ho-

mogeneous invariant of each degree d. Say that there are ad linearly independent homo-

geneous invariants of degree d. It is comfortable to express the numbers a0, a1, a2, . . . , by

a generating function

I(t) = a0 + a1t+ a2t
2 + · · · .

In reverse, we can obtain the numbers a0, a1, a2, . . . if I(t) is known.

Theorem 2.5.2 ([13]). For any finite group G of a complex m×m matrices, I(t) is given

by

I(t) =
1

|G|
∑
g∈G

1

det(I − tg)

where |G| is the order of G, det means the determinant, and I is the unit matrix.

We call I(t) the Molien series of G. We give the examples by the famous matrix group

G generated by

1√
2

(
1 1

1 −1

)
and

(
1 0

0 i

)
.

This group is of order 192. The weight enumerators of self-dual binary codes are left

invariant by G. The formula of its Molien series is

I(t) =
1

(1− t8)(1− t24)
. (2.5)

The formula appearing from the Molien series gives us a useful information. For

example, from equation (2.5), we get such information. The ring of the weight enumerators

of self-dual binary codes can be generated by two polynomials. These polynomial are of

degrees 8 and 24. This fact has a connection to our previous example which is shown in

(2.1).

Definition 2.5.1. Let G be a matrix group of size m × m. Any invarinat of G is a

polynomial f in variables t1, . . . , tm which is unchanged by every linear transformation in

G.

11



One of our main problem is to find the generators for the invariant ring related to

codes. Related to this, we give the following definition.

Definition 2.5.2. Polynomials f1, . . . , fr in variables t1, . . . , tm are called algebraically

dependent if there is a polynomial p in r variables with complex coefficients, not all zero,

such that

p(f1, . . . , fr) = 0.

Otherwise f1, . . . , fr are called algebraically independent.

The following theorem taken from [13, p. 610].

Theorem 2.5.3. There always exist m algebraically independent invariants of G.

One of criterion we can use for algebraic independence is Jacobian criterion. Let

f1, . . . , fm be the polynomials in variables t1, . . . , tm. We denote by J(f1, . . . , fm) the

determinant of the m×m matrix whose (i, j)-entry is

∂fi
∂tj

.

We have the following proposition and refer the proof to [11].

Proposition 2.5.1. The polynomials f1, . . . , fm in variables t1, . . . , tm are algebraically

independent if and only if J(f1, . . . , fn) 6= 0.

Example 2.5.1. The polynomials We8 and Wg24 are algebraically independent. We can

check by direct calculation. If we take Wd16 = t160 + 28t120 t
4
1 + 198t80t

8
1 + 28t40t

12
1 + t161 ,

then We8 and Wd16 are algebraically dependent. Let p(X,Y ) = −X2 + Y . Then we have

p(We8 ,Wd16) = 0.

We close this chapter by discussing about an E-polynomial. The definition of this

polynomial will be given in Chapter 4. Here, we only give a note that in some cases, the

invariant ring related to codes can be generated by the set of E-polynomials. For example,

in [16], it was shown that the ring W of the weight enumerators of binary codes in genus

1 can be generated by the E-polynomials of weights 8 and 24.
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Chapter 3

Computations

In this chapter, we explain the details of computation. The main parts of this computation

are defining the group used, constructing E-polynomials, and obtaining the generator.

3.1 Defining the Matrix Group

In Chapter 4, we obtain that the groups defined is of order 384 and 1536. Here we show

how we generate the group of order 384, the steps for constructing another group is not

much different from these steps.

Algorithm 1: Constructing the group

Result: The order of G

set CF. < z >=CyclotomicField(8);

set s2 = z7 + z; //defining the square root of 2;

set I = z2; //defining the imaginary number;

set M1 = Matrix(CF,[[1,1,1,1],[1,I,-1,-I],[1,-1,1,-1],[1,-I,-1,I]]) ;

set M2 = diagonal matrix(CF,[1,z,-1,z) ;

obtain G=MatrixGroup (M1,M2);

print the order of G ;

To construct another group, we only need to define the generators. Then we can use

the generators to obtain the groups.

In Algorithm 1, the command CyclotomicField(8) is needed to get the 8-th primitive

root of 1. Some cases may be different. In case we need

1

2
(i
√

3− 1),

we can use CyclotomicField(8). In another case, we need to compute
√

5. In this situation,

we can determine CyclotomicField(5) and compute
√

5 by

2η25 + η5 + 2

η5

where η5 denotes the 5-th primitive root of unity.

13



3.2 Constructing E-polynomials

The definition of an E-polynomial will be given in the next chapter. However, we give the

details how we compute it.

From the previous section, we have the order of the group G as an output. Although

we do not write explicitly in the algorithm, we can hold the group G and its elements.

The detail of steps as follows. We set n the row size of the elements of G. Define a set

T of variables t0, t1, . . . , tn−1. For each element g ∈ G, we take only the first row g0 of g.

After multiplying g0 (as a row vector) by T (as a column vector), for each multiplication

g0T , say gt, then we compute gt to the power of k where k is the weight of E-polynomial.

The details of algorithm are below. We obtain the E-polynomials up to weights κ.

Algorithm 2: Computing up to κ

Result: E-polynomials

set k, G, n;

set κ;

set T = {ti} for i = 0, . . . , n− 1;

set m, the minimum weight such that ϕm 6= 0;

for k = m to κ do
go to Algorithm 3 construct(k,G, T );

end

save poly.

Algorithm 3: Constructing E-polynomials construct(k,G, T )

Result: E-polynomial of weight k

set poly = 0 ;

for g ∈ G do

set g0 = g[0, :] ;

calculate gt = g0 ∗ T ;

calculate poly = poly + gtk;

end

save poly.

Example 3.2.1. The following is an example of constructing group of order 384 and 1536

in SageMath.

CF.<z>=CyclotomicField(8);

s2=z**7+z; #square root of 2.

I =z*s2-1;

T=z/2*Matrix(CF,[[1,1,1,1],[1,I,-1,-I],[1,-1,1,-1],[1,-I,-1,I]]);

D=diagonal_matrix(CF,[1,z,-1,z]);

#generating the matrix group G

G=MatrixGroup(T,D);

print "order of G";
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print G.order();

Dz=diagonal_matrix(CF,[z,z,z,z]);

#generating the matrix group G8

G8=MatrixGroup(T,D,Dz)

print "order of G8";

print G.order();

3.3 Obtaining the generators

After we construct the E-polynomials up to weight κ, we continue to find the polynomials

which are the generators of the ring of the E-polynomials. We understand here that the

weight of an E-polynomial shows the degree of the polynomial.

Assume we have the set of E-polynomials

E = {ϕ1, ϕ2, . . . , ϕκ}.

Remember that ϕk may be 0 for some k. We set Ω = {1, 2, . . . , κ}. For each degree d, we

find all S ⊆ Ω such that ∑
s∈S

s = d

and d /∈ S.

Let S1, . . . , Sj be the subsets of Ω such that the summation of their elements are equal

to d. By the elements of Si, we obtain the combination

pi =
∏
s∈Si

ϕs.

From p1, p2, . . . , pj , we can ensure if ϕd is a basis element or not. If not, we remove ϕd

from the set E and d from Ω. The steps can be seen in Algorithm 4. The steps to obtain

the generators of other invariant rings are not so different.
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Algorithm 4: Find the generators

Result: The basis P , the set E of generators

set d ;

set E, the set of E-polynomials ;

set P = {};
set Ω;

for S ∈ {S ⊂ Ω|
∑

s∈S s = d} do

set p = 1;

for s in S do

calculate p = p ∗ ϕs;
end

if p 6=< P > then

set P = P ∪ p;
end

end

if ϕd /∈< P > then

set P = P ∪ ϕd;
else

set E = E − ϕd
end

3.4 Notes

In our computation, we more often use SageMath than Magma. We use Magma when

we compute the complete weight enumerators of Z4-codes. SageMath does not provide a

command for the code over a ring yet.

Again we say that we only use Magma to compute the complete weight enumerators

of Z4-codes. The polynomials obtained from Magma are then moved to SageMath. We

combine these polynomials with the E-polynomials obtained in SageMath. We give an

example how do we compute Z4-codes.

Example 3.4.1. The following is to compute the code over Z4 with the generator matrix

1 1 1 1 1 1 1 −1

1 1 1 0 0 0 2 1

2 2 0 0 0 0 0 0

2 0 2 0 0 0 0 0

0 0 0 2 2 0 0 0

0 0 0 2 0 2 0 0


and show its complete weight enumerator.

R := IntegerRing(4);

C0 := LinearCode<R,8 |
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[1,1,1,1,1,1,1,-1],[1,1,1,0,0,0,2,1],

[2,2,0,0,0,0,0,0],[2,0,2,0,0,0,0,0],

[0,0,0,2,2,0,0,0],[0,0,0,2,0,2,0,0]>;

CW<t0,t1,t2,t3>:=CompleteWeightEnumerator(C0);

print CW;
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Chapter 4

E-Polynomials associated to Type

II Z4-codes

In this chapter, we construct E-polynomials associated to Type II Z4-codes. We give the

minimal generators of the ring generated by the E-polynomials and show the generators

of the invariant ring of the complete weight enumerators of Type II codes. Every code

defined here is Type II code. In this chapter, we give the details related to [8].

This chapter is the continuation of [15]. In [15], the ring associated to the group defined

was generated by the E-polynomials and the symmetrized weight enumerators. Then, in

this chapter, with the same motivation, we combine the E-polynomials and the complete

weight enumerators of Z4-codes.

4.1 Invariant Ring

We denote by C the field of complex numbers as usual. Let Aw be a finite-dimensional

vector space over C. We write the dimension formula of A by the formal series

∞∑
w=0

(dimAw)tw.

Let C be a Type II code. We denote a primitive 8-th root of unity by η8. The

MacWilliams identity for Z4-code in term of complete weight enumerator of C is known

[4]. The identity is the following.

CWC(t0, t1, t2, t3) =
1

|C|
CWC(t0+t1+t2+t3, t0+it1−t2−it3, t0−t1+t2−t3, t0−it1−it2+t3).

(4.1)

Moreover, since C is doubly even, we have the relation

CWC(t0, η8t1,−t2, η8t3) = CWC(t0, t1, t2, t3). (4.2)
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By Equations (4.1) and (4.2), we construct three matrices as follows.

M1 =
η8
2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i

 ,

M2 =


1 0 0 0

0 η8 0 0

0 0 −1 0

0 0 0 η8

 ,

and M3 = diag [η8, η8, η8, η8]. Let G be the group generated by M1,M2 and G8 generated

by M1,M2,M3. The groups G, G8 are of order 384, 1536, respectively.

We denote by R, R8 the invariant rings of G,G8:

R = C[t0, t1, t2, t3]
G

R8 = C[t0, t1, t2, t3]
G8

under an action of such matrices on the polynomial ring of four variables t0, t1, t2, and

t3. The dimension formula of R and R8 is given as follows [1]:∑
w

(dimRw) tw =
1 + t8 + 2 t10 + 2 t12 + 2 t14 + 2 t16 + t18 + t20 + t22 + t26 + t28 + t30

(1− t8)3 (1− t12)
,

∑
w

(
dimR8

w

)
tw =

1 + t8 + 2 t16 + 2 t24 + t32 + t40

(1− t8)3 (1− t24)
.

We continue the discussion only on G8. Later we will mention again the group G in

the discussion about E-polynomials.

By the dimension formula of R8, we have an information about its generators. In gen-

eral, the invariant ring R8 can be generated by the set of the complete weight enumerators

of Type II codes consisting at most:

1. 4 codes of length 8,

2. 2 codes of length 16,

3. 3 codes of length 24,

4. 1 code of length 32, and

5. 1 code of length 40.

Although later we do not give which polynomials are algebraically independence, from the

dimension formula, we know that the generators of R8 contain 3 polynomials of degree 8

and 1 polynomial of degree 24 which are algebraically independent.

Let W = {p8a, p8b, o8, k8, p16a, p16b, q24a, q24b, g24, q32} be the set of the complete weight

enumerators of some codes with the following details. The weight enumerators o8, k8, and
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g24 are the complete weight enumerators of octacode, Klemm code, and Golay code, re-

spectively. The generator matrices of the complete weight enumerators which are denoted

by p are taken from [18]. The reader interested in these generators can see [9].

The Klemm code has the generator matrix

1 1 1 · · · 1 1

2 0 · · · 0 2

2 · · · 0 2
. . .

...
...

2 2


.

The generator matrix of q24a is given by

1 0 1 0 1 1 1 0 0 1 1 0 0 0 2 1 0 0 1 0 1 1 0 1

0 1 0 0 1 1 0 2 0 1 1 0 0 0 2 3 0 0 1 1 0 0 0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 2 0

0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 2 0 0 0 2 0 0 2 0

0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2

0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 2 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 2 0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 1 0 0 0 1 1 1 2 1

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 1 1 3 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
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The generator matrix of q24b is given by

1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 1 0 1 1 2 1 3

0 1 1 0 0 0 0 2 0 1 0 0 0 0 0 2 0 1 0 1 1 0 1 1

0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2

0 0 0 1 1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2

0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 2 0 0 0 1 1 3 2 3

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2


The numbers written as subscript indicate the weight of each complete weight enumerator.

The details of other complete weight enumerators can be seen in Appendix A.

The explicit forms of the complete weight enumerators used are the following.

p8a = t80 + 4t30t
4
1t2 + 12t60t

2
2 + 4t0t

4
1t

3
2 + 38t40t

4
2 + 12t20t

6
2 + t82 + 4t71t3 + 16t30t

3
1t2t3

+ 16t0t
3
1t

3
2t3 + 24t30t

2
1t2t

2
3 + 24t0t

2
1t

3
2t

2
3 + 28t51t

3
3 + 16t30t1t2t

3
3 + 16t0t1t

3
2t

3
3

+ 4t30t2t
4
3 + 4t0t

3
2t

4
3 + 28t31t

5
3 + 4t1t

7
3,

p8b = t80 + 8t30t
4
1t2 + 12t60t

2
2 + 8t0t

4
1t

3
2 + 38t40t

4
2 + 12t20t

6
2 + t82 + 16t61t

2
3 + 48t30t

2
1t2t

2
3

+ 48t0t
2
1t

3
2t

2
3 + 32t41t

4
3 + 8t30t2t

4
3 + 8t0t

3
2t

4
3 + 16t21t

6
3,

k8 = t80 + t81 + 28t60t
2
2 + 70t40t

4
2 + 28t20t

6
2 + t82 + 28t61t

2
3 + 70t41t

4
3 + 28t21t

6
3 + t83,

o8 = t80 + t81 + 14t40t
4
2 + t82 + 56t30t

3
1t2t3 + 56t0t

3
1t

3
2t3 + 56t30t1t2t

3
3 + 56t0t1t

3
2t

3
3 + 14t41t

4
3 + t83,

p16a = t160 + 30t80t
8
1 + t161 + 140t120 t

4
2 + 420t40t

8
1t

4
2 + 448t100 t

6
2 + 870t80t

8
2 + 30t81t

8
2

+ 448t60t
10
2 + 140t40t

12
2 + t162 + 3360t60t

6
1t

2
2t

2
3 + 6720t40t

6
1t

4
2t

2
3 + 3360t20t

6
1t

6
2t

2
3

+ 420t80t
4
1t

4
3 + 140t121 t

4
3 + 6720t60t

4
1t

2
2t

4
3 + 19320t40t

4
1t

4
2t

4
3 + 6720t20t

4
1t

6
2t

4
3

+ 420t41t
8
2t

4
3 + 448t101 t

6
3 + 3360t60t

2
1t

2
2t

6
3 + 6720t40t

2
1t

4
2t

6
3 + 3360t20t

2
1t

6
2t

6
3

+ 30t80t
8
3 + 870t81t

8
3 + 420t40t

4
2t

8
3 + 30t82t

8
3 + 448t61t

10
3 + 140t41t

12
3 + t163 .

In this dissertation, some polynomials are not written because they are too large.

Let W be a ring generated by the set W of complete weight enumerators:

W = C[p8a, p8b, o8, k8, p16a, p16b, q24a, q24b, g24, q32].
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By obtaining the dimension of W, we have the following result.

Theorem 4.1.1. The ring W coincides with R8. In other words,

Wd = R8
d

for any positive integer d.

Proof. By the information taken from the dimension formula of R8, we generate W by

utilizing some complete weight enumerators of non-equivalent codes. The computation

shows that the dimension of Wd is equal to the dimension of R8
d for any positive integer

d. The dimension of each Wk is shown in Table 4.1.

Table 4.1: The dimensions of R8
k and Wk

k 8 16 24 32 40

dimR8
k 4 11 25 48 83

dimWd 4 11 25 48 83

It is noteworthy that the code of length 40 is not used to generate the ring R8. On

the next section, we shall give the generators of R8 by the weight enumerators of Type II

Z4-codes and E-polynomials.

4.2 E-Polynomials

In this section, we define an E-polynomial for a 4 × 4 matrix group. Let t be a vector

containing 4 variables: t0, t1, t2, and t3. We understand that the vector here means a

column vector. An E-polynomial of weight k for a matrix group G is defined by

ϕGk = ϕGk (t) =
1

|G|
∑
σ∈G

(σ0t)k =
|K|
|G|

∑
K\G3σ

(σ0t)k

where

K = {


1 0 0 0

? ? ? ?

? ? ? ?

? ? ? ?

 ∈ G}
and σ0 is the first row of σ. The definition of E-polynomial for the group G8 is similar.

For simplicity, we write ϕk instead of ϕGk .

The subgroup K of G8 is of order 16. We denote by E8 the ring generated by ϕk for

the group G8.

Denote by κ the cardinality of K\G. The numbers κ for G and G8 can be seen in

Table 4.2.
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Table 4.2: The number κ
Group Order K κ

G 384 8 48

G8 1536 16 96

Theorem 4.2.1. The ring E (resp. E8) can be generated by the polynomials ϕk where

k ≡ 0 mod 4, 8 ≤ k ≤ 48.

(resp. k ≡ 0 mod 8, 8 ≤ k ≤ 96).

Proof. Let σi be the representative of K\G8 (1 ≤ i ≤ κ). We define

xi = σi0t,

where σi0 is the first row of σi. For every ϕi, we express ϕi in C[x1, . . . , xκ] and apply

the fundamental theorem of symmetric polynomials. Therefore, every ϕi can be written

uniquely in εi, . . . , εκ ∈ C[x1, . . . , xκ] where

εr =
∑

i1<i2<···<ir

xi1xi2 · · ·xir , (1 ≤ r ≤ κ).

We give the explicit forms of ϕ8 for the group G8 as follows.

ϕ8 =
1

1536
(148t80 + 4t81 + 1120t30t

4
1t2 − 336t60t

2
2 + 1120t0t

4
1t

3
2 + 1400t40t

4
2 − 336t20t

6
2 + 148t82

+ 32t71t3 + 4480t30t
3
1t2t3 + 4480t0t

3
1t

3
2t3 + 112t61t

2
3 + 6720t30t

2
1t2t

2
3 + 6720t0t

2
1t

3
2t

2
3

+ 224t51t
3
3 + 4480t30t1t2t

3
3 + 4480t0t1t

3
2t

3
3 + 280t41t

4
3 + 1120t30t2t

4
3 + 1120t0t

3
2t

4
3 + 224t31t

5
3

+ 112t21t
6
3 + 32t1t

7
3 + 4t83),

It is difficult to write all E-polynomials happening. In Table 4.3, we show the number

of monomials of ϕk for G8.

Table 4.3: The number of monomials of ϕk
k l(ϕk) k l(ϕk) k l(ϕk)

8 24 40 1556 72 8464

16 127 48 2619 80 11511

24 374 56 4082 88 15214

32 829 64 6009 96 19637

The information we get from Theorem 4.2.1 is the fact that the rings E,E8 are finitely

generated. By this condition, the natural question is if we can find the minimal generators

of E and E8. In the next theorem, we determine the generators of E and E8.

23



Table 4.4: The dimensions of R8
k and E8

k

k 8 16 24 32 40 48 56 64 72 80 88 96

dimR8
k 4 11 25 48 83 133 200 287 397 532 695 889

dimE8
k 1 2 3 5 7 11 15 22 30 42 52 61

Theorem 4.2.2. The rings E, E8 are minimally generated by the E-polynomials of weights

E : 8, 12, 16, 20, 24, 28, 32, 40, 48,

E8 : 8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

Proof. This is done by the computation. After constructing the polynomials, we ensure

if the polynomial can be expressed by other polynomials. The dimensions of E8 are

demonstrated in Table 4.4.

For example, we show the generator for n = 40. In Table 4.4, the dimension of E8
40 is

7. The basis elements of this space is

ϕ5
8, ϕ

3
8ϕ16, ϕ

2
8ϕ24, ϕ8ϕ32, ϕ8ϕ

2
16, ϕ16ϕ24, ϕ40.

From Table 4.4, we can see that the ring E8 is not sufficient to generate R8. We

can combine R8 and W to generate the ring R8. The combination give us the following

theorem.

Theorem 4.2.3. The invariant ring R8 can be generated by E8 and the complete weight

enumerators

p8, o8, k8, p16, p24, q24, p32.

More specifically, the set

{ϕk, p8, o8, k8, p16, p24, q24, p32 | k = 8, 16, 24}

generates ring R8.

Proof. This is by the computation. The result is shown in Table 4.5.

Table 4.5: The dimensions of R8
k and R̃

k 8 16 24 32 40

dimR8
k 4 11 25 48 83

dimR̃ 4 11 25 48 83

Since the polynomials in RG are in 4 variables, by Theorem 2.5.3, there are 4 polyno-

mials which are algebraically independents. Using the criterion in Proposition 2.5.1, we

can show that the polynomials

p8a, o8, k8, q24a

are algebraically independent.
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4.3 Other E-polynomials

The groups defined here is referred to [7]. We define two groups H1 and H2 taken from

the reference.

Let C ⊂ Fn3 be a self-dual code. There are some facts about C. The Hamming weight

enumerator WC(x, y) of C is invariant under the transformation of (x, y) by the matrix S1

S1 =
1√
3

(
1 2

1 −1

)
.

Using the fact that C is self dual, the weight of of every c ∈ C is multiple of 3. Here,

WC(x, y) is also invariant under transformation of (x, y) by the matrix S2

S2 =

(
1 0

0 e
2πi
3

)
.

We define three other matrices T1, T2, T3 by

T1 :=


1 2 2

1 η5 + η45 η25 + η35

1 η25 + η35 η5 + η45

 ,

T2 :=


1 0 0

0 η25 0

0 0 η35

 ,

T3 :=


1 0 0

0 0 1

0 1 0


where η5 denotes the 5-th root of unity. We can write

η5 =
1

4
(
√

5 + i

√
2
√

5 + 10− 1).

These matrices are related to the symmetric Hilbert modular form. We omit the details

of the modular form because we only focus on the matrices occur.

Let H1, H2 be the groups defined as follows.

H1 := 〈S1, S2〉,

H2 := 〈T1, T2, T3〉.

The details of the subgroup K of each group can be seen in Table 4.6.

Let R(H1),R(H2) be the invariant rings of H1, H2, respectively. The dimension for-

mulas of R(H1),R(H2) are the following.

H1 :
1

(1− t4)(1− t6)
,
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Table 4.6: The number κ of H1, H2

Group Order K κ

H1 24 3 8

H2 120 10 12

H2 :
1

(1− t2)(1− t6)(1− t10)
.

From the dimension formulas above, we have some information about the generators

of each ring. The ring R(H1) can be generated by some polynomials related to the ternary

codes of weights 4 and 6, while R(H2) can be generated by some polynomials of degrees

2,6, and 10 related to the symmetric Hilbert modular form of weight. We use the term

degree in R(H2) because ”weight” has a different meaning in modular form.

Following the method described in the previous section, we obtain that the ring gen-

erated by ϕH1
k (respectively ϕH2

k ) is minimally generated by the E-polynomials ϕ4 and ϕ6

(respectively ϕ2, ϕ6, and ϕ10). Therefore, in this situation we can write

R(H1) = C[ϕ4, ϕ6]

and

R(H2) = C[ϕ2, ϕ6, ϕ10].

Since the size of matrices in H1, H2 are different with the matrices in the previous sec-

tion, we note that there is a difference between the E-polynomials defined. The difference

is only on the number of variables. In the group H1, we use two variables t1, t2. We deal

with the variables t1, t2, t3 for the group H2.

The following tables shows the comparisons between the the invariant rings and the

E-polynomials.

Table 4.7: The dimensions of R(H1)k and E(H1)k

k 4 6

dimR(G)k 1 1

dimE(G)k 1 1

Table 4.8: The dimensions of R(H2)k and E(H2)k

l 2 4 6 8 10

dimR(H2)l 1 1 2 2 3

dimE(H2)l 1 1 2 2 3

The conclusion we have from Tables 4.7 and 4.8 is the following. We obtain that

dimE(H1)k = dimR(H1)k

(dimE(H2)l = dimR(H2)l)
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for k ≥ 4 and k ≡ 0 mod 2 (respectively l ≡ 0 mod 2).

We close this section by giving the explicit forms of the generators.

ϕH1
4 =

1

24
(8t40 + 64t0t

3
1),

ϕH1
6 =

6

24
(32t60 − 640t30t

3
1 − 256t61)

ϕH2
2 =

1

120
(40t20 + 160t1t2)

ϕH2
6 =

5

120
(104t60 + 768t0t

5
1 + 480t40t1t2 + 5760t20t

2
1t

2
2 + 5120t31t

3
2 + 768t0t

5
2)

ϕH2
10 =

125

120
(2504t100 + 32256t50t

5
1 + 4096t101 + 1440t80t1t2 + 430080t30t

6
1t2

+ 80640t60t
2
1t

2
2 + 737280t0t

7
1t

2
2 + 1075200t40t

3
1t

3
2 + 3225600t20t

4
1t

4
2

+ 32256t50t
5
2 + 1032192t51t

5
2 + 430080t30t1t

6
2 + 737280t0t

2
1t

7
2 + 4096t102 ).
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Chapter 5

Conclusions and Discussions

In this chapter, we give the conclusions of our dissertations. In the end of this chapter,

we close by delivering the discussion that may be able to continue in the future.

5.1 Conclusions

From the previous chapter, we can say that the main part of our dissertation is finding

the generator of a ring appearing. We start from the ring generated by the E-polynomials

related to the group G8. The ring of E-polynomials occurred is minimally generated by

E-polynomials of weights

8, 16, 24, 32, 40, 48, 56, 64, 72, 80.

The ring generated by the E-polynomials here is strictly smaller than the ring W of

the complete of weight enumerators of Type II Z4-codes. Then we can generate the ring

W by combing the E-polynomials and the complete weight enumerators of some Z4-codes.

We can write as follows.

R8 = C[ϕk, p8, o8, k8, p16, p24, q24, p32 | k = 8, 16, 24].

The dimension formula of R8 is∑
w

(
dimR8

w

)
tw =

1 + t8 + 2 t16 + 2 t24 + t32 + t40

(1− t8)3 (1− t24)
.

For the groups H1, H2 with |H1| = 24, |H2| = 120, the E-polynomials of each group

can generate the ring of each group. We can write

R(H1) = C[ϕ4, ϕ6],

R(H2) = C[ϕ2, ϕ6, ϕ10].

The dimension formulas of R(H1),R(H2) are the following.

H1 :
1

(1− t4)(1− t6)
,

H2 :
1

(1− t2)(1− t6)(1− t10)
.
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5.2 Discussion

The notion of E-polynomials in the perspective of coding theory make us curious whether

we can connect number theory to invariant theory. With the known theory in classical

invariant theory and number theory, we propose in the future to construct the analogue

theory of Eisenstein series. The reader who is interested in this discussion can see [10].

The discussion about the invariant ring related to Z4-codes also encourages us to

continue investigating another ring. It is the ring related to Jacobi polynomials of binary

codes. The notion of Jacobi polynomials for codes first introduced by Ozeki [17]. Its

main theorem described the transformation formula for the Jacobi polynomials of a code.

The Molien series and the structure of the invariant ring of Jacobi polynomials then

were determined in [2]. By defining a new map from the space of Jacobi polynomials

into the space of Jacobi forms, Bannai and Ozeki [2] also extended Broué-Enguehard

correspondence. The Jacobi polynomial notions in the sense of coordinates then were

given in [3]. In [3], it was shown that, in some cases, the Jacobi polynomials can be

determined uniquely by the polarization operator.

For the closing sentence, I thank to Allah the almighty who created integers. Also,

prayers and greeting are delivered to the prophet Muhammad.
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Appendix A

Generator Matrices

The generator matrix of q32 is given by

10101010011000000010001201012123

01001000011000000010001201001020

00200002000000000000000000000022

00011103000000000000000000013101

00002002000000000000000000002002

00000202000000000000000000000000

00000022000000000000000000000022

00000000111000120000000000002002

00000000020000200000000000002002

00000000002000200000000000002002

00000000000111210000000000000000

00000000000020020000000000000000

00000000000002020000000000000000

00000000000000001110001200002002

00000000000000000200002000002002

00000000000000000020002000000000

00000000000000000001112100000000

00000000000000000000200200000000

00000000000000000000020200000000

00000000000000000000000011111133

00000000000000000000000002002022

00000000000000000000000000200020

00000000000000000000000000020002

00000000000000000000000000000202
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