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Chapter 1

Introduction

Research on Computational Sciences extends over at least three distinct areas,
as illustrated in Figure ??. Standing as an abstract tools to solve any prob-
lem ahead, we need a solid theoretical point of view. Heavily employs many
advanced mathematical techniques, the theoretical base is very much consisted
of novel concepts of Theoretical Physics, i.e. Quantum Physics. This theoreti-
cal base would be employed to analyze real life cases provided by experimental
research. These experimental aspects are usually provided by a vast area of sci-
entific experimentation, ranging from the fields of economy, chemistry or from
the physical science itself. The third aspect, computation, plays as a bridge for
theoretical constructs to carry out any means necessary for producing the quan-
tities required for confirmation with experiment values. Nowadays, the compu-
tation is mainly performed by employing an electronical machine (a computer
server). Though historically, before the dawn of programmable electronic com-
puter, the computation was usually being done by hand, or by analog devices.
Nonetheless, the development of computation techniques has been moved from
a heavily mechanical physics concepts of analog machines into a more abstract
mathematical concepts, indicated by various programming languages for elec-
tronical computer. One of the popular theme on this aspect is to develop a
programming language that can be rigorously proven to be mathematically cor-
rect and at the same time, it should be concise and perform well in the manner
of space/memory utilization and speed.

1.1 NiCo2O4

Oxygen reduction reaction (ORR) is one of the most basic reactions that con-
struct many complex reactions such as energy generation (fuel cell), weathering
of materials, and most of biological process [1]. One of the main interests of this
reaction focused on its role in oxygen electrode used in electrical-power related
systems, i.e. metal-air batteries and fuel cells. From this point of view, being
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an abundantly available transitional metal oxides, Nickel cobaltite, NiCo2O4,
have immediately shows many advantages, compared to already available al-
ternatives. In catalysis, NiCo2O4 has a role as heterogenous catalyst with the
reaction of ORR. However the mechanism of ORR on metal surfaces is still
remains unclear. NiCo2O4 indicates a half-metallic property, according to low
field magnetoresistance (LFMR) measurements [2]. Nickel cobaltite is also re-
ported to be half metallic with −19.1% low-field magnetoresistance at 0.5 T
and −50% at 9 T (both measured at 2 K) [2]. Combined with its high Curie
temperature (295K [3], 350K [4]), these properties made nickel cobaltite into
good candidate as spintronic materials. One can easily tune its electrical and
magnetic properties by varying the crystal growth temperature and oxygen pres-
sure [5]. The interest on NiCo2O4 mainly comes from its abundance and its
potential use, as spintronics application, as well as alternative electrode used in
electrical-power related system, i.e. metal-air batteries and fuel cells. NiCo2O4
is one of the promising materials to be used in applications of catalysis and
spintronics.

NiCo2O4 is a ferrimagnet [4, 6] and one candidate of novel materials that
could be engineered in many ways to exhibit different properties. By utilizing
temperature growth of less than 450∘C, one can acuire metallic-ferrimagnetic
NiCo2O4 thin film. On the contrary, with more than 450∘C, we would acquire
thin film as non-magnetic insulator [7]. This uniqueness is believed to come
from the competition between double exchange interaction among cations with
different charges and superexchange interaction among those with same charges
[3].

Electronic structure investigation from theoretical approach was reported
in the work combined with the experimental measurement [8]. The authors
have used a modified Becke-Jonson formula in the exchange-correlation founc-
tion based on local spin density approximation (mBJ-LDA). It reported large
energy gaps of around 3−4 eV in majority spin states between the valence
and conduction bands, and the result indicated a half-metallic property. The
properties of electronic structure, such as large energy gap, have not been va-
lididated yet and the details on electronic structure are not so clear that they
are self-consistently understood with the properties of catalysis. The successive
theoretical approach, namely LDA+U approach, introduced an on-site Coulomb
parameter of Hubbard model, 𝑈eff, to the cation sites [2, 5]. The results of spin-
polarized density of states indicated a half-metallic property with an energy gap
in the majority-spin state of about 1.3 eV. The analysis of atomic and orbital
projections revealed electrons of the Ni(Oct) and Co(Tet) orbitals hybridized
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with O at the Fermi level. The obtained pictures on electronic and magetic
structures at the Fermi level may be based on the understanding or interpreta-
tion of many complicated experimental observations [2, 5]. This means that one
can get some satisfactions from such theoretical approach on its half-metalicity.
However, in those approaches, the empirical parameters were used for the 𝑈eff

on Ni and Co sites which were introduced as Fe spinel oxides [9]. The semicon-
ducting/insulating property of NiCo2O4 has not been discussed from theoretical
electronic structure results.

We have theoretically investigated electronic and magnetic properties of
bulk NiCo2O4 to understand its basic features. In our theoretical investigation,
quasi-particle self-consistent GW (QSGW) calculations [10–12] were performed
in normal and inverse spinels of NiCo2O4. This method does not employ any
empirical parameter like 𝑈eff. {This feature} indicated a lot of advancements in
the electronic structure analyses of semi-conducting and insulating materials.
The QSGW calculation enables to calculate metallic electronic structures. Such
advantage may be useful for a wide range of materials in the advanced methods
beyond the density functional theory (DFT) [13] approach. The performance
of QSGW beyond DFT in improving the electronic structure of semiconductors
has been well known already [11]. The recent progress has been reached to a
group of materials for power electronics [14, 15] and a group of surfaces [16].
We can find more data about applicability on its performance on wider sets of
materials, i.e. half-metallic, magnetic, and metallic materials.

Half-metallic property was found on all the results of NiCo2O4 and the
metallicity is associated mainly with the 3d orbitals on tetrahedral Co(tet) in
the minority spin state. The QSGW investigation revealed that the Ni 3d
components at the octahedral site are largely supressed at the Fermi level by a
mixed valence feature with the hybridization with O 2p orbital.

1.1.1 Crystal structure and computation method

Spinel materials or their family are usually presented as a chemical formula
XY2O4, where X and Y are cationic elements. For the cationic elements, there
are two distinguishable atomic sites. They have tetrahedral and octahedral
symmetries, being called tetrahedral and octahedral sites, respectively. There
are 2 tetrahedral sites and 4 octahedral sites in a primitive unit cell (two for-
mula units). In the normal spinel, all of X occupies tetragonal site and all of Y
at octahedral site. In inverse spinel structure, X and Y atoms are interchanged
with each other between the tetrahedral and octahedral sites. As in the pre-
vious work of NiCo2O4 [7], we considered two types of inverse spinel, called
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Table 1.1: Configurations of tetragonal and octahedral sites
for X and Y elements in spinel structure XY2O4. The numbers

in parentheses are the number of atoms per formula unit.

system tetrahedral site (2) octahedral site (4)
Normal X(2) Y(4)

Inverse type A X(1),Y(1) X(1), Y(3)
Inverse type B Y(2) X(2), Y(2)

Figure 1.1: Three spinel structures of NiCo2O4. From left to
right, they indicate spinels of normal, inverse type A, and inverse
type B. Ni, Co, and O atoms are represented by silver, blue, and

red color respectively.

Types A and B (inverse A and inverse B). The configurations of tetrahedral
and octahedral sites for X and Y elements are presented in Table 1.1.

The crystal structure of normal spinel belongs to a faced-centered cubic
structure with the space group of No. 227. In case of NiCo2O4, its structure
was reported to have an inverse spinel structure [6]. We calculated normal
and two inverse spinel structures of NiCo2O4. The normal and inverse spinel
structures (inverse A and inverse B) are presented in Figure 1.1. Silwal et.al.
[7] suggested that the inverse B configuration has a higher tendency to happen
rather than inverse A configuration. Our discussion in this paper, particularly
focused on the inverse type B.

Figure 1.2 picks up atomic configurations at the tetrahedral and octaheral
sites in spinel structure. Each cation atom is surrounded by four or eight oxy-
gen atoms depending on these site. Oxygen imposes a strong crystal field at
the cation site. As a consequence of such crystal field, the five energy levels of
3d orbital will split into two kinds of levels denoted as 𝑡2g(3 levels) and 𝑒g(two
levels). For the tetrahedral site surrounded by negatively charged oxygen, the
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Figure 1.2: Atomic configurations of tetrahedral (left) and
octahedral (right) sites, respectively. Silver or blue ball denotes

a cation atom and red balls denote oxygen atom.

𝑡2g levels are lowered and the 𝑒g are raised. In octahedral site, this level ar-
rangement is reversed. The energy width of this splitting may indicate degree
of the crystal field.

We investigated optimized structure of lattice parameter 𝑎 and internal pa-
rameter 𝑢 using the house-package of DFT(GGA) code [17] for the normal spinel
structure of NiCo2O4. As 𝑢 increases, the oxygen tetrahedron around the cation
of tetrahedral site expands, resulting in an elongation of cation-oxygen bond.
They were determined to be 𝑎 = 8.115 Å and 𝑢 = 0.3881. The former was
in agreement with the experimental values. Thus, we decided to use the set of
experimental values in our further research. Indeed, we took the experimental
values of 𝑎 = 8.114 Å and 𝑢 = 0.3833 [6, 18]. The difference (𝛿𝑢) between two
internal parameters presented above corresponds to an oxygen atomic distor-
tion of 0.07 Å ( =

√
3𝑎 𝛿𝑢). This is much smaller than a standard bond length

of Ni-oxide (0.4%) [6].
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Chapter 2

Theoretical Background

2.1 Density Functional Theory

2.1.1 Many-body system

For every system of N nuclei which each one of them positioned at 𝑅𝑘, we can
describe a Hamiltonian of that system as:

ℋ̂ = −
𝑁
∑
𝑖

ℏ2

2𝑚𝑒
∇2

𝑖 +
𝑁
∑
𝑖<𝑗

𝑒2
𝑟𝑖 − 𝑟𝑗

−
𝑁𝑛

∑
𝑖

ℏ2

2𝑀𝑖
∇2

𝑖 +
𝑁𝑛

∑
𝑖<𝑗

𝑍𝑖𝑍𝑗𝑒2
𝑅𝑖 −𝑅𝑗

+
𝑁
∑
𝑖

𝑁𝑛

∑
𝑗

𝑍𝑗𝑒2
𝑟𝑖 −𝑅𝑗

(2.1)
In this system, we assume that Z is electronic charge of the nuclei having a

mass of M and surrounded by N electrons at position 𝑟𝑙 with mass of me and
electronic charge of 𝑒. To describe many properties of this system, we need to
solve Schrodinger equation:

ℋ̂Ψ𝑛(𝑅𝑗, 𝑟𝑖) = 𝐸𝑛Ψ𝑛(𝑅𝑗, 𝑟𝑖)

where Ψ is a wave function of the system state related with energy 𝐸𝑛.
We need to make several consideration to make a numerically simpler ap-

proach for this equation. First simplification would be based on the fact that
nuclei usually much heavier than electrons in such a way that they move very
slowly compared to electrons movement. This allows us to separate the move-
ment of nuclear and electrons and then first assume that nuclei are stationary,
solve the system energy and then finally reinclude the problem of nuclear mo-
tion. This assumption is the basis of Born-Oppenheimer approximation. In
light of this assumption, we can rewrite the Hamiltonian as :
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ℋ̂ = −
𝑁
∑
𝑖

ℏ2

2𝑚𝑒
∇2

𝑖 +
𝑁
∑
𝑖<𝑗

𝑒2
𝑟𝑖 − 𝑟𝑗

+
𝑁
∑
𝑖

𝑁𝑛

∑
𝑗

𝑍𝑗𝑒2
𝑟𝑖 −𝑅𝑗

(2.2)

This is much more simple representation of Hamiltonian at 2.1. However,
we still have many body electron-electron interaction that still contribute on
huge complexity of the equation of the system with more than 3 electrons.

2.1.2 Free electron

For the next approach, we need to change our perspective on the system. Pre-
viously, we tend to see the system as a problem of the motion of N electrons
in ionic potential of 𝑁𝑛 nuclei. This perspective made us construct a huge net-
work of equation involving sum of N x n electron coordinates. Hartree proposed
different approach. We can consider that system as interaction between a given
electron with all electrons remained expressed as effective potential Veff. This
approach brought about an impression that each one electron have no explicit
electron-electron interaction, thus leads to term of “non-interacting”. We can
express the effective potential as:

𝜌(𝑟) = ∑
𝜎

∑
𝑖

𝑓𝜎
𝑖 |Ψ𝜎

𝑖 (𝑟)|2

with 𝑓𝑖 is Fermi-Dirac distribution 1
𝑒(𝜀𝑖−𝜇)/𝑘B𝑇+1 and 𝜎 denotes ↑, ↓ spin

states. If we take 𝑉𝑒𝑓𝑓 as an averaged Coulomb interaction, then we can rewrite
the Hamiltonian of the system at equation 2.2 as:

ℋ̂ = −
𝑁
∑
𝑖

ℏ2

2𝑚𝑒
∇2

𝑖 +

𝑉𝑒𝑓𝑓

⎴⎴⎴⎴⎴⎴
𝑒2 ∫𝑑𝑟′ 𝜌(𝑟′)

|𝑟 − 𝑟′| +
𝑁
∑
𝑖

𝑁𝑛

∑
𝑗

𝑍𝑗𝑒2
𝑟𝑖 −𝑅𝑗

(2.3)

along with this approximation, Hartree also replaced the true N-electron
wave function Ψ with a product of single-electron wavefunctions 𝜓.

Ψ(𝑟𝑖, 𝜎𝑖) =
1√
𝑁

𝑁
∏
𝑖

𝜓𝑖(𝑟𝑖, 𝜎𝑖)

with 𝜎𝑖 denotes spin of the electron. In this approach, the knowledge of
𝜌(𝑟) is essentially required. But on the other hand, to generate 𝜌(𝑟), we need
information on the wavefunction. We can break this chicken and egg problem
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by first introduce some initial guessed wavefunction (usually derived from solu-
tion of hydrogen atom). We can then use that wavefunction to construct initial
density rho as a starting point to iteratively generating new effective potential
and eventually new wavefunction. Ideally, this iteration can be repeated indefi-
nitely until we procured a self-consistent wavefunction that remains unchanged
in each iteration.

It is very obvious that this Hartree treatment does not consider any anti-
symmetry properties of fermionic particle, thus it neglects exchange interaction
that required by exclusion principle. One approach to assess this problem is by
introducing Slater determinant:

Ψ(𝑟𝑖, 𝜎𝑖) =
1√
𝑁!

∣
∣
∣
∣

𝜓1(𝑟1, 𝜎1) ⋯ 𝜓1(𝑟𝑁 , 𝜎𝑁)
⋮ ⋱ ⋮

𝜓𝑁(𝑟1, 𝜎1) ⋯ 𝜓𝑁(𝑟𝑁 , 𝜎𝑁)

∣
∣
∣
∣

(2.4)

This approach is considered as Hartree-Fock approximation that would fur-
ther introduced additional exchange term 𝑉 𝑖,𝜎

𝑒𝑥 that reduce potential 𝑉𝑒𝑓𝑓 de-
noted as:

𝑉 𝑖,𝜎
𝑒𝑥 = −[∑

𝑗
∫𝑑𝑟′𝜓

∗
𝑗(𝑟′, 𝜎)𝜓𝑗(𝑟′, 𝜎)

|𝑟 − 𝑟′| ]𝜓𝑗(𝑟, 𝜎)
𝜓𝑖(𝑟, 𝜎)

(2.5)

This approach have good performance in explaining several simple cases such
as homogenous electron gas and small atoms. However, due to its inadequity
to properly account correlated motion of electrons, we still need more advanced
method or approximations, i.e. Density Functional Theory (DFT). Several main
concepts that introduced until Hartree-Fock approximation will also be used in
Density Functional Theory approach, i.e. Self-consistency, Schrodinger equa-
tion, etc.

2.1.3 Hohenberg-Kohn Theorem

In general terms, DFT stated that any property of a system of interacting par-
ticles in external potential can be explained by a functional of ground state
electronic density. In more detailed manner, this theory is formulated by Ho-
henberg and Kohn in 1964 and they establish two basic theorems for DFT,
widely known as Hohenberg-Kohn theorems [19]. The first theory stated that
for any N-electron system, there is a ground-state electronic density 𝑛(r) that
is a functional of external potential 𝑣(r). It has been proved that apart from a
trivial additive constant, 𝑣(r) is conversely a unique functional of 𝑛(r). As an
implication, 𝑛(r) determines the obvious electron number 𝑁 = ∫𝑑3r𝑛(r), and
also external potential 𝑣(r) and the Hamiltonian �̂�, thus everything else about
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that system. The second theory stated the existence a universal functional of
the density 𝐹[𝑛], which for any wavefunction generated density 𝑛(r), we have
energy functional of 𝐸𝑣[𝑛] = 𝐹 [𝑛] + ∫𝑑3r𝑛(r)𝑣(r) ≥ 𝐸𝑔. Using these two the-
orems, we can design an iterative scheme that tries to get a lower 𝐸𝑣[𝑛] at each
of its step until it converges into some 𝐸𝑐. This 𝐸𝑐, including its related density
and wavefunction, should be the ground state of the system.

2.1.4 CPVO

Car-Parrinello Method

Car-Parrinello (CP) method was proposed by Michele Parrinello and Roberto
Car in 1985 as a novel method on first-principle Molecular Dynamics in a real
system. This method has been successfully applied to various systems such
as insulators and semiconductors. It can also applied on clusters, chemical
molecules, and many relatively large system due to the simplicity of the calcu-
lation framework.

In the construction of Car-Parrinello method, we adopt Lagrangian of the
system as:

𝐿 =
𝑜𝑐𝑐
∑
𝑖

𝑚Φ ⟨Ψ𝑖|Ψ𝑖⟩ +
1
2 ∑

𝐼
𝑀𝐼𝑅2

𝐼 −𝐸𝑡𝑜𝑡[Ψ𝑖,R𝐼] +
𝑜𝑐𝑐
∑
𝑖𝑗

Λ𝑖𝑗(⟨Ψ𝑖|Ψ𝑗⟩ − 𝛿𝑖𝑗)

(2.6)

In this Lagrangian, we assume unrestricted movement on R𝐼 and virtual
movement of Ψ𝑖. The kinetic energy of those two movements are represented
in first and second term of equation 2.6. 𝑀𝐼 and 𝑚Φ are atomic mass and
fictious mass of wavefunction. The third term of this Lagrangian is the external
potential energy (from the point of view of electron), that in ground state of
related electronic system, would be very much equal with the potential of the
atoms. The last term imposes normalization constraint on the wavefunction
with Λ is a Lagrange multiplier. Here, Λ is a Hermitian matrix.
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Furthermore, we have total energy of the system 𝐸𝑡𝑜𝑡, reported in vofrho.f,
deduced from Density Functional Theory as:

𝐸𝑡𝑜𝑡[Ψ𝑖, 𝑅𝐼] =
𝑜𝑐𝑐
∑
𝑖

⟨Ψ𝑖| −
1
2∇

2 +𝑉𝑁𝐿|Ψ𝑖⟩ +
1
2 ∫∫ 𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′| 𝑑𝑟𝑑𝑟′

+∫𝑉𝑙𝑜𝑐(𝑟)𝑛(𝑟)𝑑𝑟 +𝐸𝑥𝑐 +
1
2

𝐼≠𝐼′

∑
𝐼,𝐼′

𝑍𝐼𝑍𝐼′

𝑅𝐼 −𝑅𝐼′

with electron density as:

𝑛(𝑟) =
𝑜𝑐𝑐.
∑
𝑖

|Ψ𝑖(𝑟)|2

In this total energy formula, we separate potential of nuclei as the non-local
part and local part (𝑉𝑁𝐿 and 𝑉𝑙𝑜𝑐 ) due to our decision to employ pseudopo-
tential in our construction.

The Euler-Lagrange equation derived from above Lagrangian would be

𝑚ΨΨ̈𝑖(𝑟) = −(ℋΨ𝑖)(𝑟) +
𝑜𝑐𝑐.
∑
𝑗

Λ𝑖𝑗Ψ𝑗(𝑟) (2.7)

𝑀𝐼�̈�𝐼 = −𝑑𝐸𝑡𝑜𝑡
𝑑𝑅𝐼

= 𝐹𝐼 (2.8)

Both equation denoting Force that imposed on all electrons and that of
fictious force on wavefunction. The Kohn-Sham Hamiltonian ℋ is defined by

ℋ = −1
2∇

2 +𝑉𝑁𝐿 +
𝑉𝑒𝑓𝑓

𝑉𝑙𝑜𝑐 +𝑉𝐻 +𝑉𝑥𝑐

with

𝑉𝐻(𝑟) = ∫ 𝑛(𝑟′)
|𝑟 − 𝑟′|𝑑𝑟

′

𝑉𝑥𝑐 = 𝛿𝐸𝑥𝑐
𝛿𝑛(𝑟)

Here, we assume that Λ is already diagonalized and thus we have construc-
tion for Φ as

ℋ|Φ𝑖⟩ = 𝜀𝑖 |Φ𝑖⟩
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Φ and Ψ is conneceted by a unitary transformation utilizing a unitary matrix
𝑇 following:

Φ𝑙 = ∑
𝑖
(𝑇 †)𝑙𝑖Ψ𝑖

To solve the equation of motion in 2.8, we need the normalized orthogonal
condition of ⟨Ψ𝑖|Ψ𝑗⟩ = 𝛿𝑖𝑗. When Ψ is in ground state, the force on atom at
position 𝑅𝐼 is accurately follows Hellmann-Feynman theorem. If we use ultra-
soft pseudopotential, we need additional term in atomic force formulation at
equation 2.8.

Practically, in Car-Parrinello method, the equation of motion in 2.8 is dif-
ferentiated and solved numerically. One of popular technique is by employing
Verletśmethod following:

Ψ𝑖(𝑡 +Δ𝑡) = 2Ψ𝑖(𝑡) −Ψ𝑖(𝑡 −Δ𝑡) + (Δ𝑡)2
𝑚Ψ

(−ℋΨ𝑖(𝑡) +
𝑜𝑐𝑐.
∑
𝑗

Λ𝑖𝑗Ψ𝑗(𝑡)) (2.9)

𝑅𝑖(𝑡 +Δ𝑡) = 2𝑅𝐼(𝑡) −𝑅𝐼(𝑡 −Δ𝑡) + (Δ𝑡)2
𝑀𝐼

𝐹𝐼 (2.10)

At each iteration of 𝑡, we can immediately calculate all terms for the wave-
function and force, excluding Λ𝑖𝑗 term. We then assume that Λ𝑖𝑗 follows stan-
dard orthogonalization condition at time 𝑡 +Δ𝑡, stated as:

⟨Ψ𝑖(𝑡 +Δ𝑡)|Ψ𝑗(𝑡 +Δ𝑡)⟩ = 𝛿𝑖𝑗 (2.11)

Following the definition of Ψ𝑖 in Verlet as:

Ψ̄𝑖(𝑡) = 2Ψ𝑖(𝑡) −Ψ𝑖(𝑡 −Δ𝑡) − (Δ𝑡)2
𝑚Ψ

ℋΨ𝑖(𝑡)

Ψ𝑖(𝑡 +Δ𝑡) = Ψ̄𝑖(𝑡) +
𝑜𝑐𝑐.
∑
𝑗

(Δ𝑡)2
𝑚Ψ

Λ𝑖𝑗Ψ𝑖(𝑡)

and combine them with orthogonalization condition at 2.11 into identity

𝐴+𝑋 ∗𝐵+ (𝑋 ∗𝐵)† +𝑋 ∗𝑋𝑡 = 1
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we would have these agreement on

𝐴𝑖𝑗 = ⟨Ψ̄𝑖|Ψ̄𝑗⟩
𝐵𝑖𝑗 = ⟨Ψ𝑖|Ψ̄𝑗⟩

𝑋𝑖𝑗 =
(Δ𝑡)2
𝑚Ψ

Λ𝑖𝑗

By then, the Lagrange multiplier Λ𝑖𝑗 can be calculated.
The flow of Car-Parrinello technique then can be described as follows. Ini-

tially, we define arbitrary wave function from which we calculate initial electron
density. Then we acquire potential of electrons and evaluates the equation of
motion in 2.8. Using these forces (fictious for wavefunction), we generate new
set of wavefunction and atomic coordinates. At ground state, we should expect
𝑅𝐼 to move following lowest energy mode of vibration. In this case, we would
have wavefunction to be converged into ground-state.

The Lagrangian of this scheme would follows an energy conservation require-
ments

𝐸𝑐𝑜𝑛𝑠𝑡. =
𝑜𝑐𝑐.
∑
𝑖

𝑚Φ ⟨Ψ̇𝑖|Ψ̇𝑖⟩ +
1
2 ∑

𝑖
𝑀𝐼�̇�2

𝐼 +𝐸𝑡𝑜𝑡[Ψ𝑖, 𝑅𝐼]

On the other hand, we may fix the position of atoms, and the equation of
fictious motion of the wavefunctions can be performed. We should consider the
fictious friction term that is proportional to the velocity of the wave function.
By reducing the kinetic energy of the wave function, the system can smoothly
converges to the ground state. Considering this fictious friction, we may update
the equation 2.10 into

Ψ𝑖(𝑡 +Δ𝑡) = 2
1+ 𝜏 Ψ𝑖(𝑡) −

1− 𝜏
1+ 𝜏 Ψ𝑖(𝑡 −Δ𝑡)

+ 1
1+ 𝜏

(Δ𝑡)2
𝑚Ψ

(−ℋΨ𝑖(𝑡) +
𝑜𝑐𝑐.
∑
𝑗

Λ𝑖𝑗Ψ𝑗(𝑡))

Practically, we may define 𝜏 between 0.15 to 0.005, or smaller value when
we near convergence.

long story short, we would have:

(2.12)
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(2.13)

2.1.5 Ultrasoft Pseudopotential

𝑛(𝑟) =
𝑜𝑐𝑐.
∑
𝑖

|Ψ𝑖(𝑟)|2 + ∑
𝑛𝑚𝐼

𝑄𝐼
𝑛𝑚(𝑟) ⟨𝛽𝐼

𝑛|Ψ𝑖⟩ ⟨Ψ𝑖|𝛽𝐼
𝑚⟩ (2.14)

ℋ = −1
2∇

2 +𝑉𝑁𝐿+𝑉𝑒𝑓𝑓 + ∑
𝑛𝑚𝐼

|𝛽𝐼
𝑚⟩𝐷𝐼

𝑛𝑚 ⟨𝛽𝐼
𝑚| (2.15)

𝑉𝑒𝑓𝑓(𝑟) = 𝑉𝑙𝑜𝑐(𝑟) +∫ 𝑛(𝑟′)
|𝑟 − 𝑟′|𝑑𝑟

′ +𝑉 𝑁
𝑥𝑐 (𝑟) (2.16)

𝐷𝐼
𝑛𝑚 = 𝐷(0)𝐼

𝑛𝑚 +∫𝑄𝐼
𝑛𝑚(𝑟)𝑉𝑒𝑓𝑓(𝑟)𝑑𝑟 (2.17)

𝑉𝑁𝐿 = ∑
𝑛𝑚𝐼

|𝛽𝐼
𝑚⟩𝐷(0)𝐼

𝑛𝑚 ⟨𝛽𝐼
𝑚| (2.18)

⟨Ψ𝑖|𝑆|Ψ𝑗⟩ = 𝛿𝑖𝑗 (2.19)

𝑆 = 1+ ∑
𝑛𝑚𝐼

𝑞𝐼𝑛𝑚 |𝛽𝐼
𝑚⟩ ⟨𝛽𝐼

𝑛| (2.20)

𝑞𝐼𝑛𝑚 = ∫𝑄𝐼
𝑛𝑚(𝑟)𝑑𝑟 (2.21)

𝑜𝑐𝑐.
∑
𝑖𝑗

Λ𝑖𝑗(⟨Ψ𝑖|𝑆|Ψ𝑗⟩ − 𝛿𝑖𝑗) (2.22)

𝐹𝐼 = −𝜕𝐸𝑡𝑜𝑡
𝜕𝑅𝐼

+
𝑜𝑐𝑐.
∑
𝑖𝑗

Λ𝑖𝑗 ⟨Ψ𝑖|
𝜕𝑆
𝜕𝑅𝐼

|Ψ𝑗⟩ (2.23)

𝐹𝐼 = −∑
𝑛𝑚

(𝐷𝐼
𝑛𝑚

𝜕𝜌𝐼
𝑛𝑚

𝜕𝑅𝐼
) (2.24)

−∫𝑑𝑟(𝑉 𝑒𝑓𝑓(𝑟))∑
𝑛𝑚

𝑑𝑄𝐼
𝑛𝑚(𝑟)
𝑑𝑅𝐼

𝜌𝐼𝑛𝑚 (2.25)

−∫𝑑𝑟𝑛(𝑟)𝑑𝑉
𝑖𝑜𝑛
𝑙𝑜𝑐 (𝑟)
𝑑𝑅𝐼

− 𝑑𝑈𝑖𝑜𝑛
𝑑𝑅𝐼

(2.26)

+∑
𝑛𝑚

𝑞𝐼𝑛𝑚
𝜕𝜔𝐼

𝑛𝑚
𝜕𝑅𝐼

(2.27)
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𝜌𝐼𝑛𝑚 ≡
𝑜𝑐𝑐.
∑
𝑖

⟨𝛽𝐼
𝑛|𝜓𝑖⟩ ⟨𝜓𝑖|𝛽𝐼

𝑚⟩ (2.28)

𝜔𝐼
𝑛𝑚 ≡

𝑜𝑐𝑐.
∑
𝑖𝑗

Λ𝑖𝑗 ⟨𝜓𝑖|𝛽𝐼
𝑚⟩ ⟨𝛽𝐼

𝑛|𝜓𝑗⟩ (2.29)

𝜕𝜌𝐼𝑛𝑚
𝜕𝑅𝐼

≡
𝑜𝑐𝑐.
∑
𝑖

⟨ 𝜕𝛽
𝐼
𝑛

𝜕𝑅𝐼
|𝜓𝑖⟩ ⟨𝜓𝑖|𝛽𝐼

𝑚⟩ + ⟨𝛽𝐼
𝑛|𝜓𝑖⟩ ⟨𝜓𝑖|

𝜕𝛽𝐼
𝑚

𝜕𝑅𝐼
⟩ (2.30)

𝜕𝜔𝐼
𝑛𝑚

𝜕𝑅𝐼
≡

𝑜𝑐𝑐.
∑
𝑖𝑗

Λ𝑖𝑗⟨𝜓𝑖|
𝜕𝛽𝐼

𝑚
𝜕𝑅𝐼

⟩ ⟨𝛽𝐼
𝑛|𝜓𝑗⟩ + ⟨𝜓𝑖|𝛽𝐼

𝑚⟩ ⟨ 𝜕𝛽
𝐼
𝑛

𝜕𝑅𝐼
|𝜓𝑗⟩ (2.31)

Force calculation

𝑛(𝑟) = ∑
𝑘

𝑓𝑘|Φ𝑘(𝑟)|2 (2.32)

𝑓𝑘 = 𝑤𝑘𝑞𝑘 (2.33)

𝑞𝑘 = 1
𝑒𝛽(𝜀𝑘−𝜇)+1 (2.34)

𝐹𝑡𝑜𝑡 = 𝐸𝑡𝑜𝑡[Φ𝑘, 𝜀𝑘.𝑅𝐼] −
1
𝛽𝑆𝑒𝑙 (2.35)

𝑆𝑒𝑙 = −∑
𝑘

𝑤𝑘𝑞𝑘𝑙𝑛𝑞𝑘 + (1𝑞𝑘)𝑙𝑛(1 − 𝑞𝑘) (2.36)

xxxx
𝛿

𝛿𝑓𝑘
𝐹𝑡𝑜𝑡 −𝜇(∑

𝑙
𝑓𝑙 −𝑁𝑒) = −(𝜀𝑘 − ⟨Φ𝑘|ℋ|Φ𝑘⟩) = 0 (2.37)

𝛿𝐸𝑡𝑜𝑡
𝛿𝑓𝑘

= ⟨Φ𝑘|ℋ|Φ𝑘⟩ (2.38)

𝛿𝐸𝑡𝑜𝑡
𝛿𝑓𝑘

= −(𝜀𝑘 −𝜇) (2.39)

𝑓𝑘 = 𝑤𝑘 ̄𝜃(𝑥𝑘), 𝑥𝑘 = (𝜇− 𝜀𝑘)/𝜎 (2.40)

𝐸𝑒𝑛 = 𝜎∑
𝑘

𝑤𝑘 ̄𝜃1(𝑥𝑘) (2.41)

̄𝜃1(𝑥) = ∫
𝑥

−𝑖𝑛𝑓
𝑦 ̄𝛿(𝑦)𝑑𝑦 (2.42)
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̄𝛿(𝑥) = 𝑑 ̄𝜃(𝑥)
𝑑𝑥 (2.43)

𝑀𝑃 ̄𝜃(𝑥) = 1
21 + 𝑠𝑔𝑛(𝑥)𝑒𝑟𝑓(|𝑥|) + 1

2√𝜋𝑥𝑒
−𝑥2 (2.44)

𝐺𝐴 ̄𝜃(𝑥) = 1
21 + 𝑠𝑔𝑛(𝑥)𝑒𝑟𝑓(|𝑥|) (2.45)

𝑒𝑟𝑓(𝑥) = 2√𝜙 ∫
𝑥

0
𝑒−𝑦2𝑑𝑦 (2.46)

𝑚ΦΦ̈𝑘(𝑟) = −(ℋΦ𝑘)(𝑟) +∑
𝑙

1
𝑓𝑘

Λ𝑘𝑙Φ𝑙(𝑟) (2.47)

ℒΦ = ∑
𝑘

𝑚Φ𝑓𝑘 ⟨Φ̄𝑘|Φ̄𝑘⟩ − 𝐹𝑡𝑜𝑡[Φ𝑘, 𝜀𝑘, 𝑅𝐼] +∑
𝑘𝑙

Λ𝑘𝑙(⟨Φ𝑘|Φ𝑙⟩ − 𝛿𝑘𝑙) (2.48)

𝑓𝑘(ℋΦ𝑘)(𝑟) = ∑
𝑙

Λ𝑘𝑙Φ𝑙(𝑟) (2.49)

𝑓𝑘 ⟨Φ𝑙|ℋ|Φ𝑘⟩ = Λ𝑘𝑙 (2.50)

(𝑓𝑘 − 𝑓𝑙) ⟨Φ𝑙|ℋ|Φ𝑘⟩ = 0 (2.51)

∑
𝑗

𝑓𝑖𝑗 ⟨Ψ𝑗|ℋ|Ψ𝑖′⟩ − ⟨Ψ𝑖|ℋ|Ψ𝑗⟩ 𝑓𝑗𝑖′ = 0 (2.52)

𝑓∗
𝑖𝑗 = ∑

𝑘
(𝑈)𝑖𝑘𝑓𝑘(𝑈†)𝑘𝑗 (2.53)

𝑛(𝑟) = ∑
𝑖𝑗

𝑓𝑖𝑗Ψ∗
𝑖(𝑟)Ψ𝑗(𝑟) (2.54)

𝐹𝐼 = − 𝑑
𝑑𝑅𝐼

𝐹𝑡𝑜𝑡 −𝜇(∑
𝑙

𝑓𝑙 −𝑁𝑒) (2.55)

= −𝜕𝐹𝑡𝑜𝑡
𝜕𝑅𝐼

−∑
𝑘

𝜕
𝜕𝑓𝑘

𝐹𝑡𝑜𝑡 −𝜇(∑
𝑙

𝑓𝑙 −𝑁𝑒)
𝑑𝑓𝑘
𝑑𝑅𝐼

(2.56)

𝐹𝐼 = −𝜕𝐹𝑡𝑜𝑡
𝜕𝑅𝐼

(2.57)



2.1. Density Functional Theory 17

Verlet Method

𝑚ΦΦ̈𝑘 = −ℋΦ𝑘 +∑
𝑙

Λ𝑘𝑙Φ𝑙 −𝑚Φ ̇𝑥𝑒Φ̇𝑘 (2.58)

𝑀𝐼�̈�𝐼 = 𝐹𝐼 −𝑀𝐼�̇�𝐼 ̇𝑥𝑅 (2.59)

𝑄𝑒 ̈𝑥𝑒 − 2(𝐸𝑘𝑖𝑛 −𝐸𝑘𝑖𝑛0) (2.60)

𝑄𝑛 ̈𝑥𝑅 = 2(𝐾𝑅 − 1
2𝑔𝑅𝑘𝐵𝑇𝑒𝑥) (2.61)

𝑚𝜀 ̈𝜀𝑖𝑗 = −(𝜀𝑖𝑗 − ⟨Ψ𝑖|ℋ|Ψ𝑗⟩) (2.62)

2𝜋√𝑚𝜀 (2.63)

𝑚ΦΦ̈𝑘 = −ℋΦ𝑘 +∑
𝑙

1
𝑓𝑘

Λ𝑘𝑙Φ𝑙 −𝑚Φ ̇𝑥𝑒Φ̇𝑘 (2.64)

𝑀𝐼�̈�𝐼 = 𝐹𝐼 −𝑀𝐼�̇�𝐼 ̇𝑥𝑅 (2.65)

ℋΦ𝑘 = 1
𝑓𝑘

𝛿𝐹𝑡𝑜𝑡
𝛿Φ∗

𝑘
(2.66)

𝐹𝐼 = −𝜕𝐹𝑡𝑜𝑡
𝜕𝑅𝐼

(2.67)

𝑇 †(𝜀𝑡)𝑇 = 𝜀𝑑 (2.68)

𝑓𝑑
𝑙 = 𝑤𝑙𝑞𝑙 =

𝑤𝑙
𝑒𝛽(𝜀𝑑

𝑙 −𝜇) + 1
(2.69)

𝑓𝑖𝑗 = 𝑇(𝑓𝑑)𝑇 † (2.70)

Λ𝑙𝑘 = 2𝑓𝑘𝑓𝑙
𝑓𝑘 + 𝑓𝑙

⟨Ψ𝑘|𝐻|Ψ𝑙⟩ −𝑚Ψ ⟨Ψ̇𝑘|Ψ𝑙⟩ +
1
2𝑚Ψ

𝑑2

𝑑𝑡2 ⟨Ψ𝑘|Ψ𝑙⟩ (2.71)

𝑓𝑘 + 𝑓𝑙
2𝑓𝑘𝑓𝑙

Λ𝑙𝑘 − ⟨Ψ𝑘|𝐻|Ψ𝑙⟩ +𝑚Ψ ⟨Ψ̇𝑘|Ψ̇𝑙⟩ = 0 (2.72)
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𝑚Ψ
𝑑2

𝑑𝑡2 ⟨Ψ𝑘|Ψ𝑙⟩ = 0 (2.73)

⟨Ψ𝑘|Ψ𝑙⟩ = 𝑐𝑘𝑙𝑡 + 𝑑𝑘𝑙 (2.74)

Ψ𝑖(𝑡 +Δ𝑡) = 2Ψ𝑖(𝑡) −Ψ𝑖(𝑡 −Δ𝑡)

− (Δ𝑡)2
𝑚Ψ

(𝐻Ψ𝑗)(𝑡) +
(Δ𝑡)2
𝑚Ψ

∑
𝑗

1
𝑓𝑖
Λ𝑖𝑗(𝑡 +Δ𝑡)(𝑆Ψ𝑗)(𝑡)

𝑅𝐼(𝑡 +Δ𝑡) = 2𝑅𝐼(𝑡) −𝑅𝐼(𝑡 −Δ𝑡)

− (Δ𝑡)2
𝑀𝐼

𝜕𝐸𝑡𝑜𝑡(𝑡)
𝜕𝑅𝐼

+ (Δ𝑡)2
𝑀𝐼

∑
𝑖𝑗

Λ𝑖𝑗(𝑡 +Δ𝑡) ⟨Ψ𝑖(𝑡)|
𝜕𝑆(𝑡)
𝜕𝑅𝐼

|Ψ𝑗(𝑡)⟩

⟨Ψ𝑖(𝑡 +Δ𝑡)|𝑆(𝑡 +Δ𝑡)|Ψ𝑗(𝑡 +Δ𝑡)⟩ = 𝛿𝑖𝑗 (2.75)

𝐴+𝑌𝐵+ (𝑌 𝐵)† +𝑌𝐶𝑌 † = 1 (2.76)

𝑌𝑖𝑗 =
(Δ𝑡)2
𝑚Ψ

1
𝑓𝑖
Λ∗

𝑖𝑗(𝑡 +Δ𝑡) (2.77)

𝐴𝑖𝑗 = ⟨Ψ̄𝑖|𝑆(𝑡 +Δ𝑡)|Ψ̄𝑗⟩ (2.78)

𝐵𝑖𝑗 = ⟨Ψ̂𝑖|𝑆(𝑡 +Δ𝑡)|Ψ̄𝑗⟩ (2.79)

𝐶𝑖𝑗 = ⟨Ψ̂𝑖|𝑆(𝑡 +Δ𝑡)|Ψ̂𝑗⟩ (2.80)

Ψ̄𝑖 ≡ 2Ψ𝑖(𝑡 +Δ𝑡) −Ψ𝑖(𝑡) −
(Δ𝑡)2
𝑚Ψ

(𝐻Ψ𝑖)(𝑡) (2.81)

Ψ̂𝑖 ≡ (𝑆Ψ𝑖)(𝑡) (2.82)

Λ(0)
𝑖𝑗 (𝑡 +Δ𝑡) = 2Λ𝑖𝑗(𝑡) − Λ𝑖𝑗(𝑡 −Δ𝑡) (2.83)
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𝑓𝑖𝑌𝑖𝑗 = 𝑓𝑗𝑌 ∗
𝑗𝑖 (2.84)

(𝑌𝑎)𝑖𝑗 = −𝑓𝑖 − 𝑓𝑗
𝑓𝑖 + 𝑓𝑗

(𝑌ℎ)𝑖𝑗 (2.85)

𝑌 (0)𝐵ℎ + (𝑌 (0)𝐵ℎ)† = 1−𝐴 (2.86)

𝑌 (0)𝐵ℎ + (𝑌 (0)𝐵ℎ)† = 1−𝐴 (2.87)

𝑌 (0)
ℎ = 𝑈𝑍𝑈† (2.88)

𝑍𝑘𝑙 =
(𝑈†(1 −𝐴)𝑈)𝑘𝑙

𝜆𝑘 +𝜆𝑙
(2.89)

𝑌 (𝑛+1)
ℎ 𝐵ℎ + (𝑌 (𝑛+1)

ℎ )† = 1−𝐴−𝑌 (𝑛)𝐵𝑎 − (𝑌 (𝑛)𝐵𝑎)†

−𝑌 (𝑛)
𝑎 𝐵ℎ − (𝑌 (𝑛)

𝑎 𝐵ℎ)† −𝑌 (𝑛)𝐶(𝑌 (𝑛))†

Λ∗
𝑖𝑗(𝑡 +Δ𝑡) = 𝑚Ψ

(Δ𝑡)2
2𝑓𝑖𝑓𝑗
𝑓𝑖 + 𝑓𝑗

(𝑌ℎ)𝑖𝑗 (2.90)

⟨Ψ𝑖|𝐻|Ψ𝑗⟩ =
2

𝑓𝑖 + 𝑓𝑗
Λ∗

𝑖𝑗 =
2

𝑓𝑖 + 𝑓𝑗
Λ𝑗𝑖 =

𝑚Ψ
(Δ𝑡)2

4𝑓𝑖𝑓𝑗
(𝑓𝑖 + 𝑓𝑗)2

(𝑌ℎ)𝑖𝑗 (2.91)

Expansion at Periodic System
𝑜𝑐𝑐.
∑
𝑘

⟨Ψ̇𝑘|Ψ̇𝑘⟩𝑚Ψ = 2𝑚Ψ
𝑘𝐵𝑇
𝑀 ∑𝑘𝑜𝑐𝑐. ⟨Ψ𝑘| −

1
2∇

2|Ψ𝑘⟩ (2.92)

Φ𝑘(𝑟, 𝑡) =
1√
Ω

∑
𝐺

𝐶𝑘(𝐺)𝑒𝑖𝐺⋅(𝑟−𝑅𝐼)𝑒𝑖𝐺⋅𝑅𝐼(𝑡) (2.93)

𝑅𝐼(𝑡 +Δ𝑡) ≈ 𝑅𝐼(𝑡) + �̇�𝐼(𝑡)Δ𝑡 (2.94)

Φ̇𝑘(𝑟, 𝑡) =
1√
Ω

∑
𝐺

𝐶𝑘(𝐺)𝑒𝑖𝐺⋅(𝑟−𝑅𝐼) ∑
𝐼
(𝑖𝐺) ⋅ �̇�𝐼(𝑡)𝑒𝑖𝐺⋅𝑅𝐼(𝑡) (2.95)
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2.2 Elementary Concepts
To bring our understandings on the theoretical base of quasi-particle GW method,
we should enrich our understanding in some concepts borrowed from Quantum
Electrodynamics. In this frame, we may work in quantum mechanical paradigm,
by :

1. calculate a wave function and then apply a quantum operators to find
some expected physical quantities, or

2. directly consider amplitudes for a given process.

The first way is the usual way that we may found in DFT or HF approach.
Now, we need to emphasize on the second way, to directly consider the am-
plitudes for a given process. To be specific, we take a consideration of “The
amplitude that a particular particle starts at point 𝑦 at a time 𝑡𝑦” and ends
up at point 𝑥 at time 𝑡𝑥“. This consideration would have a representation of
⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩, or in general we may say ⟨𝑓𝑖𝑛𝑎𝑙|𝑖𝑛𝑖𝑡𝑖𝑎𝑙⟩. We call this amplitude
as a propagator. Using this representation, we will have a propagator as an
alternative for wave functions, in such a way that by having a propagator, we
can extract all information that can be acquired by a wave function.

There are several important points that can be achieved using propagators.
1. wave functions are special cases of propagators and contain less information 2.
Propagator represent the most economical way to calculate all of the properties
of quantum fields in an interacting system of many particles 3. propagators for
single particles have a neat property: its a Green's functions of the equation of
motion for a particle.

2.3 Green's Function 𝐺
For a general linear differential operator �̂�: �̂�𝑥(𝑡) = 𝑓(𝑡) we will define the
Green's function 𝐺(𝑡, 𝑢) of �̂� as: �̂�𝐺(𝑡, 𝑢) = 𝛿(𝑡 − 𝑢).

In the first grade term, we may have a linear differential equation from an
oscillator with mass 𝑚 and spring constant 𝐾 evolving under the influence of
a time-dependent force 𝑓(𝑡).

𝑚 𝑑2

𝑑𝑡2𝑥(𝑡) +𝐾𝑥(𝑡) = 𝑓(𝑡), linear operator as:�̂� = 𝑚 𝑑2

𝑑𝑡2 +𝐾 (2.96)

Our approach to solve this problem, can be as simple as summing up many
small delta functions to make force function 𝑓(𝑡): 𝑓(𝑡) = ∫∞

0 𝑑𝑢𝑓(𝑢)𝛿(𝑡 − 𝑢)
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with 𝑢 is a dummy to break up force into delta. This superposition is good
because �̂� is linear.

To solve this problem, we will consider only one delta function and try to
solve 𝑓(𝑡) for single delta function. [𝑚 𝑑2

𝑑𝑡2 +𝐾]𝐺(𝑡, 𝑢) = 𝛿(𝑡, 𝑢) with G(t,u) is
our solution and called Green's function. From here on, we can consider the full
solution 𝑥(𝑡) as an integral of Green's function weighted by the force function
f(u). 𝑥(𝑡) = ∫∞

0 𝑑𝑢𝐺(𝑡, 𝑢)𝑓(𝑢) By following back that :

�̂�𝑥(𝑡) = ∫𝑑𝑢�̂�𝐺(𝑡, 𝑢)𝑓(𝑢) (2.97)

= ∫𝑑𝑢𝛿(𝑡 − 𝑢)𝑓(𝑢) (2.98)

= 𝑓(𝑡) (2.99)

We can solve an inhomogenous differential equation by finding the Green's
function G(t,u) and then integrating over f(u) to get the solution x(t). Thus,
G will need two arguments: our variable of interest and a dummy variable for
delta function to build up inhomogenous part of the equation (𝑓(𝑡)). And our
problem become finding the Green's function of our common �̂�.

Propagators
For every wave function 𝜙(𝑥, 𝑡), we have Schrödinger equation �̂�𝜙(𝑥, 𝑡) =

𝑖𝜕𝜙(𝑥,𝑡)𝜕𝑡 with �̂� is an operator function of 𝑥 that governs the evolution/change
of 𝜙.

On the other hand, we have a Green's function that have a property of:

𝑥(𝑡) = ∫
∞

0
𝑑𝑢 𝐺(𝑡, 𝑢)𝑓(𝑢) 𝜙(𝑥, 𝑡𝑥) = ∫𝑑𝑦 𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦)𝜓(𝑦, 𝑡𝑦) (2.100)

Based on this equation, we may construct several stories (with the same
substance):

1. Green's function takes a wave function at 𝑦 spacetime, and evolves it to 𝑡
spacetime. To find out how this evolution behaves, we need to integrate
over space.

2. the Green's function propagates the particle from spacetime (𝑦, 𝑡𝑦) to
(𝑥, 𝑡𝑥), thus said propagator.

1. We also add a constrain G to only 𝑡𝑥 > 𝑡𝑦, and ∀𝑡𝑥 < 𝑡𝑦, 𝐺 = 0, to
prevent propagation back in time.

2. Thus we have time-retarded Green's function, 𝐺+.
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3. If we interpret 𝜓(𝑛, 𝑡𝑛) as the amplitude to find a particle at spacetime
(𝑛, 𝑡𝑛). Then, it follows that the propagator 𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) is the prob-
ability amplitude that a particle in state |𝑦⟩ at time 𝑡𝑦 ends up in a
state |𝑥⟩ at time 𝑡𝑥. Thus the Green's function may be written as:
𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = 𝜃(𝑡𝑥 − 𝑡𝑦) ⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩ Using this interpretation, we
found that time variable already handled by Green's function, so we do
not need to integrate previous 𝜙 over time. Under this interpretation,
we also have wave function 𝜙(𝑥, 𝑡𝑥) = ⟨𝑥|𝜓(𝑡)⟩ as the amplitude that a
particle is found at a particular spacetime of (𝑥, 𝑡𝑥), without any info on
its starting point.

We may process propagator 𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = 𝜃(𝑡𝑥−𝑡𝑦) ⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩ in such
a way that the time dependence is taken away from the states:

𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = 𝜃(𝑡𝑥 − 𝑡𝑦) ⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩ (2.101)
= 𝜃(𝑡𝑥 − 𝑡𝑦) ⟨𝑥| ̂𝑈(𝑡𝑥 − 𝑡𝑦)|𝑦⟩ (2.102)

= 𝜃(𝑡𝑥 − 𝑡𝑦) ⟨𝑥|𝑒−𝑖�̂�(𝑡𝑥−𝑡𝑦)|𝑦⟩ (2.103)

then we can continue to expand the amplitudes in terms of the eigenstates
of the �̂�, which we call |𝑛⟩ having eigenvalues of 𝐸𝑛.

𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = 𝜃(𝑡𝑥 − 𝑡𝑦) ⟨𝑥|𝑒−𝑖�̂�(𝑡𝑥−𝑡𝑦)|𝑦⟩ (2.104)

= 𝜃(𝑡𝑥 − 𝑡𝑦)∑
𝑛

⟨𝑥|𝑒−𝑖�̂�(𝑡𝑥−𝑡𝑦)|𝑛⟩ ⟨𝑛|𝑦⟩ using 1 = ∑
𝑛

|𝑛⟩ ⟨𝑛|

(2.105)

Following that ⟨𝑥|𝑛⟩ is a wave function of 𝜙𝑛(𝑥), we finally have the prop-
agator written in terms of the eigenfunctions of �̂�:

𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = 𝜃(𝑡𝑥 − 𝑡𝑦)∑
𝑛

𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)𝑒−𝑖𝐸𝑛(𝑡𝑥−𝑡𝑦) (2.106)

Thus we have relation of wave functions and propagators.
Next, we expand our assumption into a confirmation that the propagator

𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) is indeed a Green's function of Schrödinger equation. To do
that, we define for Schrödinger equation, the Green's function 𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦)
is a function of 𝑥 and 𝑡𝑥 only, while 𝑦 and 𝑡𝑦 are dummies. In this regards, we
would have �̂� is a function of 𝑥, 𝑡𝑥
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[�̂�𝑥 − 𝑖 𝜕
𝜕𝑡𝑥

]𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = −𝑖𝛿(𝑥 − 𝑦)𝛿(𝑡𝑥 − 𝑡𝑦) = −𝑖𝛿(2)(𝑥 − 𝑦) (2.107)

then, our aim is to confirm that the amplitude ⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩ is truly the
Green's function of the Schrödinger equation.

𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = 𝜃(𝑡𝑥−𝑡𝑦) ⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩ = 𝜃(𝑡𝑥−𝑡𝑦)∑
𝑛

𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)𝑒−𝑖𝐸𝑛(𝑡𝑥−𝑡𝑦)

(2.108)
we can have:

[�̂�𝑥 − 𝑖 𝜕
𝜕𝑡𝑥

]𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = −𝑖𝛿(𝑥 − 𝑦)𝛿(𝑡𝑥 − 𝑡𝑦) = −𝑖𝛿(2)(𝑥 − 𝑦)

[�̂�𝑥 − 𝑖 𝜕
𝜕𝑡𝑥

] 𝜃(𝑡𝑥 − 𝑡𝑦)∑
𝑛

𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)𝑒−𝑖𝐸𝑛(𝑡𝑥−𝑡𝑦) = −𝑖𝛿(𝑥 − 𝑦)𝛿(𝑡𝑥 − 𝑡𝑦) = −𝑖𝛿(2)(𝑥 − 𝑦)

we do in two stages, first we have:

using 𝜕
𝜕𝑡𝑥

𝜃(𝑡𝑥 − 𝑡𝑦) = 𝛿(𝑡𝑥 − 𝑡𝑦) and 𝑑𝑢𝑣 = 𝑢𝑑𝑣 + 𝑣𝑑𝑢 (2.109)

𝑖 𝜕
𝜕𝑡𝑥

𝐺+ = 𝑖𝛿(𝑡𝑥 − 𝑡𝑦)∑
𝑛

𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)𝑒−𝑖𝐸𝑛(𝑡𝑥−𝑡𝑦) (2.110)

+ 𝜃(𝑡𝑥 − 𝑡𝑦)∑
𝑛

𝐸𝑛𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)𝑒−𝑖𝐸𝑛(𝑡𝑥−𝑡𝑦) (2.111)

second stage, we consider:

�̂�𝑥 only acts on the Green's function, and using �̂�𝑥𝜓𝑛(𝑥) = 𝐸𝑛𝜓(𝑥)
�̂�𝑥𝐺+ = �̂�𝑥𝜃(𝑡𝑥 − 𝑡𝑦) ⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩ = 𝜃(𝑡𝑥 − 𝑡𝑦) ⟨𝑥(𝑡𝑥)|𝑦(𝑡𝑦)⟩

= 𝜃(𝑡𝑥 − 𝑡𝑦)∑
𝑛

𝐸𝑛𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)𝑒−𝑖𝐸𝑛(𝑡𝑥−𝑡𝑦)

finally, we combine them into:

[�̂�𝑥 − 𝑖 𝜕
𝜕𝑡𝑥

]𝐺+(𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = −𝑖𝛿𝑡𝑥 − 𝑡𝑦 ∑
𝑛

𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)𝑒−𝑖𝐸𝑛(𝑡𝑥−𝑡𝑦) (2.112)

= −𝑖𝛿(𝑡𝑥 − 𝑡𝑦)𝛿(𝑥 − 𝑦) (2.113)
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Green's function in frequency/energy domain is noted as:

𝐺+(𝑥, 𝑦, 𝐸) = ∑
𝑛

𝑖𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)

𝐸 −𝐸𝑛
(2.114)

Two distinct feature of this equation is: 1. the singularities on the real axis
occur when parameter 𝐸 equals energies of the eigenstates 𝜓𝑛(𝑥), stated as
𝐸 = 𝐸𝑛 2. The residues as the singularities are (𝑖∗) the wave functions.

To see the contribution of Green's function in perturbation problem, we will
consider original Green's function equation in a symbolic and matrix-like form
as (H-E)G=-1, where 𝐺 is describing propagation of particle from 𝑦 to 𝑥. This
symbolic Green's function equation is solved by 𝐺 = 1

𝐸−𝐻 that similiar with:

𝐺+(𝑥, 𝑦, 𝐸) = 𝑙𝑖𝑚𝜀−>0+ ∑
𝑛

𝑖𝜓𝑛(𝑥)𝜓∗
𝑛(𝑦)

𝐸 −𝐸𝑛 + 𝑖𝜀 (2.115)

To solve perturbation problem (i.e. 𝐻 = 𝐻0 +𝑉 , where 𝐻0 is solvable part
and 𝑉 is perturbing potential) using Green's function, we should see: 1. the
solvable part of the problem as a particle propagating from point to point. 2.
the perturbation V as a scattering process that interrupts the propagation.

We can illustrate this view as 𝐺 = 1
𝐸−𝐻0−𝑉 for 𝐻 = 𝐻0 +𝑉 .

In perturbation problems, 𝐺 is full propagator. The solvable part of the
Hamiltonian 𝐻0 can be expressed as 𝐺0 = 1

𝐸−𝐻0
(it means we can find the

Green's function for H_0) Subscript of “0” means free propagating particle,
with no scattering. Thus we call 𝐺0 as free propagator. Then, using matrix
identity of

1
𝐴+𝐵 = 1

𝐴 − 1
𝐴𝐵 1

𝐴 + 1
𝐴𝐵 1

𝐴𝐵 1
𝐴 − ...

𝐺 = 1
𝐸 −𝐻0 −𝑉 = 1

𝐸 −𝐻0
+ 1

𝐸 −𝐻0
𝑉 1
𝐸 −𝐻0

+ 1
𝐸 −𝐻0

𝑉 1
𝐸 −𝐻0

𝑉 1
𝐸 −𝐻0

+ ...

𝐺 = 𝐺0 +𝐺0𝑉 𝐺0 +𝐺0𝑉 𝐺0𝑉 𝐺0 +𝐺0𝑉 𝐺0𝑉 𝐺0𝐺0𝑉 𝐺0 + ...

Even though we cannot calculate 1/(𝐸 −𝐻0 −𝑉 ), we can calculate 1/(𝐸 −
𝐻0) as 𝐺0, and expect G to be approximated by few terms.

So in conclusion, we can view perturbation problems into a simple terms of
𝐺0𝑉 𝐺0. Diagrammatically, this problem is shown is Figure 2.1. This diagram
is a representation of mathematical formula shown in Equation 2.116.

Back to the expansion of equation 2.116, we have found that perturbation
problem can be expressed as a simple picture of particle scattering. The ampli-
tude for a particle to go from y to x is G. The same 𝐺, is a superposition of the
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= G0 +

G0

G0

V +

G0

G0

G0

V

V

+ ...

Figure 2.1: Diagram of Dysonśequation

amplitude for moving freely from 𝑦 to 𝑥 (free propagation 𝐺0), added with the
amplitude for propagation with a single scattering event at some point along
the way 𝐺0𝑉 𝐺0, added with the amplitude for propagation with two scatters
𝐺0𝑉 𝐺0𝑉 𝐺0, and so on.

We can further process the expansion of 𝐺 into geometric series of:

𝐺 = 𝐺0(1 + 𝑉 𝐺0 +𝑉𝐺0𝑉 𝐺0 +𝑉𝐺0𝑉 𝐺0𝑉 𝐺0 + ...)

= 𝐺0
1 − 𝑉 𝐺0

𝐺 = 1
𝐺−1

0 −𝑉 Dysonś equation

We should notice that in Dysonśequation, we have sum of all perturbative
term to infinity. So this equation is exact already (non-perturbative, non-
approximative).

Several representation of the propagator can be identified by its domain as
follows:

𝐺+
0 (𝑥, 𝑡𝑥, 𝑦, 𝑡𝑦) = spacetime domain
𝐺+

0 (𝑥, 𝑦, 𝐸) = space and energy domain
𝐺+

0 (𝑝, 𝑡𝑥, 𝑞, 𝑡𝑦) = momentum and time domain
𝐺+

0 (𝑝, 𝐸) = momentum and energy domain

Universe is described as field combinations forming Lagrangian density 𝐿[𝜙(𝑥)].
Then we quantize these fields into a universe pictured as a vacuum that dis-
turbed by field operators like ̂𝑎†𝑝. The excitation of the vacuum that the fied
operators produced are particles and antiparticles. How to keep track of these
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particles? Using wave functions, we need some objects that contain the informa-
tion about excitations of the system. These object are propagator amplitudes
denoted by 𝐺. From here on, we have two theories, non-interacting and in-
teracting theory. Non-interacting theories are those that can be diagonalized
using canonical quantization, allowing us to describe the system in terms of
a vacuum |0⟩, and non-interacting particles in momentum states |𝑝⟩ created
with operators like ̂𝑎†𝑝. The Hamiltonian of non-interacting theory is called
ℋ̂0 = ∑𝑝 𝐸𝑝 ̂𝑎†𝑝 ̂𝑎𝑝 and �̂�0 |𝑝⟩ = 𝐸𝑝 |𝑝⟩. On the other hand, interacting theories
cannot be diagonalized with canonical quantization. In interacting theories, the
ground states would be |Ω⟩ with Hamiltonian �̂�. If we act on |Ω⟩ with operator
| ̂𝑎†𝑝⟩, we would not necessarily get a state |𝑝⟩, we may get a superposition of
many particles (whose momenta sum to 𝑝). Most of interacting field theories
cannot be exactly solved, so we need to develop a perturbation process to make
approximate calculations.

For interacting system in its ground state |𝑂𝑚𝑒𝑔𝑎⟩, we introduce an extra
particle of our choice at a spacetime point (𝑦0, 𝑦) as a probe. This particle
interacts with the system, possibly causing excitation in the fields and or any
other complex fenomena. Then we remove (annihilate) the particle at spacetime
point (𝑥0, 𝑥) and finally check wether the system has remained in the interacting
ground state |Ω⟩. From this, we interested in the amplitude 𝐺+(𝑥, 𝑦) known
as probability amplitude that the system is still in its ground state after we
create a particle at 𝑦 and later annihilate it at 𝑥 (emphasized by + sign, and
guaranteed by 𝜃function on the right), given by:

𝐺+(𝑥, 𝑦) = ⟨Ω| (annihilated particle at (𝑥0, 𝑥)) (created particle at (𝑦0, 𝑦)) |Ω⟩
𝐺+(𝑥, 𝑦) = 𝜃(𝑥0 − 𝑦0) ⟨Ω| ̂𝜙(𝑥) ̂𝜙†(𝑦)|Ω⟩

2.4 Feynman Propagator
instead of 𝐺+ that missed information about antiparticle due to constrain by
𝜃-function, Richard Feynman introduce a more general Propagator. To get
this, we introduce Wick time-ordering symbol 𝑇 , so the scalar fields are always
arranged earliest on the right, latest on the left.
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bosonic: commuting (2.116)

𝑇 ̂𝜙(𝑥0) ̂𝜙(𝑦0) =
⎧{
⎨{⎩

̂𝜙(𝑥0) ̂𝜙(𝑦0), 𝑥0 > 𝑦0
̂𝜙(𝑦0) ̂𝜙(𝑥0), 𝑥0 < 𝑦0

(2.117)

fermionic: anti-commuting (2.118)

𝑇 ̂𝜙(𝑥0) ̂𝜙(𝑦0) =
⎧{
⎨{⎩

̂𝜙(𝑥0) ̂𝜙(𝑦0), 𝑥0 > 𝑦0

− ̂𝜙(𝑦0) ̂𝜙(𝑥0), 𝑥0 < 𝑦0
(2.119)

Feynman Propagator: (2.120)
𝐺(𝑥, 𝑦) = ⟨Ω|𝑇 ̂𝜙(𝑥) ̂𝜙†(𝑦)|Ω⟩ (2.121)

= 𝜃(𝑥0 − 𝑦0) ⟨Ω|𝑇 ̂𝜙(𝑥) ̂𝜙†(𝑦)|Ω⟩ + 𝜃(𝑦0 −𝑥0) ⟨Ω|𝑇 ̂𝜙†(𝑦) ̂𝜙(𝑥)|Ω⟩
(2.122)

Thus the total propagator have two parts, when initial time is 𝑦0, first part
creates a particle at y and propagates it to x and destroy it. the second part
happens when initial time is 𝑥0, it creates antiparticle at x and propagates it
to y.

If the system have no interactions, then particles just move around passing
through each other. We would call the ground state as |0⟩, and we have free
propagator 𝐺0(𝑥, 𝑦) or Δ(𝑥, 𝑦):

Δ(𝑥, 𝑦) = ⟨0|𝑇 ̂𝜙(𝑥) ̂𝜙†(𝑦)|0⟩ (2.123)

= ∫ 𝑑3𝑝
(2𝜋)3(2𝐸𝑝)

[𝜃(𝑥0 − 𝑦0)𝑒−𝑖𝑝.(𝑥−𝑦) + 𝜃(𝑦0 −𝑥0)𝑒𝑖𝑝.(𝑥−𝑦)] (2.124)

feynman diagram for particle + antiparticle = Feynman propagator
Δ symbolically depicted as a line without interaction blob since a free par-

ticle does not interact with any other particle on its way from 𝑦 to 𝑥. In
perturbation approach, essentially we see interactions as events that take place
at particular spacetime points (i.e. V-blobs), and we imagine that the parti-
cles propagate freely between interactions with the free propagator. We get
Feynman propagator from addition between particle part from retarded half of
the propagator and antiparticle part from the advanced half of the propagator.
For interacting case, these propagator is not truly Green's function. But, free-
propagator functions are the Green's functions of the equation of motion. thus
for scalar field we have:
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(𝜕2𝑚2)Δ(𝑥− 𝑦) = −𝑖𝛿(4)(𝑥 − 𝑦) (2.125)

In this scalar field theory, we need free Feynman propagator that have no
step functions. We can have this by using complex analysis.
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Δ(𝑥, 𝑦) = ⟨0|𝑇 ̂𝜙(𝑥) ̂𝜙†(𝑦)|0⟩

= ∫ 𝑑3𝑝
(2𝜋)3(2𝐸𝑝)

[𝜃(𝑥0 − 𝑦0)𝑒−𝑖𝑝.(𝑥−𝑦) + 𝜃(𝑦0 −𝑥0)𝑒𝑖𝑝.(𝑥−𝑦)]

using: 𝜃(𝑥0 − 𝑦0) = 𝑖∫
∞

−∞

𝑑𝑧
2𝜋

𝑒−𝑖𝑧(𝑥0−𝑦0)

𝑧 + 𝑖𝜀
the first term would become:

[Δ(𝑥𝑦)](1) = 𝜃(𝑥0 − 𝑦0)∫ 𝑑3𝑝
(2𝜋)3(2𝐸𝑝)

𝑒−𝑖𝐸𝑝(𝑥0−𝑦0)+𝑖𝑝.(𝑥−𝑦)

= 𝑖∫
∞

−∞

𝑑𝑧𝑑3𝑝
(2𝜋)4(2𝐸𝑝)

𝑒−𝑖(𝐸𝑝+𝑧)(𝑥0−𝑦0)+𝑖𝑝.(𝑥−𝑦)

𝑧 + 𝑖𝜀
substituting 𝑧′ = 𝑧 +𝐸𝑝

[Δ(𝑥𝑦)](1) = 𝑖∫
∞

−∞

𝑑𝑧′𝑑3𝑝
(2𝜋)4(2𝐸𝑝)

𝑒−𝑖𝑧′(𝑥0−𝑦0)+𝑖𝑝.(𝑥−𝑦)

𝑧′ −𝐸𝑝 + 𝑖𝜀
we change the definition of four-momentum in integral,
treating 𝑧′ as the new 𝑝0 redefining 𝑝 = (𝑧′, 𝑝) = (𝑝0, 𝑝)

[Δ(𝑥𝑦)](1) = 𝑖∫
∞

−∞

𝑑4𝑝
(2𝜋)4(2𝐸𝑝)

𝑒−𝑖𝑝.(𝑥−𝑦)

𝑝0 −𝐸𝑝 + 𝑖𝜀
with this redefinition, 𝑝0 = 𝐸 ≠ (𝑝2 +𝑚2)1/2 , but 𝐸𝑝 = (𝑝2 +𝑚2)1/2.
same process for second term, we have:

[Δ(𝑥𝑦)](2) = −𝑖∫
∞

−∞

𝑑4𝑝
(2𝜋)4(2𝐸𝑝)

𝑒−𝑖𝑝.(𝑥−𝑦)

𝑝0+𝐸𝑝−𝑖𝜀
considering full propagator as sum of above two terms, we have:

Δ(𝑥𝑦) = [Δ(𝑥𝑦)](1) + [Δ(𝑥𝑦)](2)

= 𝑖∫
∞

−∞

𝑑4𝑝
(2𝜋)4(2𝐸𝑝)

𝑒−𝑖𝑝.(𝑥−𝑦) ( 1
𝑝0 −𝐸𝑝 + 𝑖𝜀 − 1

𝑝0 +𝐸𝑝 − 𝑖𝜀)

= ∫
∞

−∞

𝑑4𝑝
(2𝜋)4 𝑒

−𝑖𝑝.(𝑥−𝑦) ( 𝑖
(𝑝0)2 − (𝐸𝑝)2 + 𝑖𝜀)

using 𝐸2
𝑝 = 𝑝2 +𝑚2

Δ(𝑥𝑦) = ∫
∞

−∞

𝑑4𝑝
(2𝜋)4 𝑒

−𝑖𝑝.(𝑥−𝑦) 𝑖
(𝑝2 −𝑚2 + 𝑖𝜀) : free Feynman propagator

with Fourier component corresponding to a particle with momentum 𝑝

Δ̃(𝑝) = 𝑖
(𝑝2 −𝑚2 + 𝑖𝜀
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Furthermore, Hideki Yukawa postulated that particles interact by exchang-
ing virtual, force-carrying particles[20]. For a very small window of time, we are
allowed to have a virtual particle, a particle that exist in “off mass-shell”, where
it can disobey mass-shell four-dimensional surface equation 𝑝2 = 𝐸2

𝒑−𝒑2 = 𝑚2.
By the constrain of Δ𝐸Δ𝑡 ℏ, we can allow a particle of energy 𝐸 to exist off the
mass-shell as long as they last under duration of Δ𝑡 ≃ ℏ/𝐸. As a consequence,
virtual particles must have finite range. Potential 𝑈(𝒓) mediated by the virtual
particle can be expressed as:

𝑈(𝒓) ∝ −𝑒−|𝒓|/𝑎

4𝜋|𝒓| (2.126)

Yukawa particle exchange process works as this. At a time 𝑦0, particle A
emits virtual particle Q with mass 𝑚𝑄 from position 𝒚. At later time 𝑥0, particle
A collides with particle B at position 𝒙. We take the energy of this process as
𝐸𝐴 = 𝐸′

𝐴 +𝐸𝑄, meaning that particle A lost energy of 𝐸𝑄 = (𝒑2
𝑄 +𝑚2

𝑄)1/2,
while particle B gains energy of 𝐸𝑄. For the sake of symmetric energy transfer
(not only from A to B), we construct additional process. Here, particle B at
position 𝒙 emits an identical virtual particle 𝑄 at time 𝑥0 that collides with
A at spacetime (𝑦0, 𝒚). This process is already described by free Feynman
propagator:

Δ(𝑥, 𝑦) = 𝜃(𝑥0 − 𝑦0) ⟨0|𝑇 ̂𝜙(𝑥) ̂𝜙†(𝑦)|0⟩ + 𝜃(𝑦0 −𝑥0) ⟨0|𝑇 ̂𝜙†(𝑦) ̂𝜙(𝑥)|0⟩

Δ̃(𝑝) = 𝑖
(𝑝2 −𝑚2 + 𝑖𝜀 = 𝑖

((𝑝0)2 −𝒑2 −𝑚2 + 𝑖𝜀

this expression is well behaved only when 𝑝0 ≠ √𝒑2 +𝑚2, meaning that
this equation is always off mass shell. It means the propagation of virtual
particles are already described by the Green's function.

If we evaluate deeper in free propagator Δ(𝑥, 𝑦) for scalar field theory, we
have that the equation involves a singularity where 𝑝2 = 𝐸2

𝒑 −𝒑2 = 𝑚2. Here
we include 𝑖𝜀 to ensure that the integral never hits this singularity.

To understand this 𝑖𝜀, we need to understand complex analysis. If a function
is analytic in a region around point 𝑧, then it has a derivative at every point in
that region. And this derivative should not depend on the way the interval in
the complex plane Δ𝑧 is selected. Derivative of a complex number defined as:

𝑑𝑓
𝑑𝑧 = 𝑙𝑖𝑚

∆𝑧−>0
Δ𝑓(𝑧 +Δ𝑧) − 𝑓(𝑧)

Δ𝑧 (2.127)
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𝑓(𝑧) = 𝑧2 is analytic while 𝑔(𝑧) = |𝑧|2 is not analytic because in 𝑔(𝑧), using
Δ𝑧 = 𝑖Δ𝑦, we have different derivative with Δ𝑧 = Δ𝑥.

A pole is a type of singularity (undefined mathematical object), like where
we have 𝑙𝑖𝑚𝑥−>0 1/𝑥. Let 𝑓(𝑧) be analytic between two circles 𝐶1 and 𝐶2.
Why circles we may ask? Because this is complex plane, and the complex value
always defined in two parts, thus circles. In the region between these two circles,
we can write 𝑓(𝑧) as a Laurent series expanded around 𝑧0.

𝑓(𝑧) = 𝑎0 +𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)2 + .. + 𝑏1
𝑧 − 𝑧0

+ 𝑏2
(𝑧 − 𝑧0)2

+ ... (2.128)

Expression with 𝑏 is called the principal part. Then we can find and define:
1. If all 𝑏 are zero, then 𝑓(𝑧0) is analytic at 𝑧 = 𝑧0. 2. If all 𝑏 after 𝑏𝑛 are zero,
then we have a pole of order n at 𝑧 = 𝑧0. if 𝑛 = 1, it called simple pole. 3. 𝑏1
is residue of 𝑓(𝑧) at 𝑧 = 𝑧0.

Non-relativistic, retarded, free-electron propagator 𝐺+
0 (𝐸) = 𝑖

𝐸−𝐸𝒑+𝑖𝜀 has
first order pole at 𝐸𝒑 − 𝑖𝜀.

Feynman propagator for the free scalar field have particle and antiparticle
part. The particle part would have a simple pole at 𝑝0 = 𝐸𝒑 − 𝑖𝜀 while the
antiparticle have simple pole at 𝑝0 = −𝐸𝒑 + 𝑖𝜀.

Residue 𝑅(𝑧0) at the pole 𝑧0 can be found by examining the Laurent series.
For a simple pole, we would have 𝑅(𝑧0) = 𝑙𝑖𝑚𝑧−>𝑧0

(𝑧 − 𝑧0)𝑓(𝑧). In this breath,
we have the residue of 𝐺(𝐸) = 𝑖𝑍

𝐸−𝐸𝒑+𝑖𝜀 at simple pole 𝐸𝒑 − 𝑖𝜀 is 𝑖𝑍.
Back to general interacting theory 𝐺(𝑥, 𝑦) = ⟨Ω| ̂𝜙(𝑥) ̂𝜙†(𝑦)|Ω⟩. |Ω⟩ is the in-

teracting ground state. 𝐺(𝑥, 𝑦) is single-particle propagator or two-point Green's
function. The diagram would be a shaded blob with two stumps extruded cor-
respond to incoming and outgoing particles. The shaded blob is the interac-
tion that experienced by our particle (creating and annihilation). “Two-point”
means single particle created plus one particle annihilated. In another language,
it can be written as 𝐺(2), 𝐺(1, 2), etc. Our aim in quantum field theory is to
find the full interacting Green's function 𝐺(𝑛), because: 1. 𝐺 can be used to
calculate scattering amplitudes using LSZ reduction formula. 2. the form of
the interacting 𝐺 tells us a lot about the system.

From a free scalar theory, before interactions, we have free propagator
Δ̃(𝑝) = 𝑖

𝑝2−𝑚2+𝑖𝜀 . Mass of particle is given by the position of the pole (𝑚 = ±𝑝).
The residue at the pole is 𝑖, means the operator ̂𝜙†(𝑦) creates one quantum from
the vacuum |0⟩ that we destroy later at 𝑥. In interacting system, the full prop-
agator is similiar with free propagator.
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𝐺2(𝑝) = 𝑖𝑍𝒑
𝑝 − 2−𝑚2 − Σ̃(𝑝) + 𝑖Γ𝒑

+ (𝑀.𝑡𝑒𝑟𝑚𝑠) (2.129)

1. 𝑍𝒑 the probability of stable particle with momentum 𝒑 exist undestroyed
by the interactions.

2. Σ̃(𝑝) the interaction between particle with momentum 𝑝 and the vacuum.
3. (2Γ𝒑)−1 is the particleślifetime
4. M.terms hold the contribution from short-lived multiparticle states that

can be exist out of the vacuum.

The Lagrangian describing the quantum fiewld usually consisted of a sum
of solvable part (non-interacting particles, free part) and unsolvable part (de-
scribes interactions, thus interacting part). Free part can be solved via canonical
quantization and resulted in non-interacting particles. Interaction part involve
creation and destruction of particles. One example of interaction process is par-
ticle scattering. Here, particles are fired at each other. Initially, each particles
are far away, assumed as non-interacting (free particle). Then, the smashed
together for a very short time (interacting). This simple phenomena will be
a basis for describing more general perturbation theory that deals with other
interactions.

First building block of quantum field theory is the scattering or S-matrix of
John Wheeler. First, we start with separated particles that run to each other.
Then those particles interact with each other following Hamiltonian of the real
world �̂�. Finally, those particles moving out of the interaction, and separated
again into free particles.

Let us work in Heisenberg pictures. Wheeler start by assuming that the
world is constructed as a sum of complicated interactions and non-interaction,
meaning we split �̂� = �̂�0 + �̂�′. �̂�0 is for simple world of non-interacting
particles described by some set of state vectors. In Heisenberg pictures, these
state vectors are not changed. For two particles, we may take a momentum state
of |𝜓⟩ = |𝑝2𝑝1⟩

𝑖𝑛
𝑠𝑖𝑚𝑝𝑙𝑒 as a simple-world state. Then we try to find a real-world

state that looks like this simple-world state, and we found such state at the
start of scattering. When the particles are very far apart, at time (𝑡− > −∞),
we have in-state of |𝑝2𝑝1⟩𝑟𝑒𝑎𝑙. Then we take another simple-world state |𝜙⟩ =
|𝑞2𝑞1⟩. Once again, we found similiar real-world state at 𝑡− > ∞ when particles
are separated after interaction. We have this real-world state as |𝑞2𝑞1⟩

𝑜𝑢𝑡
𝑟𝑒𝑎𝑙 Thus

we have the simple-world states are only good for the real world in the limits
𝑡− > ±∞.
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We are interested in the amplitude 𝐴 that started with |𝑝2𝑝1⟩
𝑖𝑛
𝑟𝑒𝑎𝑙 and ended

by |𝑞2𝑞1⟩
𝑜𝑢𝑡
𝑟𝑒𝑎𝑙.

𝐴 = 𝑜𝑢𝑡
𝑟𝑒𝑎𝑙 ⟨𝑞1𝑞2|𝑝2𝑝1⟩

𝑖𝑛
𝑟𝑒𝑎𝑙 (2.130)

We recreate this amplitude using simple-world states using S-matrix, by
defining:

𝐴 = 𝑜𝑢𝑡
𝑟𝑒𝑎𝑙 ⟨𝑞1𝑞2|𝑝2𝑝1⟩

𝑖𝑛
𝑟𝑒𝑎𝑙 = 𝑠𝑖𝑚𝑝𝑙𝑒 ⟨𝑞1𝑞2| ̂𝑆|𝑝2𝑝1⟩𝑠𝑖𝑚𝑝𝑙𝑒 (2.131)

From this, we need two answer two questions: 1. How to get suitable �̂�0 to
describe some useful simple-world states that resemble in/out states. 2. How
to calculate expression of ̂𝑆, and use the eigenstates of the simple Hamiltonian
to get an amplitude.

To get the answer for �̂�0, we have interaction representation.
As previously stated, we separate �̂� = �̂�0+�̂�′, with �̂�0 is free part and the

other one is interaction part. Then we define operators in interaction picture
�̂�𝐼 evolve in time via free part �̂�0

�̂�𝐼(𝑡) = 𝑒𝑖�̂�0𝑡�̂�𝑒−𝑖�̂�0𝑡 just like Heisenberg mechanics using free part

𝑖𝑑�̂�𝐼
𝑑𝑡 = [�̂�𝐼(𝑡), �̂�0]

We also compare a matrix element from Schrödinger picture
to one in interaction picture:

⟨𝜙(𝑡)|�̂�|𝜓(𝑡)⟩ = ⟨𝜙𝐼(𝑡)|𝑒𝑖�̂�9𝑡�̂�𝑒−𝑖�̂�0𝑡|𝜓𝐼(𝑡)⟩
Thus, for the matrix elements to be the same as in
the Schrödinger picture, we need:

|𝜓𝐼(𝑡)⟩ = 𝑒𝑖�̂�0𝑡 |𝜓(𝑡)⟩
equation of motion for interaction picture will be:

𝑖 𝑑𝑑𝑡 |𝜓𝐼(𝑡)⟩ = 𝑒𝑖�̂�0𝑡 (−�̂�0 + 𝑖 𝑑𝑑𝑡) |𝜓(𝑡)⟩

= 𝑒𝑖�̂�0𝑡 (−�̂�0 + �̂�) |𝜓(𝑡)⟩

thus 𝑖 𝑑𝑑𝑡 |𝜓𝐼(𝑡)⟩ = 𝑒𝑖�̂�0𝑡�̂�′𝑒−𝑖�̂�0𝑡|𝜓𝐼(𝑡)⟩

𝑖 𝑑𝑑𝑡 |𝜓𝐼(𝑡)⟩ = �̂�𝐼(𝑡) |𝜓𝐼(𝑡)⟩ ⟵ �̂�𝐼(𝑡) = 𝑒𝑖�̂�0𝑡�̂�′𝑒−𝑖�̂�0𝑡

In overall, interaction picture is described by:
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1. The ability of operators and states to change in time.
2. The change of operators denoted by free part ̂𝜙𝐼(𝑡) = 𝑒𝑖�̂�0𝑡 ̂𝜙𝑒−𝑖�̂�0𝑡

3. The change of states follows interaction part 𝑖 𝜕
𝜕𝑡 |𝜓(𝑡)⟩𝐼 = �̂�𝐼(𝑡) |𝜓𝐼(𝑡)⟩

where �̂�𝐼(𝑡) = 𝑒𝑖�̂�0𝑡�̂�′𝑒−𝑖�̂�0𝑡.
4. All representations coincide at 𝑡 = 0.

For an example, we can apply interaction picture to scattering experiment.
Here, interaction picture of the beginning and the end of the experiments are
simple-world states (non-interacting, free, bare vacuum �̂�0 from |0⟩). During
interaction, �̂�𝐼 is nonzero. Considering operators, they will time-evolve accord-
ing to �̂�0. On the other hand, the states can be identified as eigenstates of �̂�0,
that generated from vacuum of �̂�0 denoted as state |0⟩. During interaction, we
have non-zero �̂�𝐼 , and the states evolves in any way it seem fit. However, at the
end of the experiment, �̂�𝐼 is zero, and the state freeze. The last consideration
is on ̂𝑆-operator. By definition, all our quantum mechanical pictures in this
model is defined in such a way that they would coincide at 𝑡 = 0. It means we
would have

𝑠𝑖𝑚𝑝𝑙𝑒 ⟨𝜙| ̂𝑆|𝜓⟩𝑠 𝑖𝑚𝑝𝑙𝑒 =𝑜𝑢𝑡
𝑟𝑒𝑎𝑙 ⟨𝜙|𝜓⟩

𝑖𝑛
𝑟𝑒𝑎𝑙 = ⟨𝜙𝐼(0)|𝜓𝐼(0)⟩

by using ̂𝑈(𝑡2, 𝑡1) as the time-evolution operator in the interaction picture,
we would have:

𝑠𝑖𝑚𝑝𝑙𝑒 ⟨𝜙| ̂𝑆|𝜓⟩𝑠𝑖𝑚𝑝𝑙𝑒 = ⟨𝜙(∞)| ̂𝑈𝐼(∞, 0) ̂𝑈𝐼(0,−∞)|𝜓(−∞)⟩
=𝑠𝑖𝑚𝑝𝑙𝑒 ⟨𝜙| ̂𝑈(∞,−∞)|𝜓⟩𝑠𝑖𝑚𝑝𝑙𝑒

This means, in this case, ̂𝑆-operator is the time evolution operator for interaction-
picture ̂𝑈(𝑡, −𝑡) as 𝑡 → ∞.

The perturbation expansion of S-matrix requires us to consider equation of
motion for interaction picture time-evolution operator as in Equation 2.132.

𝑖 𝑑
𝑑𝑡2

̂𝑈𝐼(𝑡2, 𝑡1) = �̂�𝐼(𝑡2) ̂𝑈𝐼(𝑡2, 𝑡1) where ̂𝑈(𝑡, 𝑡) = 1 (2.132)

The solution of this motion is a time-ordered product 𝑇 [ ̂𝐴1(𝑡1) ̂𝐴2(𝑡2)... ̂𝐴𝑛(𝑡𝑛)].
This product is constructed by put the later operators on the left of the string of
operators. Here, once again, we have Wickśtime ordering symbol 𝑇 [ ] following
the rules illustrated by equations ??. As a result, we would have expression for
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the time-evolution operator as follows:

̂𝑈𝐼(𝑡2, 𝑡1) = 𝑇 [𝑒−𝑖∫𝑡2
𝑡1

𝑑𝑡�̂�𝐼(𝑡)] Dyson's expansion

or in its expanded form would be:

̂𝑆 = 𝑇 [1− 𝑖∫𝑑4𝑧�̂�𝐼(𝑧) +
(−𝑖)2
2! ∫𝑑4𝑦𝑑4𝑤�̂�𝐼(𝑦)�̂�𝐼(𝑤) + ...]

The process to solve the vacuum expectation value ⟨0|𝑇 [�̂�1... ̂𝑍]|0⟩ of long
time-ordered strings of operators, i.e. as pointed in Dysonśexpansion, is usually
hard. On the other hand, its much easier to evaluate a normal-ordered strings as
in ⟨0|𝑁[�̂�1... ̂𝑍]|0⟩. The theorem to convert time-ordered into a normal-ordered
form shown by following formula:

𝑇 [ ̂𝐴�̂� ̂𝐶... ̂𝑍] = 𝑁 [ ̂𝐴�̂� ̂𝐶... ̂𝑍 + all possible contractions of
̂𝐴�̂� ̂𝐶... ̂𝑍 ]

At this point, we may be overwhelmed by the sheer amount of symbols
and notations presented in the mathematical formula mentioned so far. These
densely packed mathematical formula, may reduce our capability to grasp some
pattern that may arise from those equations. Richard Feynman have acknowl-
edged this problem, and invented a “language” that represent the same above
formulas more concisely as Feynman Diagrams. This language utilizes a set of
shapes, i.e. vertices, wiggly lines, blob, etc. and imposes some rules to enable a
translation back and forth to a mathematical formula. On the specification of
Feynman diagrams, we identify some common shapes of vertices according to
Table ??. As a rule, usually we use vertical axis as a representation of time-axis,
and horizontal axis as a representation of space-axis. We should keep in mind
that space-axis may consisted of 3-degree of freedom. The interaction would be
represented vertices or dot in the diagram, and the story of the particles flows
in timely manner.

2.5 GW Approximation
In this approximation, let us consider an excitation of a single electron (pro-
ducing a hole) by a photon. We may illustrate this process as a transition from
a space-time coordinate 𝑥 ≡ (r, t) to another space-time coordinate 𝑥′. In this
illustration, our focus is in time of 𝑡 and 𝑡′. For 𝑡 > 𝑡′, we would see the Green's
function as a probability amplitude of an electron added at 𝑥′ will propagate to
𝑥. Whileas for 𝑡′ > 𝑡, we see it as a probability amplitude of a hole created at 𝑥
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will propagate to 𝑥′. Following the the property and possible stories of Green's
function at ??, we may reconstruct the definition of 𝐺 into:

𝑖𝐺(𝑥, 𝑥′) = ⟨𝑁|𝑇 [𝜓(𝑥)𝜓†(𝑥′)]|𝑁⟩ (2.133)

=
⎧{
⎨{⎩

⟨𝑁|𝑇 [𝜓(𝑥)𝜓†(𝑥′)]|𝑁⟩ for electron, 𝑡 > 𝑡′

⟨𝑁|𝑇 [𝜓†(𝑥′)𝜓(𝑥)]|𝑁⟩ for hole, 𝑡′ > 𝑡
(2.134)

In equation ??, we denoted the ground state of N electrons as |𝑁⟩, and
we have time ordering operator already described for fermionic system in ??.
We also recall that the Green function actually is just another mathemati-
cal representation of particle (in this case, electrons), in the same theme as
wave-functions that have already gains some initial popularity in Schrödinger
construction. In such case, we can expect some quantities that can be acquired
from Green function, namely:

1. Expectation value of single-particle operator in the ground state
2. The ground state energy
3. The excitation spectrum.

The single-particle Green function of ?? would be used as a base for our
further explanation on Hedin’s formulation.

2.6 Green Function in Heisenberg representa-
tion

We use Heisenberg representation to connect the Green function with the self-
energy. In this representation, we ought to satisfy the equation of motion fol-
lowing:

𝑖 𝛿𝛿𝑡𝜓(𝑥) = [𝜓(𝑥), ℋ̂] = 𝜓(𝑥)ℋ̂ − ℋ̂𝜓(𝑥)

ℋ̂ = ∫𝑑𝑥 𝜓†(𝑥)ℎ0(𝑥)𝜓(𝑥)

+ 1
2 ∫𝑑𝑥 𝑑𝑥′ 𝜓†(𝑥)𝜓†(𝑥′)𝑣(𝑥 − 𝑥′)𝜓(𝑥′)𝜓(𝑥)

𝑣(𝑥 − 𝑥′) = 𝑣(|𝑟 − 𝑟′|)𝛿(𝑡 − 𝑡′)
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In this equation, we have ℎ0 represents kinetic energy and any local external
field. From the commutator [𝜓(𝑥), ℋ̂], we get the equation of motion for the
Green function as follows:

𝛿(𝑥 − 𝑥′) = [𝑖 𝛿𝛿𝑡𝜓(𝑥) − ℎ0(𝑥)]𝐺(𝑥, 𝑥′)

+ 𝑖∫𝑑3𝑟1 (𝑟 − 𝑟1) ⟨𝑁|𝑇 [𝜓†(𝑟1, 𝑡)𝜓(𝑟, 𝑡)𝜓(𝑟, 𝑡)𝜓†(𝑟′, 𝑡′)]|𝑁⟩ (2.135)

The braket at the right hand side of equation ?? can be viewed as a two-
particle Green function. This two-particle Green function generally represented
as

𝐺2(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑖2 ⟨𝑁|𝑇 [𝜓(𝑥1)𝜓(𝑥3)𝜓†(𝑥4)𝜓†(𝑥2)]|𝑁⟩

for propagation of two particles from 𝑥2, 𝑥4 to 𝑥1, 𝑥3 respectively. Thus,
interestingly, we realized that the single particle Green function would be gen-
erated from two-particle Green function. And furthermore, the two-particle
Green function from three-particle Green function, and so on. This scheme
recursively generates a chain of equations that spans infinitely.

This chained equations can be broken by introducing the mass operator 𝑀
that can be constructed as:

∫𝑑𝑥1 𝑀(𝑥, 𝑥1)𝐺(𝑥1, 𝑥′)

= −𝑖∫𝑑3𝑟1 (𝑟 − 𝑟1) ⟨𝑁|𝑇 [𝜓†(𝑟1, 𝑡)𝜓(𝑟, 𝑡)𝜓(𝑟, 𝑡)𝜓†(𝑟′, 𝑡′)]|𝑁⟩ (2.136)

In such a way, we can substitute ?? into ?? and get a non-recursive form of:

𝛿(𝑥 − 𝑥′) = [𝑖 𝛿𝛿𝑡𝜓(𝑥) − ℎ0(𝑥)]𝐺(𝑥, 𝑥′) −∫𝑑𝑥1 𝑀(𝑥, 𝑥1)𝐺(𝑥1, 𝑥′) (2.137)

In this construction, we can see that M introduce the components of hartree
and self-energy.

In a first principle calculation, the self-energy of finite system such as a
molecule can be done using a finite order perturbation theory. On the other
hand, for extended system (crystal, surfaces, etc.) the issue is quite harder,
due to the long-range nature of Coulomb interaction. This called for infinite
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expansion of the perturbation series to achieve a physically sensible results.
However, the mechanism of expansion tends to be done by physical intuition
and quite peculiar in case by case basis.

2.7 Green Function in Dirac representation
One method to evaluate the perturbation expansion of self-energy is by the
functional derivative technique introduced by Hedin[21]. We use Dirac repre-
sentation as a starting point of this evaluation. As a mathematical tools, we
would use a time varying field 𝜋(𝑟, 𝑡) that will be zeroed out in the final step,
once we procure self-energy. In Dirac picture, we would have:

|𝜓𝐷(𝑟, 𝑡)⟩ = ̂𝑈(𝑡, 𝑡0) |𝜓𝐷(𝑟, 𝑡0)⟩ (2.138)

as we have time development operator ̂𝑈 is represented by:

̂𝑈(𝑡, 𝑡0) = 𝑇𝑒𝑥𝑝 [−𝑖∫
𝑡

𝑡0
𝑑𝜏 𝜋(𝜏)] 𝜋(𝑡) = ∫𝑑3𝑟 𝜋(𝑟, 𝑡)𝜓†

𝐷(𝑟, 𝑡)𝜓𝐷(𝑟, 𝑡)

(2.139)
we can connect Dirac and Heisenberg pictures by considering Dirac picture

as an unperturbed (𝜋 = 0) Heisenberg, using:

𝜓(𝑥) = ̂𝑈†(𝑡, 0)𝜓𝐷(𝑥) ̂𝑈(𝑡, 0)𝑖 𝜕𝜕𝑡𝜓𝐷(𝑥) = [𝜓𝐷(𝑥), �̂�(𝜋 = 0)] (2.140)

In this case, we would have Green function in Dirac picture as:

𝑖𝐺(1, 2) = ⟨𝑁0|𝑇 [𝑆𝜓𝐷(1)𝜓†(2)]|𝑁0⟩
⟨𝑁0|𝑇 [𝑆|𝑁0⟩ (2.141)

and for two-particle Green function, we would have:

𝐺2(1, 2, 3, 4) = (𝑖)2 ⟨𝑁
0|𝑇 [𝑆𝜓𝐷(1)𝜓𝐷(3)𝜓†

𝐷(4)𝜓†(2)]|𝑁0⟩
⟨𝑁0|𝑇 [𝑆|𝑁0⟩ (2.142)

in which 𝑆 = 𝑈(∞,−∞) and the unperturbed ground state (interacting
groundstate with 𝜋 = 0) is denoted by |𝑁0⟩.

Using these definitions, we can proceed to a functional form of 𝑆:
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𝑆 = 𝑈(∞,−∞) = 𝑇𝑒𝑥𝑝[−𝑖∫
∞

−∞
𝑑𝜏 𝜋(𝜏)]

𝑆 = 𝑇𝑒𝑥𝑝[−𝑖∫
∞

−∞
𝑑𝜏 ∫ 3𝑟 𝜋(𝑟, 𝑡)𝜓†

𝐷(𝑟, 𝑡)𝜓𝐷(𝑟, 𝑡)]

𝑆[𝜋] = 𝑇𝑒𝑥𝑝[−𝑖∫𝑑𝜏𝜋(𝜏)𝜓†
𝐷(𝑟, 𝑡)𝜓𝐷(𝑟, 𝑡)]]

The functional derivative of 𝑆 respective to 𝜋 can be achieved by having 𝛿𝑆
𝛿𝜋

conforms:

∫𝑑𝑟 𝛿𝑆
𝛿𝜋(3)𝜑(3) = [ 𝑑

𝑑𝜖𝑆[𝜋 + 𝜖𝜑]]
𝜖=0

∫𝑑𝑟 𝛿𝑆
𝛿𝜋(3)𝜑(3) = ∫𝑑𝑟 𝑇 [𝑆𝜓†

𝐷(3)𝜓𝐷(3)]𝜑(3)
𝛿𝑆

𝛿𝜋(3) = 𝑇 [𝑆𝜓†
𝐷(3)𝜓𝐷(3)]

And following the functional derivative of single-particle Green function
would be:

𝛿𝐺(1, 2)
𝛿𝜋(3) = 𝐺(1, 2)𝐺(3, 3+) −𝐺2(1, 2, 3, 3+)

Combining these results with the general form of self-energy and hartree 𝑀
that we already have at ??, we would have:

∫𝑑3 𝑀(1, 3)𝐺(3, 2) = ∫𝑑2 𝑣(1 − 2)𝜌(2)𝐺(1, 2) + 𝑖∫𝑑3 𝑣(1, 3)𝛿𝐺(1, 2)
𝛿𝜋(3)

(2.143)

?? < −𝑉𝐻(1)
(2.144)

In this stage, we may define the self-energy Σ as:

Σ = 𝑀 −𝑉𝐻 (2.145)

and by taking leverages on the identity of:
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𝛿
𝛿𝜋(𝐺

−1𝐺) = 0 and 𝛿𝐺
𝛿𝜋 = −𝐺𝐺−1

𝐺 𝐺 (2.146)

we can get the rough form of Σ following:

Σ(1, 2) = −𝑖∫𝑑3 𝑑4 𝑣(1, 4)𝐺(1, 3)𝛿𝐺
−1(3, 2)
𝛿𝜋(4) (2.147)

= −𝑖∫𝑑3 𝑑4 𝑣(1, 4)𝐺(1, 3)𝛿𝐺
−1(3, 2)
𝛿𝑉 (5)

𝛿𝑉 (5)
𝛿𝜋(4) 𝑑5 (2.148)

with 𝑉 = 𝑉𝐻 +𝜋 (2.149)

We can further simplify the formulation of Σ by taking some physical defi-
nition on several parts of ??:

Σ(1, 2) = 𝑖∫𝑑3 𝑑4 𝐺(1, 3)𝑑5 𝑣(1, 4) 𝛿𝑉 (5)
𝛿𝜋(4)⏟
𝜖−1(1,2)

(−𝛿𝐺−1(3, 2)
𝛿𝑉 (5) )

⏟⏟⏟⏟⏟⏟⏟
Λ(1,2,3)

(2.150)

𝑊(1, 2) = ∫𝑑3 𝑣(1, 3)𝜖−1(2, 3) (2.151)

In these parts, we have 𝑊 as a screened version of Coulomb interaction
𝑣(1, 3) by inverse of dielectric function 𝜖−1. We also define Λ as the vertex
function, that we should expand later. Finally, we would have the simplified
form of Σ as :

Σ(1, 2) = 𝑖∫𝑑3 𝑑4 𝐺(1, 3) 𝑊(1, 4) Λ(3, 2, 4) (2.152)

In case of vertex function Λ, we can write it as:

Λ(1, 2, 3) = −𝛿𝐺−1(1, 2)
𝛿𝑉 (3)

= 𝛿(1 − 2)𝛿(2 − 3) + 𝛿Σ(1, 2)
𝛿𝑉 (3)

= 𝛿(1 − 2)𝛿(2 − 3) +∫𝑑(4, 5, 6, 7) 𝛿Σ(1, 2)
𝛿𝐺(4, 5)𝐺(4, 6)𝐺(7, 5)Λ(6, 7, 3)

(2.153)
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Interestingly, the formulation of vertex function actually give us a recur-
sive function. There are several ways to address this vertex function, much or
less by simplification either by assumption or by truncation. Nonetheless, by
now, we have addressed several important concepts of Hedin formula, namely
𝐺, Σ, 𝑊, and Λ.

2.8 The Polarization function Π
Derived from the inverse dielectric function, we can arrange:

𝑉𝐻(1) = ∫𝑑2 𝑣(1 − 2)𝜌(2)...??

𝑉 = 𝑉𝐻 +𝜋...??

𝜖−1(1, 2) = 𝛿𝑉 (1)
𝛿𝜋(2) ...??

= 𝛿
𝛿𝜋(2)(𝜋(2) + 𝑉𝐻(1))

= 𝛿
𝛿𝜋(2)(𝜋(2) +∫𝑑3 𝑣(1 − 3)𝜌(3))

= 𝛿𝜋(2)
𝛿(𝜋(2)) +

𝛿
𝛿𝜋(2) [∫𝑑3 𝑣(1 − 3)𝜌(3)]

= 1+ 𝑣(1 − 2) 𝛿𝜌(1)𝛿𝜋(2)⎵
𝜒(1,2)

= 1+ 𝑣(1 − 2) 𝛿𝜌(1)
𝛿𝑉 (3)⎵
Π(1,3)

𝛿𝑉 (3)
𝛿𝜋(2)

The last two expression would develop our definition on polarization function
Π and response function 𝜒. In this definition, the response function 𝜒 is a change
in the density with respect to the external potential 𝜋. On the other hand, the
polarization function Π is that change with respect to the total potential 𝑉 . We
also should notice that at the last expression, we have once again a recursive
function for 𝜖 − −1 as a function of 𝛿𝑉

𝛿𝜋 as described in ??. We may further
realize that while actually 𝜌(1) = −𝑖𝐺(1, 1+), using identity ?? we can expand
the polarization function Π into:

Π(1, 2) = −𝑖∫3 𝑑4 𝐺(1, 3)Λ(3, 4, 2)𝐺(4, 1+) (2.154)
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At this point, we got the description of response function Π, and its connec-
tion with 𝐺 and Λ. Using our new realization for Π, we may reconstruct our
definition on 𝑊 in ??, and obtain:

𝑊(1, 2) = ∫𝑑3 𝑣(1, 3)𝜖−1(2, 3)

= ∫𝑑3 𝑣(1, 3) [1 + 𝑣(3, 4) 𝛿𝜌(3)𝛿𝑉 (4)
𝛿𝑉 (4)
𝛿𝜋(3) ]

𝑊(1, 2) = 𝑣(1, 2) +∫𝑑3 𝑑4 𝑣(1, 3)Π(3, 4)𝑊(4, 2)

In this final form, we have 𝑊 as a recursive functional that needs polariza-
tion function Π in its calculation. At previous explanations, we have established
the equation for Σ as a function of 𝐺,𝑊, and Λ. We also have described sim-
iliar relations for Λ. To complete our image on this equation system, we should
explore the connection between 𝐺 and Σ.

2.9 Connection between 𝐺 and Σ
To establish the relation between 𝐺 and Σ, we need a Fourier transformation
of equation ??:

[𝜔 −𝐻0(𝑟)]𝐺(𝑟, 𝑟′, 𝜔) −∫𝑑𝑟1 Σ(𝑟, 𝑟1, 𝜔)𝐺(𝑟1, 𝑟′, 𝜔) = 𝛿(𝑟 − 𝑟′) (2.155)

Therefore, the definition of quasiparticle wave-function Ψ𝑞𝑝 with energy 𝐸𝑞𝑝
is fulfilled by:

𝐻0(𝑟)Ψ𝑞𝑝(𝑟, 𝐸) +∫𝑑𝑟1 Σ(𝑟, 𝑟1, 𝜔)Ψ𝑞𝑝(𝑟1, 𝐸) = 𝐸𝑞𝑝Ψ𝑞𝑝(𝑟, 𝐸) (2.156)

By definition, the 0th order Green function is described as:

[𝑖 𝜕𝜕𝑡 −𝐻0(𝑥)]𝐺0(𝑥, 𝑥′) = 𝛿(𝑥 − 𝑥′) (2.157)

Combining these definitions, we would have Dyson equation as follows:

𝐺(𝑥, 𝑥′) = 𝐺0(𝑥, 𝑥′) +∫𝑑𝑥1 𝑑𝑥2 𝐺0(𝑥, 𝑥1) Σ(𝑥1, 𝑥2) 𝐺(𝑥2, 𝑥′) (2.158)



2.10. The Hedin equation 43

𝐺

Γ
Π

𝑊

Σ
Figure 2.2: Simplified diagram of Hedin equations

equally in matrix form, we have 𝐺 = 𝐺0 +𝐺0Σ𝐺 ↔ 𝐺−1 = 𝐺−1
0 −Σ. In

such way, we have the connection between 𝐺 and Σ.

2.10 The Hedin equation
As a summary, we have described the Hedin equations and gains five important
components, namely:

Σ(1, 2) = 𝑖∫𝑑(34)𝐺(1, 3+)𝑊(1, 4)Γ(3, 2, 4) (2.159)

𝐺(1, 2) = 𝐺0(1, 2) +∫𝑑(34)𝐺0(1, 3)Σ(3, 4)𝐺(4, 2) (2.160)

Π(1, 2) = −𝑖∫𝑑3𝑑4Γ(3, 4, 2)𝐺(1, 3)𝐺(4, 1+) (2.161)

𝑊(1, 2) = 𝑣(1, 2) +∫𝑑(34)𝑣(1, 3)Π(3, 4)𝑊(4, 2) (2.162)

Λ(1, 2, 3) = 𝛿(1 − 2)𝛿(2 − 3) (2.163)

+∫𝑑(4567)𝛿Σ(1, 2)
𝛿𝐺(4, 5)𝐺(4, 6)𝐺(7, 5)Γ(6, 7, 3) (2.164)

These equations can be simplified into a diagram shown in Figure ??.
Just following these equations, we should be able to do an iterative cal-

culation to get a satisfying Green function. However, we already shown that
there are some recursive function appear in this construction. This called for
an approximative treatment that we will consider later on.
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2.11 GW Approximation
One simple approximation that we can do on Hedin equation, is by assuming
the functions of 𝐺 = 𝐺0 and Σ = 0 in the formulation of vertex function Λ.
This treatment would simplify the form of vertex function into:

Λ(1, 2, 3) = 𝛿(1 − 2)𝛿(2 − 3)

This would further simplify the construction of Σ into:

Σ(1, 2) = 𝑖∫𝑑(34)𝐺(1, 3+)𝑊(1, 4)Γ(3, 2, 4)

Σ(1, 2) = 𝑖∫𝑑(34)𝐺(1, 3+)𝑊(1, 4) (2.165)

This form of Σ = 𝑖𝐺𝑊 is the root of the name “GW Approximation”.
Furthermore, this Σ is used as a basis for the calculation of all other equations in
Hedin equations. Practically, in GW approximation, we consider 𝐺0 as an input,
and have Σ and eigenvalues 𝜀𝑖 as a raw converged output. We may generate
𝐺0 input from a converged DFT results. Following a converged calculation of
DFT resulting eigenvalues 𝜀𝑖 and eigenfunctions Ψ𝑖(𝑟), we can construct the
non-interacting Green function by:

𝐺0(𝑟, 𝑟′, 𝜔) = ∑
𝑗

Ψ𝑗(𝑟)Ψ∗
𝑗(𝑟′)

𝜔 − 𝜀𝑗 ∓ 𝑖𝛿

In this construction, we denote −𝑖𝛿 for occupied states, and +𝑖𝛿 for unoc-
cupied states. Then, we would follow the calculation cycle described in figure
??, iteratively until we have a convergence.

The merits of GW approximation is quite well known, i.e.:

• In case of atoms, GW Approximation results are similiar with Hartree-
Fock Approximation. This is due to the small screening effect that occured
in the system. However, the polarization function still improve the HF
results.

• GW Approximation improve the Hartree-Fock band energy gaps (reduce
the HF gap).

• GW Approximation improve the DFT band energy gaps (enlarge the DFT
gap).
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A review study on the performance of GW Approximation on many large
band gap semiconductors is shown in Figure ??[11]. In this figure, we can see
stark improvement of GW Approximation compared to DFT results. Despite of
its merits, the GW Approximation have a sensitivity on its input wave-functions.
It means, the different input wave-functions would produce the different re-
sults. This is quite problematic for a predictive investigation. In light of this
problem, Kotani et.al proposed an improvement, well known as quasi-particle
self-consistent GW method (QSGW).

2.12 Quasi-particle Self-consistent GW method
As an improvement of GW Approximation, QSGW adopts some assumption
held by GWA, namely on describing the self-energy Σ and its relation with
the description of vertex function Λ. However, there are some concepts that
introduced by QSGW that do not exist in GWA. Some of those concepts are the
use of quasi-particle, and the utilization of DFT construct inside the iterative
cycle.

We use the description of quasi-particle wave-function described previously
in ??. Following Landau picture of quasi-particle, there should be one-particle-
like excitations (quasiparticles), at least around Fermi level 𝐸𝐹 , that comply:

[−∇2

2𝑚 +𝑉 𝑒𝑥𝑡 +𝑉 𝐻 +𝑅𝑒[Σ(𝐸𝑖)] −𝐸𝑖] |Φ𝑖⟩ = 0 (2.166)

for quasiparticle eigen functions and quasiparticle energies {�_i(r),E_i}. In
this equation, Re[X] denotes the Hermitian part of X as such that 𝐸𝑖 is real
for Σ(𝐸𝑖). Around 𝐸𝐹 , anti-Hermitian part of Σ(𝐸𝑖) gets nearer to zero as
𝐸𝑖 → 𝐸𝐹 . Thus we have describe “dressed quasiparticle”. On the otherhand,
we also have one-particle picture from 𝐻0 = −∇2

2𝑚 +𝑉 𝑒𝑓𝑓(𝑟, 𝑟′) that corresponds
to eigenfunctions and quasi-particle energies 𝜀𝑖, Ψ𝑖(𝑟). This is a description of
“bare quasiparticle”.

The bare quasiparticle interact with each other via the bare Coulomb in-
teraction. The bare quasiparticle with 𝐻0 would evolve to become dressed
quasiparticle when the interaction with total Hamiltonian �̂� − �̂�0 is turned
on adiabatically. In this case, we can see the dressed quasiparticle as a bare
quasiparticle that accompanied by an indused polarization cloud consisting of
other bare quasiparticle, just like in GW Approximation.
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Ψ𝑉xc

[− ℏ2
2𝑚∇2 +𝑉ext +𝑉H +𝑉xc] |Ψi⟩ = 𝜀i|Ψi⟩

GW part

𝑊

Σ 𝐺

Π

𝑉xc = 1
2 ∑𝑖,𝑗 ⟨Ψ𝑖 | [Re{Σ(𝜀𝑖) +Σ(𝜀𝑗)}] |Ψ𝑗⟩

𝐺0 = ∑𝑖
Ψ𝑖(r)Ψ∗

𝑖(r
′)

𝜔−𝜀𝑖∓𝑖𝜂

Π = −𝑖𝐺0 ×𝐺0

𝑊 = 𝜖−1𝑣 = (1−𝑣Π)−1𝑣

Σ(r, r′, �) = i
2� ∫d�′G0(r, r′, � − �′)W(r, r′, �′)e−i��′

Figure 2.3: Schematic of self-consistent QSGW Method

In case of a self-consistent condition, we would have Ψ𝑖, 𝜀𝑖 ≈ Φ𝑖, 𝐸𝑖 around
𝐸𝐹 . We already Ψ𝑖 as a complete set due to 𝐻0 origin, in contrast with Φ𝑖 that
is not a complete set. In this case, we can expand Re[Σ(𝜀𝑖)] |Ψ𝑖⟩ into:

Re[Σ(𝜀𝑖)] |Ψ𝑖⟩ = ∑
𝑗,𝑖

|Ψ𝑗⟩Re[Σ(𝜀𝑖)]𝑗𝑖

with using Re[Σ(𝜔)]𝑖𝑗 = ⟨Ψ𝑖|ReΣ(𝜔)|Ψ𝑗⟩. Next, from this expression, we
would define an energy-independent operator 𝑅 as:

𝑅 = ∑
𝑗,𝑖

|Ψ𝑗⟩ Re[Σ(𝜖𝑖)]𝑗𝑖 ⟨Ψ𝑖|

𝑅 |Ψ𝑖⟩ = Re[Σ(𝜖𝑖)] |Ψ𝑖⟩

In this case, we substitute Re[Σ(𝐸𝑖)] in equation ??. Due to the nature of
R that is not Hermitian, we ought to take the Hermitian part of 𝑅. Therefore,
we can do the calculation of Φ𝑖, 𝐸𝑖 from Ψ𝑖, 𝜀𝑖, using:

𝑉 𝑥𝑐 = Re[𝑅]

𝑉 𝑥𝑐 = 1
2 ∑

𝑖𝑗
|Ψ𝑖⟩Re[Σ(𝜀𝑖)]𝑖𝑗 + Re[Σ(𝜀𝑗)]𝑖𝑗 ⟨Ψ𝑗|

At this point, we have a cycle of calculation from 𝑉 𝑒𝑓𝑓 → 𝑉 𝐺𝑊 (𝜔) → 𝑉 𝑒𝑓𝑓 .
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The overall cycle of calculation, involving GW part and DFT part, is shown in
diagram ??. If we do single pass in this cycle, then we have a new band structure
coming from one time update of 𝑉𝑥𝑐. This approach well-known as One-shot
QSGW Method. Self-consistent QSGW method is achieved by continuing the
iteration of self-energy calculation and exchange-correlation function update.
Due to complexity on total energy calculation, we do not rely the convergence
criteria on total energy. Instead, we consider our system to be converged when
we have relatively unchanged band structure, especially around our point of
interest, i.e. Fermi level.
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Chapter 3

Results and Discussion

3.1 NiCo2O4

3.1.1 Electronic structure

The energy band dispersions of inverse B are shown in Figures 3.1. These figures
are results for GGA, one-shot GW, and QSGW methods. In general, there are
several features revealed from these energy bands. All calculations revealed
half-metallic properties of NiCo2O4, where an energy gap opens at the Fermi
energy in the majority spin state. For the minority spin state two bands accross
to the Fermi level in QSGW, whileas three bands in GGA and one-shot GW.

As shown in Figures 3.1, the valence band around the Fermi level consists
of the three parts of oxygen orbital and two cation 3d orbitals. The oxygen
part is separated from the cation parts with an energy gap, and in the majority
spin state of GGA the cation parts are further separated to the occupied and
unoccupied states below and above the Fermi level, respectively. In the one-shot
GW, the cation part is separated to three parts in both of the majority and
minority spin states. However, during the self-consisitent calculation of QSGW,
the cation part {once} separated at the one-shot GW is merged partially. As a
whole property, the band width of cation bands becomes narrow from GGA to
QSGW.

Valence band of NiCo2O4 extends over different range of energy, depends on
the methods. For majority spin, the band structure shown non-metallic prop-
erty. GGA shown the largest band width of 2.4 eV. QSGW method resulted in
about 2.1 eV band width, while One-shot QSGW gave the smallest band width
of 1.9 eV. GGA, one-shot and full QSGW methods shown separation of valence
bands into two smaller bands, separated by 0.4, 1.0 eV and 0.2eV respectively.
The band width of the these sub-bands are greater in GGA methods, compared
to the others. The upper sub-band (near Fermi level) of QSGW method shown
no further separation, in contrast with one-shot QSGW and GGA results.
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Figure 3.1: The energy band dispersions for NiCo2O4 with the
inverse spinel type-B structure , green indicates minority spin
states and magenta for majority ones. From left to right, the
results of GGA, one-shot QSGW, and QSGW. The Fermi level

presented by horizontal line is set at zero energy.

QSGW method produced semiconducting properties of majority spin of
NiCo2O4 with bandgap of 1.02 eV and 1.15 eV for normal spinel structure
and inverse spinel structure respectively.

Total and projected density of states (PDOS) obtained from GGA, one-
shot GW, and QSGW are shown in Figures 3.2. All of PDOS display metallic
behaviour only at the minority spin state. The cation band around the Fermi
level is distributed, as if supposing the crystal field of octahedral or tetrahedral
site. Such crystal field induces the energy splitting between 𝑡2g and 𝑒g states.
The DOS shape of cation part becomes sharper from the result of GGA to those
of one-shot GW and QSGW. In these GW results, the crystal field effect appears
more clearly than those of GGA. This may be caused by the Coulomb interaction
affected from O is taken into account more accurately through the screened
Coulomb interaction 𝑊 . Such effect may vary depending on the symmetry
(octahedral or tetrahedral) of cation site. The sharp PDOS of cation bands may
be due to a localization of electron wave functions for the transition metals. This
feature is a typical consequence resulting from the GWA. Another consequence
appearing in Figures 3.2 is observed on the oxygen band. That band is shifted
to a lower energy, implying a stabilization on oxygen band in GWA.

The half-metallicity in the present work is in agreement with the previous
theoretical results including the mBJ-LDA [8] and the LDA+U approaches[2,
5]. Overall DOS from the QSGW is similar to those from the mBJ-LDA and
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LDA+U, whereas in the later, oxygen band is not separated from the cation
band. In regards of cation band, the upper cation bands are shifted to the
higher energies compared with the previous works mentioned above. The DOS
of minority spin in vicinity of the Fermi level is overall similar to those in the
previous works, but is different from them on quantitative detail. The orbital
components will be discussed in the later part.

We note some features during the self-consisent iterative cycle by compar-
ing the PDOS between one-shot GW and QSGW. First, the degree of energy
splitting from crystal field increases in the self-consistent process. Second, as a
result, the sharpness of DOS in one-shot GW becomes broaden, but have never
reached to a broadness of DOS like GGA.

Figure 3.3 reported the total DOS and PDOS of normal spinel and inverse
spinel (type A). As described before, half-metallic structure is observed. The
energy level splitting caused by the crystal field is observed like those of the
inverse spinel (type B), while the Ni(tet) component is missing in the latter
case. An important difference against the inverse type B is a behavior at the
Fermi level, as shown in Figure 3.4. Different with the case of inverse type B,
the Fermi level crosses a large peak of DOS. These behaviors strongly imply
that such metallic system have a possibility to take some form of instability.
In other words, the electronic state can be stabilized further by some induction
like a picture of Jahn-Teller effect. In the view of instability, the normal spinel
or inverse type A may be at a higher energy state compared with the inverse
type B.

3.1.2 Magnetic configuration

All of the methods (GGA, one-shot GW, and QSGW) provide a net magnetiza-
tion of 2 𝜇B/f.u. (f.u.: formula unit.) in the inverse spinel structures of type A
and type B, and also normal spinel structure. This value of net magnetization
has been reported in the previous works [4]. Both inverse structures provide
a ferrimagnetic arrangement, whereas the normal spinel structure exhibits fer-
romagnetic arrangement. However, the ferrimagnetic arrangement provided by
the inverse type A has a significant difference with that of type B. This is due
to the difference of cation configuration between the inverse type A and type
B.

Our total magnetization is much larger than the experimental value (1.25
𝜇B/f.u.) [6]. Recent experiment [2] reported that the total magnetization grad-
ually increases to a larger value (1.84 𝜇B/f.u.) as the annealing time of specimen
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increases. This difference on the magnetization may be attributed to a disor-
dered crystal structure in experimental specimen.

Magnetic moment on each atom varied from GGA to QSGW, as shown in
Table 3.1. The ferrimagetic configuration of inverse Type B is clearly indicated.
The QSGW consistently shows a larger absolute value for each atomic magnetic
moment except for Co(oct). This behavior can be understood since the QSGW
tends to indicate more localized electronic state in 𝑑-orbital states. In the results
of QSGW, the atomic magnetic moments of inverse B are 2.77 𝜇B for Co(tet)
and $-$1.39 𝜇B for Ni. These results are comparable with the experimental data
of Co(tet) 2.18 and Ni $-$1.49 𝜇B [22] and the theoretical LDA+U data of 2.39
𝜇B for Co(tet) and $-$1.12 𝜇B for Ni [23] with 𝑈eff [Ni, Co(tet) and Co(oct): 6.6,
4.7, and 6.7 eV, respectively, determined from a first-principles linear responce
theory]. One of the interesting results is induction of non-negligible magnetic
moment on O 2p orbitals. This contribution is estimated to be 0.40 𝜇B in
formula unit, resulting from the hybridization between cation 3d and O 2p
orbitals. The occurence of magnetic moment on O atoms implies importance of
its roles for understanding the electronic structure in NiCo2O4. The moment of
Co(oct) indicates a small value, which coresponds a low spin state of Co atom.

In Table 3.2, magnetic moments of normal and inverse type A are reported.
The ferromagnetic and ferrimagnetic configurations are indicated respectively.
The moment of Ni(tet) is coupled ferromagnetically with those of Co(tet), while
that of Ni(oct) is coupled antiferromagnetically. In all of the spinels investi-
gated, the tetrahedral cation always contributes to ferromagnetic component,
while the octahedral cation contributes to nonmagnetic or antiferromagnetic
component. Additionally, the oxygen, even though the degree is small, con-
tributes to ferromagnetic component. Interestingly, the sum of atomic compo-
nents is commonly similar among the spinel structures investigated.

Table 3.1: Atomic and total magnetic moments (𝜇B) in
NiCo2O4 (inverse type B) from GGA, one-shot GW, and

QSGW. Note that the averaged value is presented at O 2p.

Atom GGA one-shot GW QSGW
Co(tet) 3d 2.34 2.77 2.77
Ni(oct) 3d −0.87 −1.27 −1.39
Co(oct) 3d 0.09 0.02 0.07

O 2p 0.07 0.09 0.10
Sum in f.u. 1.81 1.86 1.86
Total in f.u. 2.00 2.00 2.00
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Table 3.2: Atomic and total magnetic moments (𝜇B) in the
normal and inverse A spinels of NiCo2O4 from QSGW. Note

that the averaged value is presented at O 2p.

Atom Normal Inverse A
Co(tet) 3d - 2.76
Ni(tet) 3d 1.56 1.56
Ni(oct) 3d - −1.31
Co(oct) 3d 0.00 0.03

O 2p 0.09 0.08
Sum in f.u. 1.92 1.86
Total in f.u. 2.00 2.00

Table 3.3: Number of electrons in the projected orbitals in
NiCo2O4 (inverse type B) from GGA, one-shot GW, and QSGW.

u+d specifies the sum of up and down electrons.

Atom GGA one-shot GW QSGW
up down u+d up down u+d up down u+d

Co(tet) 3d 4.56 2.22 6.77 4.67 1.89 6.56 4.66 1.89 6.55
Ni 3d 3.37 4.25 7.62 3.13 4.40 7.52 3.08 4.46 7.54
Co 3d 3.46 3.38 6.84 3.36 3.34 6.70 3.38 3.31 6.69
O 2p 1.74 1.67 3.40 1.73 1.64 3.36 1.74 1.64 3.37

3.1.3 Electron configuration

Atomic magnetic moment is the consequence of electron configuration at its
atomic site. In the analysis of PDOS, the 3d electron configuration is tabulated
for the inverse B in Table 3.3. These numbers of electrons are estimated within
each atomic region. Therefore, the electron outside atomic region is excluded
from the value. Compared between the results of GGA and QSGW, several
features are pointed out. First, the number is decreased at cation 3d sites and O
2p sites. Second, the number of atomic majority (minority) spin state increases
(decreases) at CoTd 3d and Ni 3d. {Both features result} in the increase of
magnetic moment on CoTd 3d and Ni 3d.

The electron configuration of atom in solid crystal may not be the best way
to represent using the ionic representation for cation elements. However, such
a way is helpful to understand pictures of electronic state more deeply. As a
speculation, the electron cofiguration at the atomic state may be presented as
Co(Td) 3d (d↑)5(d↓)2, Ni 3d (d↑)3.5(d↓)5, and Co 3d (d↑)3.5(d↓)3.5.
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Table 3.4: Total and projected DOS 𝑁↓ at 𝐸F (states/eV/cell)
in inverse B from GGA and QSGW. At the row of ”O 2p”, all
O 2p contributions are included and at the row of ”Sum” the

summation of atomic values are reported.

𝑁↓(𝐸F) GGA QSGW
Co(tet) 3d 2.45 3.50
Ni (oct) 3d 0.92 0.16
Co (oct) 3d 0.82 0.42

O 2p 0.82 0.53
Sum 5.01 4.61
Total 5.67 6.15

3.1.4 Properties at the Fermi level

The electronic states near the Fermi level consist mainly of the 3d-orbitals on
Ni(oct) and Co(oct) in the majority spin state, and of the 3d orbitals on Co(tet)
in the minority spin state. In Table 3.4, the total and {partial DOS} at the
Fermi level (inverse type B) are reported for GGA and QSGW. The total DOS
is similar to each other and the main cotribution is from Co(tet). However,
there are remarkable difference on its component. The components of Ni(tet),
Co(oct), and O decreases from GGA to QSGW, {whileas} the component of
Co(oct) increases. These changes on the component implies a large change at
electronic state of the Fermi level.

From band dispersion curves at Figure 3.1, two bands cross the Fermi level
at the minority spin state. As a consequence, there are two Fermi surfaces, as
depicted in Figures 3.5. As shown, the Fermi surface is not so large that they
extends to a large volume in the first Brillouin zone (k-space).

For majority spin, the band structure shown non- metallic property. GGA
shown the largest band width of 2.4 eV. QSGW method resulted in about 2.1
eV band width, while One-shot QSGW gave the smallest band width of 1.9 eV
. GGA, one-shot and full QSGW methods shown separation of valence bands
into two smaller bands, separated by 0.4 , 1.0 eV and 0.2eV respectively. The
band width of the these sub-bands are greater in GGA methods, compared to
the others. The upper sub-band (near Fermi level) of QSGW method shown
no further separation, in contrast with one-shot QSGW and GGA results. The
total densities of states (DOS) of full inverse NiCo2O4 spinel also calculated
using the same methods, shown in figures ??, on the same set with the PDOS
of Ni 3d, Co 3d and O 2p orbitals.

The total and PDOS at 𝐸F using all methods are listed in table ??. The
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smallest total DOS at 𝐸F is produced by GGA method. However, all method
agree that the PDOS at 𝐸F is largely contributed by Co 3d at Tetrahedral
position. On this account, it is proper if we decide to heavily consider Co
3d in further discussion on physical properties in which the electronic states
near 𝐸F play important roles, i.e. transport properties. The PDOS of Co 3d
at 𝐸F contributed by each tetrahedral (CoTd 3d) are 2.453, 11.150 and 3.499
states/eV calculated using GGA, QSGW0, and QSGW respectively. This value
is compared with 1.9845 states/eV/atom of FCC Co in non-magnetic state at
ferromagnetic order. The electronic states at 𝐸F is mainly contributed by CoTd

3d states.

3.1.5 Nature of hybridization between metallic 3d or-
bitals and O 2p

From atomic PDOS, we can see that O 2p orbitals are strongly hybridized with
metallic 3d in wide energy range of around 8 eV. To understand this hybridiza-
tion, we calculated the PDOS of eg and t2g component of 3d orbitals. The
results are shown in figure ??. We specify the symbols of orbitals need to
understand the details at Computational Quantum Chemistry II: The Group
Theory Calculator. This description is also reinforced by weighted band disper-
sion curve that generated from those orbital components.

From Figure f04.d.psigmaO.invB.QSGW, we found no trace of fat-band
identified at around 2eV. Figure f04.d.ppiO.invB.QSGW also shows no raising
band. This indicated that we need to find that particular path.

From atomic PDOS, we can see that O 2p orbitals are strongly hybridized
with metallic 3d in wide energy range of around 8 eV . To understand this hy-
bridization, we calculated the PDOS of eg and t2g component of 3d orbitals.
The results are shown in figure ??. We specify the symbols of orbitals need to
understand the details at Computational Quantum Chemistry II: The Group
Theory Calculator . This description is also reinforced by weighted band dis-
persion curve that generated from those orbital components.

Due to half-metallic nature of this structure, we see different profile of band
structure between Majority and Minority spin. From Figure ??, we see that
O 2p orbital in GGA unoccupied bands, seems to hybridize with both Ni 3d
and octahedral Co 3d in the width range of about 1 eV. However, from QSGW
and One-shot QSGW results, we found that this hybridization got separated
between O 2p-CoOct 3d hybridization at lower energy unoccupied bands and
O 2p-Ni 3d at higher energy unoccupied bands. PDOS on 2p component of
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O at figure ?? shows that lower part of conduction band is contributed by
O-2p_{pi} that hybridized with 3d of octahedral Co. On the other hand,
the higher part of conduction band is mainly formed by O-2p_{sigma} that
hybridized with Ni 3d. We can suspect that the nature of these two bonds are
anti-bonding. Tetrahedral Co 3d shown different band profile, as expected from
different nature of 3d orbital between Tetrahedral and Octahedral configuration,
based on Crystal Field Theory.

More detailed PDOS on 3d components of Ni and Co(Oct) at Figure ??,
revealed more complete view of these bonds. From figure ??, we can iden-
tify that two components of Ni 3d orbitals are hybridized into unoccupied
bands at around 2eV. The other two are hybridized into occupied states, while
one component in occupied state stand alone at slightly different energy range
than the other occupied twos. However, the more detailed nature of this hy-
bridization can be understood from the fat-band shown at figure f04.d.ppi-
egCoOct.invB.QSGW. This figure emphasize the nature of hybridization be-
tween O-ppi and 3d-eg of Octahedral Co. Furthermore, the isosurface of orbitals
at k-point X at energy range around 1eV in figure smrho.ppiO-egCoOct.invB.QSGW,
revealed the anti-bonding nature of this 3d_{eg}-p_{pi} hybridization. This
anti-bonding hybridization at the same time give raise as an evidence for the
covalent nature part of Co-O bonds, instead of fully ionic or metallic. On the
higher energy part of conduction band, we can identify the hybridization be-
tween 3d_{eg}Ni with p_x-O, that we confirmed further as an axis for sigma
bonding. Quantitatively, the contribution of 3d_{eg}Ni ratio with p-O is much
larger than that in Co-O hybridization. This brings to our conclusion that the
covalent character of Co-O bonding is higher than that of Ni-O. On the other
hand, the addition of electron would give rise to the occupancy of anti-bonding
of Co-O pi orbital, while Ni-O sigma anti-bonding orbital would filled at higher
energy. This is as expected as pi bonds have lower strength than sigma bonds.
We also supposed that there is asymmetric pi-backbonding happened in between
covalent part of Co-O-Ni bondings.

To understand the covalent bonding nature of this structure, we need to look
into valence band of the majority spin. In valence band of the majority spin,
we found that the highest energy band is contributed by 3d of octahedral sites
(consisted of Ni and Co). The lower energy band of this band is contributed by
3d of Co(tet). Both bands have significant contribution from p orbital of O as
an indication of small covalent character that previously detected at conduction
band. However, the majority of O-p orbitals filled energy range of approximately
5eV width.
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At majority level, we have octahedral sites (Co and Ni) gave the highest
contribution on the quasi-insulating characters. However, at minority level, the
metallicity is mainly contributed by tetrahedral sites (Co_{Td}). Interestingly,
the magneticity is contributed as an anti-ferro configuration between tetrahedral
sites (Co_{Td}) and octahedral sites (only from Ni). These electro-magnetic
contributions are summarized at table .

To determine the k-point for bond discussion, we take a bond axis orienta-
tion. In this case, we take the Octahedral position (we choose one of the fewest
atoms, put Ni for binding to O2p-𝜎, the hope is that O2p-𝜎 will hybridize with
Ni3d-z2 or Ni3d-eg ). Then we check the equivalent band structure or fatband
for Ni and O. Then look for one that produces the appropriate band-split. There
should be a weight for p on O. Data needed for fat-band: O 2p pi @ p1: p2,
O-2p sigma @ p3, Ni 3d @ eg temporarily, we decide that smrho will be based
on X coordinates, given At this point, there is a direct band gap.

From Figure f04.d.psigmaO.invB.QSGW, we found no trace of fat-band
identi- fied at around 2eV. Figure f04.d.ppiO.invB.QSGW also shows no rais-
ing band. This indicated that we need to find that particular path. Due to
half-metallic nature of this structure, we see different profile of band structure
between Majority and Minority spin.

From Figure ??, we see that O 2p orbital in GGA unoccupied bands, seems
to hybridize with both Ni 3d and octahedral Co 3d in the width range of about
1 eV. However, from QSGW and One-shot QSGW results, we found that this
hybridization got separated between O 2p-CoOct 3d hybridization at lower en-
ergy unoccupied bands and O 2p-Ni 3d at higher energy unoccupied bands.
PDOS on 2p component of O at figure ?? shows that lower part of conduc-
tion band is contributed by O-2p𝜋 that hybridized with 3d of octahedral Co.
On the other hand, the higher part of conduction band is mainly formed by
O-2psigma that hybridized with Ni 3d. We can suspect that the nature of these
two bonds are anti-bonding. Tetrahedral Co 3d shown different band profile,
as expected from different nature of 3d orbital between Tetrahedral and Octa-
hedral configuration, based on Crystal Field Theory. More detailed PDOS on
3d components of Ni and Co(Oct) at Figure ??, revealed more complete view of
these bonds. From figure ??, we can identify that two components of Ni 3d or-
bitals are hybridized into unoccu- pied bands at around 2eV. The other two are
hybridized into occupied states, while one component in occupied state stand
alone at slightly different energy range than the other occupied twos. How-
ever, the more detailed nature of this hybridization can be understood from the
fat-band shown at figure f04.d.ppi-egCoOct.invB.QSGW. This figure emphasize
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the nature of hybridiz- ation between O-ppi and 3d-eg of Octahedral Co. Fur-
thermore, the isosurface of orbitals at k-point X at energy range around 1eV in
figure smrho.ppiO- egCoOct.invB.QSGW, revealed the non-bonding nature of
this 3d𝑒𝑔-p𝜋 hybridization.

Considering that both Ni and Co(Oct) occupied octahedral sites, we can
expect that the nature of this d-p hybridization is dp𝜎 bonding. consideration
on nature of Co(tet) 3d hybridization consideration on Metal-Metal interaction
From these data, we can consider the nature of d-p hybridization ought to be
??? bonding. check the difference with GGA and QSGW0 results.

3.1.6 Comparison with LDA+U

The LDA+U approach has been used in the calculation of electronic structures
for a lot of oxide materials. The necessary 𝑈eff parameter is usually extracted
from the {empirical data}. The recent work by Shi et al., in which such param-
eters were determined in a first-principles approach, is a rare case. It can be
stressed that the QSGW is a non-empirical approach. Here, we point out sev-
eral differences with the LDA+U results for NiCo2O4. The LDA+U provides
a set of merged bands[2, 5, 23], while the QSGW provides a set of separated
bands, for examples, at the unoccupied state in the majority spin state (see
Figures 3.2) and at the occupied oxygen state. On Ni(oct), the energy splitting
between 𝑡2g and 𝑒g seems to be different {between} the majority and minority
spin states. These differences should be further verified by advanced theoretical
or experimental approach.

3.1.7 Comparison with NiCo2S4

[Total and Atomic Magnetic Moments (\muB{=latex}) in single irreducible cell
consisting of 2 formula units, magnetic properties denoted as ferro, ferri, anti
and non for ferromagnetic, ferrimagnetic, antiferromagnetic and non-magnetic
respectively.]
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nickel cobalt oxide nickel cobalt sulfide cobalt oxide
Sites Atoms GGA QSGW Atoms GGA QSGW Atoms GGA QSGW Ref[10]

A 1
(Td)

Co 1.92 2.29 Co 0.0 0.0 Co 1.74 1.96 2.631

A 2
(Td)

Co 1.92 2.29 Co 0.0 0.0 Co –
1.74

–1.96 –
2.631

B 1
(Oct)

Ni –
0.72

–1.14 Ni 0.0 0.0 Co 0.00 0.00 0.00

B 2
(Oct)

Ni –
0.72

–1.14 Ni 0.0 0.0 Co 0.00 0.00 0.00

B 3
(Oct)

Co 0.07 0.06 Co 0.0 0.0 Co 0.00 0.00 0.00

B 4
(Oct)

Co 0.07 0.06 Co 0.0 0.0 Co 0.00 0.00 0.00

Oxy-
gen

O 0.02 0.04 S 0.0 0.0 O 0.01 0.08 0.00

Total Ferri 4 4 Non 4 4 Anti 0 0 0
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Here, we have shown at Figure ?? energy gap around 𝐸𝐹 (eV) for Inverse B
NiCo2O4 are 0.82 (GGA) and 1.15 (QSGW). This should be compared to exper-
iment value of 2.58 eV. For Co3O4 in Figure ??, we found that QSGW produced
much larger energy gap of 2.88 eV, compared with 0.33 eV from GGA results.
This energy gap is comparable with experiment value of 2.9 eV. QSGW system-
atically enlarge the pseudo-bandgap at majority spin. For Co3O4, we have an
antiferromagnetic configuration with zero total magnetization. Here, QSGW
shows its quality in predicting better band gap for semiconducting Co3O4.

Antiferromagnetic nature of Co3O4 coming from 3d orbital of Co at both
tetrahedral sites. Octahedral sites of Co3O4 have zero contribution on mag-
netization. QSGW predicted that 3d orbital of Co at tetrahedral sites is fully
occupied. This is in accordance to the tendency of QSGW for showing more
localized electrons than GGA. On the other hand, Co(Oct) of NiCo2O4 shows
similiarly small contribution to magnetization. The main contribution to mag-
netization in NiCo2O4 comes from both Co(Oct) and Ni(Td), with the later
atoms have the highest contribution. However, conductivity of NiCo2O4 is in-
dicated to be mainly contributed by Co at tetrahedral sites. Crystal field of
metals at A and B sites also visible.
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\\ 001 plane

\\ 110A plane
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\\ 110B plane

\\ 001, 110A and 110B planes of Co3O4
In this figure, red denotes the most negative charge, and blue means positive

charge, while yellow is a transition in between. Upper part are charge density of
NiCo2O4 and NiCo2S4 respectively, while at the lower part we have those from
Co3O4. At (001) plane, we can identify covalent charges between B sites and
O. This is an indication of a hybridization between B sites and O. Comparing
different atoms residing B sites (Co and Ni), we can see that covalent charges
is stronger or Ni-O rather than that of Co-O.

This is as expected, because the electronegativity difference between Ni-O
is a little bit smaller than Co-O. Comparison between A sites and B sites can
be seen at (110) plane. Here, we have Co at the top of the arc-like structure
occupy A sites, while B sites are located at its both legs. From this figure,
Co(Td)-O covalent bond have the lowest covalent charges.
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This density is generated by taking the density difference between minority
and majority spin at all space. From this density, we can see that in NiCo2O4,
Co(Oct) have no contribution to the magnetization, in agreement with the
results of Partial Density of States. Furthermore, Ni atoms are in antiparallel
with Co(Td). We also notice the strong d𝜖 orbital character shown by Ni. On
the other hand, ferrimagnetic property of Co3O4 comes from antiparallel spin
between two tetrahedral sites.

3.2 inline-fortran

3.3 CPVO in Haskell
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Figure 3.2: Total and projected densities of states (DOS) of the Ni(oct) 3d, Co(oct) 3d, Co(tet) 3d, and O 2p 
orbitals of inverse type B spinel NiCo2O4 for GGA, one-shot GW, and QSGW.
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Figure 3.3: The total and projected densities of states of the
Ni 3d, Co 3d, and O 2p orbitals of normal spinel (left) and

inverse type A spinel (right) of NiCo2O4 from QSGW.
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Figure 3.4: 𝑡2g and 𝑒g components for projected density of
states on Ni 3d and Co 3d orbitals in inverse type B spinel of

NiCo2O4 from GGA and QSGW.

Figure 3.5: Fermi surfaces in inverse type B spinel of NiCo2O4
from QSGW.
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Figure 3.6: DFT/GGA Partial Density of States (PDOS) for
inverse spinel NiCo2S4, inverse spinel NiCo2O4 and Co3O4, re-

spectively from left to right.
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Appendix A

Functional Paradigm in
Programming Language

A.1 Language for interaction with Computer
Formal language (L) is defined by an alphabet and formation rules. Here,
alphabet means a set of symbols that builds the language L. While the formation
rules consisted of all specification that judge any arrangement of symbols as well-
formed. From here on, the well-formed arrangement of symbols usually called
words, expression, formulas, or terms. For any language L, these formation
rules would specify the expressions belong to the language L. Other formation
rules would specify howto build well-formed expressions from other expressions
in language.

In light of this most basic definition, a programming language is a formal
language that consisted of a set of instruction that conveys a human intention
for a computer to do some activities. This activity is primitively seen as a flip
of switch in the computer, that builds up to a much more complex activities
such as showing a character on a screen or doing a complex calculation. There
are different kinds of instruction set as much as different kinds of programmable
machines available in the world. Today, we have x86 instruction set (and its
family members, i.e.~AVX-512, SSE, and so on) that originated from Intel’s
x86 microprocessor and its derivatives. On a more niche market, we also have
MIPS, ARM, AVR, etc. processors that comes with their own instruction sets.
A programming language can be as simple as a direct translation of machine
codes to its related operation specified by its instruction sets (i.e.~Assembly
language). It is important to consider what programming language that can
be translated into our machine’s instruction set. A process of translating
documents written in a particular programming language to those in instruction
set suitable with a processor is called compilation.
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From human perspective, a programming language have two components,
syntax and semantics. Syntax specifies the combination of symbols that are
considered as correct (well-formed), thus can be compiled. On the other hand,
semantics holds our true intent on the expression. An analysis on semantics
can help us to better understand what a program is doing, to optimize a pro-
gram/statement, to mathematically prove that said optimization, etc. As an il-
lustration, we can have let var1 = if True == True then v1 else v2 and
let var1 = v1 as both well-formed, uses different syntax but have same se-
mantics. We consider that the latter expression is more consise (it has less
symbols) and more optimized (after compilation, it has less instruction set).
One of the aims of programming language development is to automate the con-
version of the first expression into the second. On many occasion, we found
that a well optimized program is usually not so concise and subjectively not so
easy to understood.

Generally, we view programming languages either as imperative (i.e.~sequence
of instruction) or declarative (i.e.~specification of desired results). All program-
ming language are implemented imperatively at hardware level (as processor’
s instruction sets). The concept of imperative paradigm can also be found in
recipes, checklists, workflow, etc. In imperative paradigm, each step is an in-
struction that flows from the beginning of a program to its end (control flow).
These instructions can be an assignment, that is an operation of storing in-
formation into memory. In higher level languages, a single step of assignment
can be consisted of more complex expression, such as arithmetic operations and
function evaluations. Branch statement signifies a change of execution flow to
other part of the program instead of to the default next step in line. This
branch statement may be unconditional (popular as goto statement) or condi-
tional (if statements). In its implementation, all type of conditional branches
(case statements, if, if-else, multiple-ifs, etc.) is a variation of an evaluation of
predicates (i.e.~v1 equals v2) followed by a goto. A loop statements (such as
for loops, while loops, do-while loops, etc.) semantically is a more specialized
branch statement. In a loop, the goto target is located in previous instruction
(can be more than a single step before). In this case, the steps of evaluation
(and its subsequent goto) can be evaluated more than once. Procedure calls,
subprograms or subroutines are specialized form of unconditional branch state-
ments that the goto target is a set of steps that ended with an instruction to go
back to the next step of its caller position (return statement). This brings us to
a concept of blocks, and allows us to express a complex program structure as a
composition of several simpler procedures. These imperative basic concepts are
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implemented as a core specification of Assembly language. FORTRAN (along
with C, Basic, etc.) is implemented as a well constructed abstraction of this
specification.

Declarative programming paradigm express the logic of a computation with-
out its control flow. There is a strong tendency to make a clear correspondence
between the declarative programming language and mathematical logic. In
declarative paradigm, we abstracted out the machine-like instructions/steps
and describe the desired results or formulas instead. A regular expression
`s/Quantum-physics/quantum/g` is a declarative statement in light of it ab-
stracted out any imperative steps needed. In this paradigm we have functional
languages, logical languages, etc. One advantage of declarative paradigm that
it allows us to implement mathematical model of physical systems in a more
consise manner. The code would contains a set of equations that declare the
behavioral relationships, instead of imperative assignments.

A.2 Turing completeness

A.2.1 Church-Turing Thesis

Example of implementation in Declarative and Imperative paradigm

A.3 Haskell
One of programming language that strongly implements declarative paradigm
is Haskell. This language enforces functional programming with strict type
systems. As a language much different with imperative programming languages,
we need to open our perception on some fundamental concepts where Haskell
is built on.

A.3.1 Lambda calculus

Lambda calculus was constructed and first developed by Alonzo Church as
an attempt to formalize mathematical functions as a means of computation
[24]. It developed further into computability theory, coined as a proof that the
lambda calculus and the Turing machine have exactly the same computational
power. In this sense, any set of functions that are effectively computable by
the Turing machine, actually are computable by the lambda calculus. This
equivalence, is deemed as very fundamental and important in development of
programming languages, in such that it popularized as the Church-Turing thesis
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[25]. Lambda calculus identify two aspects of a function (either mathematical
or programmatical): 1. function is a mathematical object, a set of ordered pairs
from domain and range. 2. function is an abstract black box that can take input
and produces output.

From here, people can construct a mathematical theory on the meaning
of computer programs (denotional semantics). The Functional Programming
Language is an explicit product of a mission to turn lambda calculus into a
practical programming language. One of the most renowned product of this
effort is Haskell Programming Language. Haskell, in particular ghc (Glasgow
Haskell Compiler), generates a computer software by following these steps: 1.
Source desugaring. 2. Transformation to System F (a version of lambda calcu-
lus). 3. Translation of System F to machine language using graph reduction.
At this point, it is important to understand some basics on lambda calculus.

Inside the construction of Lambda calculus, in its simplest classification, a
language has constants, variables, applications and functions. All these com-
ponents can be arranged to make a statement/expression. A constant is a
definitive value, can be a number, a character, a string, or a value of more
complicated data types. A function is a set of expressions that performs a de-
sired task. Furthermore, an application is a statement to invoke a function. In
lambda calculus, the rule of this arrangement can be expressed as:

exp
= const
| var
| exp exp
| � var → exp

For variables, its occurence in an expression can be defined either as bounded
variables or free variables. In �x → x^2 + x + 1, we have x bounded by the
�x (lambda expression of 𝑥). In y - 1, we have free variables of y, this means
for a complete statement, y have to be defined somewhere else. Thus in this
construct, bounded variables can only be occured if it has a lambda expression
that binds it. Otherwise, we have free variables. In lambda calculus, we have
three conversion rules to perform computation. These conversion rules allow us
to substitute an expression with another. When a conversion produce a simpler
expression, we call this as a reduction.

While the mathematical definition and proof of these rules are beyond the
scope of this discussion, we can convey its practical use. The first rule is al-
pha conversion. This rule let us consistently change a function parameter’s
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name. For example, we may have (x → x+1) 3 become (y → y+1) 3. Here
we change 𝑥 into 𝑦. Next rule would be Beta conversion. This rule related
with how we apply a functions. To operate an argument into a function (as a
lambda expression), we take the body of the function and replace each bound
occurence of the variable with the argument. For example, (�x → y + 5*x) 3
would be evaluated as y + 5*3. The last rule is Eta conversion. In this rule, for
any function, we always have an equivalent of an application of lambda expres-
sion to an argument. For example, for any function 𝑓 , we have an equivalent
lambda expression of (�x → f x). In a more concrete example, we may have
a function of (+2). It has equal lambda expression of (�x → (+2) x). These
two functions can be applied to an argument, i.e. 31, resulting (�x → (+2)
x) 31 and (+2) 31. Both expressions are semantically equal (have the same
meaning). Eta conversion usually used to simplify an expression by removing
a common trailing argument. For example, we have 𝑓1𝑥𝑦 = 𝑓2𝑦. We may
convert this into 𝑓1 = 𝜆𝑥 → (𝜆𝑦 → 𝑓2𝑦), the lambda expression of 𝜆𝑦 can be
converted using beta conversion into 𝑓1 = (𝜆𝑥 → 𝑓2) = 𝑓1𝑥 = 𝑓2. So we have
𝑓1𝑥 = 𝑓2 as equivalent functions. Practically, we can factoring out the last
argument 𝑦 from the expression. By employing these rules, we may come to a
more concise code. At the same time, we can reduce the burden on managing
the code. These rules seems very simple and may be guessed and accepted
as a common knowledge nowadays. However, historically, the representation
of an algebraic manipulation using such reduction, have been reported since
early 800 CE. Contrasted with current approach in solving algebra, the imper-
ative instruction presented by Al-Khawarizmi [26] would seems discursive, hard
to follow, and needs a longer debugging session to deliver a good instruction.
Though semantically, both instruction produce the same results. This is an
apparent illustration of the power of symbolic and descriptive mathematical
language over the imperative recipes.

A.4 First-class and higher-order functions
Higher-order functions are functions that use functions as its arguments or pro-
duce functions as a result. The common example of higher-order function is
derivative function in calculus. Higher-order functions allow us to apply a func-
tion to its arguments one by one at a time, whereas in each step, we procure
a new function that accepts the nex argument (a partial application/currying).
From mathematical concepts of higher-order functions, we may define a first-
class entities as any entity (i.e. number) that can correctly appear anywhere in
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the program that other first-class entities can appear. Thus, first-class functions
may appear as an argument or return value of other functions. This behavior
can be achieved in imperative languages using function pointers. However,
there are extra things to be done to reproduce the ability to do partial applica-
tion/currying.

A.5 Pure Function
Pure functions/expression is defined as functions that have no side effects, either
on memory or I/O. There are some special properties of a pure functions that
may help us to optimize the code, i.e.: pure function can be removed if the result
is never used. For a particular argument list, a pure function always produce a
constant result (referential transparency). So there is a possibility to optimize
it into a constant or caching optimization. The order of several pure functions
can be reversed if there is no data dependency between the pure expressions. It
also means that the functions can be performed in parallel without interfering
with each other (thread safety).

The high advantage of a pure function is recognized also by imperative
programming languages. To ease the optimization, Fortran includes PURE
procedures as a new feature of Fortran95 standard. Most imperative language
compilers also tries to automatically detect pure functions in its optimization
process.

A.6 Recursion
In functional languages, an iteration is done by recursion. Recursive functions
by definition is a function that at some points, calls itself. As a result, that
function will be repeated until it reaches some final case. Traditionally, each
iteration in a recursion would require computer to maintain some address in
memory. This requirement grows linearly with the depth of recursion. In this
regards, recursion is a technique that rarely used in popular programming.
Nevertheless, in functional language, we may utilize a more specialized kind
of recursion namely tail-recursion. The compiler can recognize and optimize a
tail-recursion into the same code produced by a loop in imperative language.



A.7. Static Type system 75

A.7 Static Type system
Nowadays, functional programming languages use typed lambda calculus. The
rejection of invalid code is happened at compilation time and risking false pos-
itive errors. By using algebraic datatypes, we may conviniently manipulate
complex data structures. Strong static type checking at compile time provides
us a more reliable program, before we implement further techniques such as
test-driven development. GHC implemented a limited form of dependent types
called generalized algebraic data types (GADT’s).

A.8 Category Theory
Basically, a category is simply a collection. We may define three components
of a category:

• collection of objects
• collection of morphisms. Each morphism connects a source object to a

target object. We denoted a morphism 𝑓 that morphs a source object 𝑆
to target object 𝑇 as: 𝑓 ∶ 𝑆 → 𝑇 .

• a statement of composition of these morphisms. Composition of two mor-
phisms, namely 𝑣 ∶ 𝐴 → 𝐵 and 𝑢 ∶ 𝐵 → 𝐶, can be constructed as a new
morphism denoted as 𝑢 ∘ 𝑣 ∶ 𝐴 → 𝐶

Category may be found in many things. The most obvious one is a Set can
be called as a category of all sets. Its morphisms are standard functions and the
composition would be standard function composition. A Group is a category
of all groups wich have the morphisms defined as functions that preserve group
operations (the group homomorphisms).

A.8.1 Category laws

Category needs to follow three laws. The composition of morphism needs to
be associative. Category needs to be closed under the composition operation.
Finally, there must be an identity morphism for every object A in a particular
category C.

Morphisms compositions are applied right to left in Haskell (as commonly
done in mathematics), so with 𝑓 ∘ 𝑔, first we would apply 𝑔 and then followed
by 𝑓 .
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The requirement that a category needs to be closed under composition,
means that there should exist a morphism ℎ ∶ 𝐴 → 𝐶 in the category in such
that for any two morphism 𝑓 ∶ 𝐵 → 𝐶 and 𝑔 ∶ 𝐴 → 𝐵, we would have ℎ = 𝑓 ∘ 𝑔.

An identity mo
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