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First-Principles Study of Thermoelectric Effect in

Two-dimensional Ferromagnet

(二次元強磁性体における熱電効果の第一原理的研究）

Rifky Syariati

Abstract

We implemented first-principles calculations to elucidate the anomalous Nernst

effect (transverse thermoelectric effect) of the half-metallic FeCl2 monolayer. We in-

vestigated its thermoelectric properties based on the semiclassical transport theory

including the effect of Berry curvature. If we assumed 10 fs for the relaxation time,

the carrier-doping generates a large anomalous Nernst effect which was approxi-

mately 6.65 µV/K at 100 K. The origin of this large magnitude comes from large

Berry curvature at K-point of hexagonal Brillouin zone. These results indicate that

two-dimensional ferromagnetic half-metallic materials can potentially be applied in

thermoelectric devices.

Key words: First-principles calculation, two-dimensional magnetic materials,

thermolectric, anomalous Hall effect, anomalous Nernst effect
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Chapter 1

Introduction

1.1 Motivation

Nowadays, the demand for energy supplies increases especially for the Internet of

Things (IoT). One of the possible energy sources for IoT is the waste heat. The

waste heat can be found everywhere especially in inefficient primary energy and

it can be an environmental pollutant. By recovering the waste heat, energy and

environmental problems can be solved. One of the solutions which can recover the

waste heat is thermoelectric devices.

Thermoelectric generation is a method to generate electricity from the heat. It is

a clean conversion because it uses not only waste heat from such as motor vehicles,

households, and factories but also heats from environmental heat sources. Thermo-

electric generators are solid-state semiconductor devices that convert a temperature

difference and heat flow into a useful DC power source. The basic building block of a

thermoelectric generator is a thermocouple which is made up of one p-type semicon-

ductor and one n-type semiconductor as shown in Fig. 1.1 (a). The semiconductors

are connected serially by a metal strip. Thermoelectric generator semiconductor

devices employ the Seebeck effect to generate a voltage. This generated voltage

generates electrical current and produces useful power at a load.

The Seebeck effect is a direct energy conversion of heat into a voltage potential

with the Peltier current. This effect is occurred due to the movement of charge

carriers within the semiconductors. In doped n-type semiconductors, the charge

carriers are electrons while the doped p-type semiconductors, charge carriers are

holes. Charge carriers diffuse from the hot to the cold side of the semiconductor.

This will create a voltage potential that proportional to the temperature difference

across the semiconductor. However, there is a deficiency in Seebeck energy con-

version. The Peltier heat current will convey heat sometimes which degrading the

conversion efficiency. Because of that, the researchers try to resolve this problem
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Chapter 1 – Introduction

Figure 1.1: The schematics of thermoelectric based (a) Seebeck effect and (b) anoma-
lous Nernst effect

by using the magnetic material which generating anomalous Nernst effect (ANE) in

thermoelectric devices.

The anomalous Nernst effect (ANE) thermoelectric power generation attracts

the researcher due to its flexible and simple structure and low generation cost in

fabrication [1]. ANE offers for high flexibility degree in device design since when the

temperature gradient is applied, the material length along the temperature gradient

is not needed because the anomalous Nernst voltage increases with the transverse

length normal to both the magnetization and the temperature gradient. Thus,

thermoelectric devices based on the ANE can be adaptable with any heat source.

So that, the materials such as thin films and two-dimensional (2D) materials can

be employed as the base in these devices. In the ANE case, the Ettingshausen heat

current is generated by the electric current from the low-temperature side to the

high-temperature side. This current increases the conversion rate efficiency, because

Ettingshausen heat current and the electric current directions are perpendicular to

each other [2] as shown in Fig. 1.1 (b).

1.2 An Overview of Anomalous Nernst Effect

The electric field of ANE in the nanostructured magnetic materials is induced by

the interplay of magnetization and temperature gradient. This condition explains

that the thermoelectric voltage in magnetic materials is observable although there

are small temperature gradients at room temperature. The thermoelectric voltage

is strongly dependent on the crystallographic orientation [3], material type, layer

thickness in the geometry film [4], and magnetic anisotropy [5]. However, even

though there are many recent advances in ANE research, there are several aspects

of the correlation between ANE and nanostructured ferromagnetic materials that
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Chapter 1 – Introduction

have not fully explored yet such as the origin of large anomalous Nernst coefficient

in the ferromagnetic materials.

The large ANE magnitude usually is occurred in the magnetic materials which

have a large thermoelectric coefficient. The thermoelectric coefficient depends on

the product of the Seebeck coefficient and Hall ratio. It is also related to the anoma-

lous Hall conductivity (AHC) asymmetry as a function of chemical potential [6, 7].

The AHC mechanism is determined by intrinsic and extrinsic contributions. Band

structure dictates the intrinsic contribution of AHC because the electron anoma-

lous velocity related to the Berry curvature is increased by interband coherence [8].

Moreover, one of the extrinsic contributions of AHE is the skew scattering which is

generated from the impurity or the effective spin-orbit interaction [9]. This extrinsic

contribution is reported experimentally in ANE magnitude of La1−xNaxMnO3[10].

However, the anomalous Nernst coefficient (ANC) sometimes is not determined by

AHC. AHC is influenced by Berry curvature summation of all occupied states while

ANE is determined by Berry curvature at low temperature [13, 12, 11]. In other

words, observing the material which possesses large Berry curvature is important to

step for achieving large ANC.

1.3 Anomalous Nernst Effect Based in the 2D

Magnetic Materials

The realization of thermoelectric devices challenge is to ensure the materials exhibit-

ing high ANC values. Using 2D materials is one of the solution for this problem.

For example, the EuO monolayer is shown that it possesses a large ANC [7, 14]. In

2D materials, the ANE is associated to the quantum anomalous Hall effect. AHC in

the 2D system is influenced by the quantized anomalous Hall conductivity (AHC),

which can be denoted by σxy = e2

h
C, where C is Chern number. The quantized

AHC was proved experimentally by Chang et al. [15] in a magnetically doped thin

film of a topological insulator (Bi, Sb)2Te3. Their results suggest that it is possible

to found a large ANC in 2D systems.

A high figure of merit can be accomplished by 2D ANE thermoelectric materials

which several reasons. The study of the ANE in 2D systems is opened by the

discovery of ferromagnetism (FM) in 2D materials in 2017 [16, 17]. The use of a 2D

material has a role in decreasing the thermal conductivity due to surface phonon

scattering [18] which is essential for increasing the figure of merit. The use of

some 2D material also provides that the electrical conductivity is higher than that

of the corresponding bulk structure while the material thickness decreasing. [19].

Besides that, the thermoelectric coefficient for quantum-well structures enhanced
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Chapter 1 – Introduction

linearly when the quantum-well thickness reduced [20]. These advantage of 2D

thermoelectric devices has been proved experimentally by Lee et al. using 2D SnS2

[21] and Ohta et al. using 2D gas in SrTiO3 [22].

In this study, we explored the thermoelectric properties of a half-metallic 1T-

FeCl2 monolayer by using density functional calculations. We obtain that the 1T-

FeCl2 monolayer possesses high AHC, which generates a large ANC. The high AHC

has resulted from the bands at the K-point near the Fermi level, where a large

Berry curvature exists. In addition, the thermoelectric properties of the 1T-FeCl2

monolayer can be tuned by charge doping. By this approach, we obtain a large ANC

at the Fermi level. Based on this, it can be concluded that 2D magnetic half-metallic

materials generate high ANC values.

1.4 The Purpose of This Study

We have some purposes in this study. First, we explore the magnetic and electronic

properties of 1T-FeCl2 monolayer. The results of magnetic and electronic properties

lead to analyze the thermoelectric properties of 1T-FeCl2 monolayer. From that, we

examine how to tune the thermoelectricity in this material. Subsequently. we also

explore the origin of ANC in the of 1T-FeCl2 monolayer.

1.5 Outline of Dissertation

This dissertation consists of five chapters. In chapter 1, the motivation which is

related to the anomalous Nernst effect in the 2D magnetic materials is presented.

An overview of anomalous Nernst effect is given including its origin magnitude.

After that, the 2D ferromagnetic material related to the anomalous Nernst effect is

explored and also the purpose of this study is explained in this chapter.

In chapter 2, the basic concepts of the origin magnetism and anomalous Nernst

effect in the 2D magnetic materials are described. The fundamental concepts of

density functional theory and the algorithm of maximally localized Wannier function

are also presented. Furthermore, We provide the computational scheme, which is

related to the practical calculation in this study.

In chapter 3, we show the calculated results of the atomic structure of 1T-FeCl2

monolayer. This atomic structure will then affect the magnetic properties of a 1T-

FeCl2 monolayer based on the Goodenough-Kanamori-Anderson rules. Moreover,

we show that the half-metallic is occurred in the 1T-FeCl2 monolayer and we also

explain its origin.

In chapter 4, we explored the thermoelectric properties of a 1T-FeCl2 monolayer.

We show that 1T-FeCl2 monolayer possesses a large anomalous Nernst coefficient. Its
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Chapter 1 – Introduction

magnitude is originated from anomalous Hall conductivity. The origin of anomalous

Hall conductivity is then described by including the band contribution near the

Fermi level.

Finally, in chapter 5, we give a summary of this study. we also explain the

future scope such as the effect of the vacuum region and the calculation in the large

supercell with the charge doping. We plan to include the relaxation time calculation

which essential in determining the anomalous Nernst coefficient.
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Chapter 2

Background: Basic Theory and

Computational Methods

2.1 Density Functional Theory (DFT)

In condensed matter physics, the various properties of the materials can be explored

by analyzing the electron interactions. In the material which consists of many-

electron and nuclei, the many-body problems are related with time-independent

Schödinger equation with 3M+3N parameter space dimension which expressed as

HΨ(r1, r2, ...., R1, R2, ....) = EΨ(r1, r2, ...., R1, R2, ....), (2.1)

where Ψ is the system wave function, ri and Ri are the electron and nucleus positions

respectively, and H is the Hamiltonian of the system which can be written as

H = −
∑
i

∇i

2
−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj|
−
∑
I

∇2
i

2MI

+
1

2

∑
I 6=J

ZIZJ
|RI −RJ |

, (2.2)

where the ZI and MI are charge and mass of the nucleus, respectively. For simplicity,

h̄ = me = e = 4πε0 = 1 and the Eq. (2.2) can be divided by five terms which are

denoted by

H = Tel + Vel−nuc + Vel−el + Tnuc + Vnuc−nuc, (2.3)

where Tel and Tnuc are the kinetic energy operator of electron and nucleus, respec-

tively. Vel−nuc represents the potential energy operator between electron and nu-

cleus, Vel−el and Vnuc−nuc are the Coulomb interaction operator of electron-electron

and nucleus-nucleus, respectively.
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Chapter 2 – Background: Basic Theory and Computational Methods

Because of the defined dimension in Eq. (2.1) is complex to be solved except for

the simplest system such as hydrogen atom, the approximation has to be applied.

Since the mass of the nucleus is heavier than electrons, the nucleus motion can be

neglected compared to those of electrons. In other words, the nucleus is defined that

its position is fixed and its movement is stationary. This approximation is known as

the Born-Oppenheimer approximation. In this case, Tnuc and Vnuc−nuc in Eq. (2.3)

are ignored so that the Eq. (2.3) becomes

H = Tel + Vel−nuc + Vel−el, (2.4)

According to this modification, the new Schödinger equation of the system can be

expressed as

HΨ =

[
−
∑
i

∇i

2
−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj|

]
Ψ = EΨ. (2.5)

In this equation, Ψ = Ψ(r1, r2, ....) is wave function of many electrons.

One of the method which can solve many-electron system is Hartree approxima-

tion. This approximation defines Eq. (2.4) as a one-particle equation for an electron

moving in an average potential of all the electrons. In this condition, the wave func-

tion can be donated as multiplication of n independent electron wave function ψ(rn)

which expressed by

Ψ(r1, r2, ..., rn) = ψ(r1)ψ(r2)...ψ(rn). (2.6)

By inserting the Eq.(2.6) into Eq.(2.5), the Hartree equation can be obtained which

described by[
−
∑
i

∇i

2
−
∑
i,I

ZI
|ri −RI |

+
∑
i 6=j

∫
d3rj
|ψj(rj)|2

|ri − rj|

]
ψi = εiψi(ri) (2.7)

In Eq. (2.7), each electron i is treated independently but in an effective potential,

which is determined by an integration over the wave function of the other electron.

Since for the ith wave function, the effective potential depends on all the other

wave functions, we can solve Eq. (2.7) by using the self-consistent method. In this

method, the wave function for the step k can be found by solving the Eq. (2.7)

with the effective potential is determined by the wave function in the step of k − 1.

Beside of that, By applying the variational principle, the condition of 〈ψ|H|ψ〉〈ψ|ψ〉 ≥ E0 is

satisfied for any wave function ψ where E0 is the ground states energy of the system.

This procedure is repeated until all the wave functions converge to a solution.

There is one problem in the Hartree approximation. This approximation does

not satisfy the Pauli exclusion principle because only symmetric wave functions used

13



Chapter 2 – Background: Basic Theory and Computational Methods

in the calculation. It means that this method does not include exchange interaction.

Because of that, Hartree and Fock formulate the approximation which can explain

electron as a distinguishable particle in the calculation. By using Slater determinant,

the n-electron system wave function is treated by an anti-symmetric wave function

which can be seen as

Ψ(r1, r2, ..., rn) =
1√
n!


ψ1(r1) ψ1(r2) .... ψ1(rn)

ψ2(r1) ψ2(r2) .... ψ2(rn)

: : : :

ψn(r1) ψn(r2) .... ψn(rn)

 . (2.8)

By applying the variational principle with the Eq. (2.8), the Eq.(2.7) is updated

which can be written as

[
−
∑
i

∇i

2
−
∑
i,I

ZI
|ri −RI |

+
∑
i 6=j

∫
d3rj
|ψj(rj)|2

|ri − rj|

]
ψi

−

[∑
j

∫
d3rjψ

∗
j (rj)

1

|ri − rj|
ψi(rj)

]
ψj = εiψi(ri). (2.9)

In the Eq. (2.9), there is a new term that is denoted as exchange potential. However,

in this equation, the correlation energy due to many-body interaction is ignored,

which produces an incorrect description of the electronic properties. Because of that,

it is required methods that can deal with both exchange interaction and correlation

energy.

As mentioned before that the electronic structure of the many-body system can

be described by incorporating the effect of both exchange and correlation. Therefore,

an efficient computational scheme is necessary. Recently, the density functional

theory (DFT) is one of the most popular approaches for explaining the exchange

and correlation problem. DFT is a computational method that determined the

properties of many-electron systems by using functionals of ground-state electron

density. DFT method also is applied for calculating, e.g., the binding energy of

molecules in chemistry and the electronic band structure of solids in physics. The

development of DFT is based on Hohenberg-Kohn theorem[23]:

Theorem 1. For any system of interacting particles in external potential Vext(r)

apart from a trivial additive constant, the potential Vext(r) is uniquely determined

by the ground state of electron density n0(r).

This first theorem explains that all of the electronic properties can be picked

up from the exact ground-state electron density. Then, the ground-state electron

14



Chapter 2 – Background: Basic Theory and Computational Methods

density can be obtained by applying the second theorem, which is based on the

variational principle which is described by

Theorem 2. For any Vext(r), a universal functional exist for the total energy func-

tional E[n] that its global minimum value gives the exact ground state energy of the

system, while the minimizing density n(r) is the exact ground state density n0(r).

In the second theorem, all the ground state properties can be obtained by mini-

mizing energy functional with respect to electron density. This energy functional is

expressed as

EHK [n] = T [n] +

∫
Vext(r)n(r)d3r + EII + Eint[n], (2.10)

with T [n], EII , and Eint[n] correspond to kinetic energy, interaction energy of nuclei,

and potential energy of the interacting system respectively. It should be noted that

this formulation is applied in T = 0 K. Also, the problem still remains as the

exact functionality is unknown. The Kohn-Sham approach is used to overcome

this problem by replacing the interacting-electrons system with a non-interacting

independent-electron system that is under the influence of an effective potential.

The Kohn-Sham energy functional can be written as[24]

EKS[n] = Ts[n] +

∫
Vext(r)n(r)d3r + EII + EH [n] + EXC [n], (2.11)

with the kinetic energy of non-interacting electrons Ts[n] is denoted by

Ts[n] =
∑
i

∫
Ψ∗i (r)

(
−1

2
∇2

)
Ψi(r)dr, (2.12)

and the Hartree energy EH which contain the electrostatic interaction is expressed

as

EH [n] =
1

2

∫
n(r)n(r′)

|r− r′|
drdr′. (2.13)

Based on this approach, now the exchange and correlation interactions are grouped

into the exchange-correlation energy EXC . EXC has an important role here. When

EXC is evaluated, the ground state density and the energy of the many-body system

can be obtained.

Considering the fact that the Khon-Sham energy problem is a minimization

problem with respect to the density n(r), the solution can be obtained by performing

a functional derivative. By applying a variational theorem of the energy functional

EKS with respect to the wavefunctions, Kohn-Sham equation based on the many-
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Chapter 2 – Background: Basic Theory and Computational Methods

body Schrödinger equation can be obtained as(
−1

2
∇2 + Veff (r)

)
Ψi(r) = εiΨi(r). (2.14)

The Kohn-Sham equation is defined by a local effective potential Veff in which the

non-interacting particles move. The effective potential then can be expressed as[24]

Veff (r) = Vext(r) + VH(r) + VXC(r), (2.15)

with

VH(r) =
1

2

∫
n(r′)

|r− r′|
dr′. (2.16)

Vext(r) and VH(r) depends on n(r). It indicates that Vext(r) and VH(r) will

also depend Ψi. Because of that, the solution of the Kohn-Sham equation can be

found by self-consistent methods. The self-consistent of Kohn-Sham equation is

schematically shown in Fig. (2.1). It is started from an initial guess of n(r), then

calculating the corresponding Vext(r) and VH(r) and obtaining Veff . Subsequently,

the solution of Ψi can be evaluated by solving the Kohn-Sham equation. Moreover,

a new density, which is obtained by the results of Ψi is applied as an initial new

guess for n(r), and it also used to calculate the new Veff . This schematic is repeated

until the convergence is satisfied.

There is still problem in the DFT calculation which is how to find the exchange-

correlation energy EXC . This functional term is not known except for the free

electron gas. Therefore, it is required for obtaining accurately EXC in order to

satisfy the realistic condensed-matter system description. For the homogeneous

electron system, the functional of EXC [n] depends only on the density. However,

in the non-homogeneous electron system, EXC [n] at point r is not only depends

on the density at r, but it also depends on the variation at near r. There are

many approximations to find an accurate EXC [n]. The well-known approximations

are including the local density approximation (LDA) and the generalized gradient

approximation (GGA).

The simplest method to approximate EXC [n] is the local density approximation

(LDA). In this approximation, there is two important points which are assumed: i)

the local exchange-correlation energy per particle only depends on the local density,

and ii)it is equal to the exchange-correlation energy per particle of a homogeneous

electron gas, which has the same density in the neutralizing positive background.

EXC [n] is then given by the sum of the contributions of each point in space, where

it is assumed that the contribution of one point only depends on the density of that

particular point and it is independent of the other points. The exchange-correlation

for LDA functional V LDA
XC is expressed as
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Start

Initial guess n0(r)

Calculating effective potential Veff (r)

Solving KS equation

Calculating electron density n(r) =
∑

i |Ψi(r)|2

Self-consistent? n(r)=n0(r)

Output quantities: Energy, forces, stresses,

Stop

yes

no

Figure 2.1: The schematics of Kohn-Sham equation self-consistent calculation.

V LDA
XC = εXC(n(r)) + n(r)

∂εXC(n(r))

∂n(r)
, (2.17)

The LDA approximation is assumed that the density is locally constant so that

it is more accurate for the system which has slowly varying densities. In binding en-

ergy which reflected across the periodic table, LDA always generates precise results.

Besides that, several physical properties such as vibrational energies, bond length,

atomic structures are predicted correctly although with some reasonable deviation.

However, several binding energies of solids and molecules are sometimes overesti-

mated, which leads to an underestimation of the bond lengths. LDA also sometimes

is underestimated the bandgap.

In the real system, the density varies in the space. The functional change

rate should be included. It can be obtained by adding gradient terms. This ap-
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proach is called as the gradient expansion approximation. In this approximation,

the gradient corrections of the form ∇n(r), |∇n(r)|2, and |∇2
n(r)| is combined to the

LDA exchange-correlation energy functionals. The general form of the exchange-

correlation energy functionals in GGA is written as

V GGA
XC = εXC(n(r)) + n(r)

∂εXC(n(r))

∂n(r)
−∇

(
n(r)

∂εXC(n(r))

∂∇n(r)

)
. (2.18)

2.2 Norm Conserving Pseudo-potential and Pseudo-

atomic Basis Orbitals

Replacing the effect of the core electrons with an effective potential is a key concept

of pseudo-potential. Solving the atomic problem with Khon-Sham (KS) approach

is the first procedure of the pseudo-potential generation. The distinction between

valence and core states can be obtained when the KS orbitals are found from the

solution of the KS equation. we can assume that the core states are altered very

small due to the environment changes. These effects can be replaced by using a

model potential derived from the atomic configuration. Besides that, the valence

states are shown to oscillate rapidly to the core regions. Moreover, the valences

states are expected to be smoother by introducing the new potential.

Assuming that the core states and the core eigenvalues of Hamiltonian H are

defined by |χn〉 and En, respectively. It is also defined that the valence states can

be replaced by the smoother wave function |φ〉 and expands the remaining portion

in terms of core states,

|Ψ〉 = |φ〉+
core∑
n

an |χn〉 . (2.19)

By calculating the inner product of Eq. (2.19) with |χn〉 and by defining the valence

states |Ψ〉 is orthogonal to the |χn〉, the Eq. (2.19) relation is written as

〈χn|Ψ〉 = 〈χn|φ〉+
core∑
n

an 〈χm|χn〉 = 0. (2.20)

Now we can write the right-hand side of Eq. (2.20) in term of smoother function,

|Ψ〉 = |φ〉 −
∑
n

〈χm|φ|χn〉 . (2.21)
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By applying H into Eq. (2.21), we will get

H |Ψ〉+
∑
n

(E − En)|χn〉 〈χm|φ〉 = E|φ〉. (2.22)

Eq. (2.22) indicates that smoother function satisfies an effective equation with the

same eigen energy of the real valence wave function. From that, the new eigenvalues

for the smoother function |φ〉 can be written as

(H + Vn,l)|φ〉 = E|φ〉. (2.23)

Because of the spherical symmetry, Vn,l depends on the angular momentum quantum

number l and its effect is localized to the core.

There are some requirements for norm-pseudopotential which will be used. First,

all the electrons (AE) and pseudo (PS) valence eigenvalues are equal to the selected

atomic configuration. Second, all the electrons (AE) and pseudo (PS) valence eigen-

functions are in agreement in the external core region which described by

ΨAE
i (r) = ΨPS

i (r), r ≥ rcore. (2.24)

The logarithmic derivatives and their first energy derivative of real and pseudo wave

functions are also in agreement which denoted by[
d

dr
lnΨAE

i (r)

]
R

=

[
d

dr
lnΨPS

i (r)

]
R

, R ≤ rcore. (2.25)

Furthermore, the total charge inside of the core radius (R ≤ rcore) for each wave

function must be same which is due to norm conservation.∫ R

0

|ΨAE
i (r)|2dr =

∫ R

0

|ΨPS
i (r)|2dr. (2.26)

In the OpenMX code [25], KS wave functions Ψn are expanded by the linear

pseudo-atomic orbitals (LPAO) φi,α [26] which can be written as

Ψµ(r) =
α∑
i

cµ,i,αφi,α(r − ri), (2.27)

where α is the orbital index and i is the site index. Here φi,α is consist of radial wave

function Ri,p,l(r) and spherical harmonic wave function Yl,m(θ, φ) which is written

as

φi,α ≡ Ri,p,l(r)Yl,m(θ, φ). (2.28)

Ri,p,l(r) depends on the angular quantum number l, the site index i, and the multi-
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plicity index p while Yl,m(θ, φ) depends on the magnetic quantum number m and l.

Ri,p,l(r) is also defined as a primitive orbitals.

Ri,p,l(r) can be generated by some conditions. The atomic orbitals must com-

pletely vanish within a cutoff radius. It should be continued up to the third deriva-

tives around the cutoff radius so that matrix elements for the kinetic operator are

also continuous up to the first derivatives. A few parameters can be applied to gen-

erate as many as possible a set of atomic orbitals. The atomic core potential Vcore(r)

in the all-electron calculation can be modified in the generation of pseudopotential,

which is denoted by

Vcore(r) =


−Z

r
r ≤ r1∑3

0 bnr
n r1 < r ≤ rc

h rc < r

(2.29)

where b0, b1, b2, and b3 are constants, which is determined in the condition that the

value and the first derivative are continues at both r1 and rc.

2.3 Non-collinear Density Functional Theory

The non-collinear DFT methods is applied to investigate the effect of spin-orbit

interaction (SOI). In the non-collinear DFT, two components spinor wave functions

are expressed by

Ψν = |Ψα
ν 〉|α〉+ |Ψβ

ν 〉|β〉, (2.30)

where |Ψα
ν 〉 is a spatial function and |α〉 is a spin function. From this, it can be

defined as the density operator which can be expressed as

n̂ =
∑
ν

fν |Ψν〉〈Ψν | =
∑
ν

fν(|Ψα
ν 〉|α〉+ |Ψβ

ν 〉|β〉)(|Ψα
ν 〉|α〉+ |Ψβ

ν 〉|β〉), (2.31)

where fν is a step function which is defined as the Fermi distribution function on

the OpenMX code. From the Eq. (2.31), the non-collinear density electron in the

real space is denoted by

nσσ′ = 〈rσ|n̂|rσ′〉 =
∑
ν

fνΨ
σ
νΨσ′∗

ν , (2.32)

where σ and σ
′

(= (α, β)) are eigenfunction of position vector. Next, the up and

down densities at each point are calculated by diagonalizing non-collinear density

matrices which can be written as
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n′↑ 0

0 n′↓

 = UnU † = U

nαα nαβ

nβα nββ

U †, (2.33)

where n′↑ and n′↓ indicate the up-densities and down-densities, respectively. Here,

the U -matrix in Eq. (2.33) is introduced as a rotation operator D which is given by

D ≡ exp(−iσ̂i.ĥφ/2) (2.34)

where ĥ is a unit vector along a certain direction, φ is the rotational angle around

ĥ, and σ̂i is Pauli matrices which expressed as

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (2.35)

If the rotation is defined along the z-axis with Euler angle (θ, φ), D becomes

D(θ, φ) =

exp(−iφ
2
) cos( θ

2
) − exp(−iφ

2
) sin( θ

2
)

exp(iφ
2
) sin( θ

2
) exp(iφ

2
) cos( θ

2
)

 . (2.36)

According to Eq. (2.36), the U matrix can be obtained by the conjugate transposed

matrix of D which is denoted by

D(θ, φ) =

 exp(iφ
2
) cos( θ

2
) exp(−iφ

2
) sin( θ

2
)

− exp(iφ
2
) sin( θ

2
) exp(−iφ

2
) cos( θ

2
)

 . (2.37)

The total energy non-collinear functional can be obtained by using Eq.(2.30), Eq.(2.32),

and Eq.(2.33) which given by

Etotal =
∑
σ=α,β

∑
ν

fν〈Ψσ
ν |T̂ |Ψσ

ν 〉+
∑
σσ′

∫
wσσ′nσσ′ +

1

2

∫ ∫
n′(r)n′(r′)

|r − r′|
dνdν ′ + Exc.

(2.38)

The first and second term in the Eq. (2.38) indicate the kinetic energy and Coulomb

interaction energy between electron and core, respectively. Besides that, the third

and fourth terms in Eq. (2.38) represent Coulomb interaction energy between

electron-electron and the exchange-correlation energy, respectively. The Eq. (2.38)

also can be simplified which given by

Etotal = Eband −
1

2

∫
n′VHdν −

∫
Tr(Vxcn) + Exc (2.39)

where Vxc is a non-collinear exchange-correlation potential and VH =
∫

dr
|r−r′|dν.

Now, we introduce a new functional F which relates to the orthogonality of the
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spinor wave functions expressed by

F = Etotal +
∑
σσ′

εσσ′ (δσσ′ − 〈Ψν |Ψ
′

ν). (2.40)

The variational of F is related with the spatial wave function Ψσ
ν which is given by

δF

δΨσ,∗
u

= T̂Ψσ
u +

∑
σ′

wσσ′Ψσ
′

u + VHΨσ
u +

∑
σ′

V σσ
′

xc Ψσ
′

u −
∑
ν

εuνΨ
σ
ν . (2.41)

with

V σσ
′

xc =
δExc
δnσσ′

. (2.42)

Here the functional of F will be minimum, if its variation with respect to the Ψσ
ν

vanishes. By using a unitary transformation of Ψσ
ν to diagonalize εuν , the non-

collinear KS equation can be found as followsT̂ + wαα + VH + V αα
xc wαβ + V αβ

xc

wβα + V βα
xc T̂ + wββ + VH + V ββ

xc

(Ψα
u

Ψβ
u

)
= εu

(
Ψα
u

Ψβ
u

)
. (2.43)

In the Eq.(2.43), It is shown that there is the interaction between α and β spin

components which coupled each other in the off-diagonal part. In this part, there

are Vxc and the other new contribution w.

2.4 Maximally Localized Wannier Functions

Generally, the electronic ground states can be expressed in terms of Bloch orbitals by

labeled their position in reciprocal space and their energy band. These Bloch orbitals

are localized in energy in the line that there are eigenstates to the Hamiltonian. The

Bloch orbitals have an indeterminacy regarding both the overall phase and the choice

of gauge, meaning that any arbitrary unitary transformation of the Bloch orbitals

will yield the same physics. Therefore, the Wannier functions can be expressed

as a superposition of Bloch orbitals which calculated through a series of unitary

transformations [27].

Wannier functions were found to be useful for a starting point in semi-classical

electron dynamics calculation. These functions also can be applied for evaluating

tight-binding Hamiltonians as well as providing the chemical bonding of the crystals.

These Wannier functions are strongly non-unique due to the indeterminacy of the

Bloch orbitals and the natural choice is to choose the Wannier functions that are

maximally localized. In order to find the maximally localized Wannier function, the
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Wannier function in which the localization functional reaches its global minimum is

required.

There are several steps in the maximally Wannier functions calculation algo-

rithm. First, the Bloch orbitals can be expressed as

|Ψnk〉 = |unk〉 exp(ik.r), (2.44)

where |unk〉 has the same periodicity as the electrical potential, r is the location in

real space, k is the wave vector in the Brillouin zone, n is the band number. From

this, the smooth trial function |gn〉 is defined. Then, the new Bloch orbital can be

denoted by

|φnk〉 =
J∑

m=1

|Ψmk〉〈Ψmk|gn〉. (2.45)

The Eq.(2.45) can be normalized into smooth orthonormal Bloch orbital which is

written as

|φ̃nk〉 =
J∑

m=1

|Ψmk〉 ∗ 〈Ψmk|Ψnk〉
− 1

2
V . (2.46)

From this, the new |unk〉 is extracted which given by

|unk〉 = |Ψ̃nk〉 exp(−ik.r). (2.47)

Therefore, the overlap matrix can be described by

Mk,b
mn = 〈unk|unk+b〉. (2.48)

The operators Rk,b
mn and T k,bmn are defined by

Rk,b
mn = Mk,b

mnM
k,b
mn∗ (2.49)

T k,bmn =
Mmnk, b

Mk,b
nn

∗ (Im(ln(Mk,b
mn))− b.(

∑
b

wbb ∗ Im(ln(Mk,b
nn )))). (2.50)

The crystal structure is then divided into shells at each point in k-space and the

vector bα is defined as the vector going between the central k-point and a neighbor

in shell α. A number of shells are then chosen so that the condition∑
b

wbbαbβ = δαβ (2.51)

can be satisfied for some weight wb. If the crystal is a cubic lattice, then only one

shell requires to be used and wb = 3/Zb2 where Z is the number of neighbors in the
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shell. A starting point for the unitary transformation steps is then defined by

Uk
mn = δmn. (2.52)

A step for the unitary transformation is then calculated which denoted by

∆W =
α∑
bwb

∑
b

wb(A(R(k,b))− S(T (k,b))), (2.53)

for some constant α. Here, A and S are defined as super operators. The unitary

transformation is then updated using this step.

Uk
mn → Uk

mne
∆W . (2.54)

After this step, the overlap matrix is updated by using the unitary transformation

which expressed as

M (k,b)
mn → U (k)†

mn M
(k,b)
mn U (k)

mn. (2.55)

A new step can now be calculated using the new overlap. This is iterated until

convergence has been obtained. The overlap does then correspond to the maximally

localized Wannier function and the Wannier function can be calculated using

|0n〉 =
V

2π

∫
BZ

|unk〉eik.rdk (2.56)

2.5 Octahedral Crystal Field Theory and Super

Exchange Interaction

The breaking of orbital degeneracy in transition metal complexes due to the presence

of ligands can be explained by crystal field theory. Ligands are ions or neutral

molecules that bond to a central metal atom or ion. Ligands have at least one donor

atom with an electron pair used to form covalent bonds with the central atom. The

strength of the metal-ligand bonds can be evaluated qualitatively by crystal field

theory. Based on the strength of the metal-ligand bonds, the energy of the system

can be adjusted. This may also lead to a change in magnetic properties as well as

color. This theory was developed by Hans Bethe and John Hasbrouc van Vleck [28].

As a simplification, it is assumed that the ions are simple point charges. The

approach taken uses classical potential energy equations that take into account the

attractive and repulsive interactions between charged particles which are known as

Coulomb’s Law interactions. For transition metal cations, the shape and occupation

of its d -orbitals become important for explaining the bond energy and both magnetic

and electronic properties of the transition metal compound.
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Figure 2.2: The different of (a) single transition metal orbital energy and (b) when
ligands approach the transition metal ion which forming octahedral structure

As we know that a single transition metal ion has the same energy in the five

d -orbitals as shown in Fig. 2.2 (a) . However, when ligands hybridize the metal

ion, it will be affected the condition of the d -orbital electron and it will be based

on the geometric structure of the molecule. Since ligands approach from different

directions, not all d -orbitals interact directly. This condition will be caused the

splitting energy between d -orbitals due to Coulomb interaction.

For example, consider a molecule with octahedral geometry as shown in Fig.

2.2(b). Ligands bond the metal ion along the x, y, and z axes. Therefore, the

electrons in the dz2 and dx2−y2 orbitals experience greater repulsion due to directly

interacting with ligands orbitals. It also requires more energy to have an electron

in these orbitals than it would put an electron in one of the other orbitals. This

causes a splitting in the energy levels of the d -orbitals. This is known as crystal

field splitting. For octahedral complexes, crystal field splitting is denoted by J. The

energies of the dz2 and dx2−y2 orbitals increase due to greater interactions with the

ligands. Beside of that, because dxy, dxz, and dyz orbitals are indirectly connected

with the ligands orbital, their energies are more stable.

According to the Aufbau principle, electrons are filled from lower to higher energy

orbitals. Following Hund’s rule, electrons are filled in order to have the highest

number of unpaired electrons. For example, if one had a d3, there will be three

unpaired electrons. If the electron is added, there is some explanation of how to

fill a higher energy orbital (dz2 or dx2−y2) or pair with an electron in the dxy, dxz,

or dyz orbitals. This pairing of the electrons requires energy. If the pairing energy

is less than the crystal field splitting energy, J, then the next electron will occupy

into the dxy, dxz, or dyz orbitals due to stability. This condition allows for the least
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amount of unpaired electrons and is known as a low spin state. If the pairing energy

is greater than J, then the next electron will go into the dz2 or dx2−y2 orbitals as an

unpaired electron. This situation allows for the most number of unpaired electrons,

and it is known as the high spin state. Furthermore, ligands that cause a transition

metal to have a small crystal field splitting, which leads to high spin, are called

weak-field ligands. Ligands that produce a large crystal field splitting, which leads

to low spin, are called strong field ligands.

The splitting energy between the d-orbitals of transition metal affects the mag-

netic properties of the molecular structures. This phenomenon can be explained by

evaluating the superexchange interaction between the transition metal atoms with

a ligand atom. Normally, exchange interactions are very short-ranged, confined to

electrons in orbitals on the intra-atomic exchange or nearest neighbor atoms but

longer-ranged interactions can occur via intermediary atoms and this is termed

superexchange. According to that, it can be defined that the superexchange inter-

action is the interaction of two cations over an intermediate anion. The process of

superexchange is a combination of direct exchange and electron transfer. One of the

methods which can describe this is Goodenough-Kanamori-Anderson (GKA) rules.

GKA rules are a series of semiempirical rules developed by Goodenough and

Kanamori as a refinement to the original model developed by Anderson [31, 30, 29].

This rule is started when two orbitals overlap, both direct exchange and electron

transfer can occur. However, if the only direct exchange is generated, it means that

there is no overlap between the two orbitals. Therefore, the greater the overlapping

wave function, the greater the interaction strength. According to the Pauli exclusion

principle, two magnetic cation atoms with half-occupied orbitals which are connected

with the non-magnetic anion in the middle, the superexchange interaction will be

strongly antiferromagnetic. Beside of that, while the coupling between a cation with

a filled orbital and one with a half-filled orbital will be ferromagnetic. The superex-

change interaction also depends on the angle between cation-anion-cation atoms. If

the angle of cation-anion-cation is 90◦, the interaction will be ferromagnetic. If the

angle of cation-anion-cation is 90◦, the interaction will be ferromagnetic. Generally,

determining the antiferromagnetic and ferromagnetic ground states are generated

by various situations as following: when direct exchange and superexchange mecha-

nisms compete with one another; when the cation-anion-cation bond angle deviates

away from 180◦; when the electron occupancy of the orbitals is non-static, or dy-

namical; and when spin-orbit coupling becomes important.
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2.6 Thermoelectric Properties Based Anomalous

Nernst Effect

Anomalous Nernst effect (ANE) is correlated with anomalous Hall effect(AHE).

AHE can occur when there is a combination of magnetic polarization and spin-

orbit interaction. This combination will generate Hall voltage although there is no

external magnetic field. AHE involves concepts based on topology and geometry.

AHE also can be quantized. It acquires quantized value proportional to integer

multiples of the conductance quantum which has unit e2/h. The integer itself is

equal to the Chern number which originated from topological properties of material

band structures. Quantum AHE is explored in systems which are called Chern

insulators.

The intrinsic magnetism contributes to electron group velocity (anomalous veloc-

ity). The sum of the anomalous velocity overall occupied band states can be nonzero,

involving a contribution to the (anomalous) Hall conductivity σxy. In other words,

the band structure is contributed intrinsically to the σxy. According to the moder-

ately dirty regime theory [32], when the intrinsic contribution is dominant, σxy is

independent of electrical conductivity. Electrical conductivity itself can be written

as

σxx = e2τ
∑
n

∫
vnx(k)2(− ∂f

∂εnk
)dk. (2.57)

In such condition, AHC can be understood in terms of the geometric concepts of

the Berry phase and Berry curvature in momentum space which is expressed as

σxy = −e
2

h̄

∑
n

∫
Ωn
z (k)f(εnk)dk, (2.58)

with Hall ratio is defined by

θH = σxy/σxx, (2.59)

where e, τ , vnx , f , εnk, h̄, Ωn
z (k), T , kB and µ are the elementary charge, relaxation

time, group velocity of electrons, Fermi-Dirac distribution function, eigen energy,

reduced Planck constant, Berry curvature, temperature, Boltzmann’s constant, and

chemical potential, respectively. The n is the band index and k is the wave vector.

In 2D systems, the intrinsic AHE is quantized in units of e2/h at temperature

T= 0 when the Fermi level lies between the Bloch state bands. The role of band

anti-crossings near the Fermi energy has been identified using first-principles Berry

curvature calculations as a mechanism that can lead to a large intrinsic σxy.
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The band decomposition of Berry curvature can be estimated by

Ωn(k) ≡ i 〈∇kunk | × | ∇kunk〉 . (2.60)

Calculating Berry curvature for each band can be done by using Berry connection

defined on discretized Brillouin zone [33]. First, the gauge transformation, Berry

curvature Ωn(k) and Berry connection An are defined by

U∆k = det
〈
umk | ulk+∆k

〉
(2.61)

An = −i 〈unk | ∂k | unk〉 = Im logU∆k (2.62)

Ωn(k) = ∇×An = A∆ky(k + ∆kx)− A∆ky(k)− (A∆kx(k + ∆ky)

− A∆kx(k)) + 2πn(k) (2.63)

where uk is normalization wave function and n(k) is lattice Chern number. For the

Fermi surface problem, it can be evaluated by fixing the Fermi energy and check the

number of eigenvalues smaller than EF in the gauge transformation U∆k which can

be denoted by

U∆k = det
〈
umk | ulk+∆k

〉
(m, l ≤ n) (2.64)

where n is the maximum number which satisfying εkn ≤ EF .

Anomalous Nernst coefficient (ANC) can be determined from the derivative of

σxy as a function of energy. This derivative is called the thermoelectric conductivity

tensors which are expressed as

αij =
kB
e

∫
σij(ε) |T=0

ε− µ
T

(−∂f
∂ε

)dε (2.65)

. From Eq. (2.65), the pure Seebeck and Nernst coefficient can be obtained which

can be written as

S0 =
αxx
σxx

, N0 =
αxy
σxx

, (2.66)

.

The thermoelectric coefficient can be obtained based on the linear response of

the charge current, which is given as j = σijE + αij(−∇T ) where E is the electric

field, and ∇T is the temperature gradient. The Seebeck and Nernst coefficients are

related to the conductivity tensor, and these relationships can be represented as

shown below:

S =
S0 + θHN0

1 + θ2
H

, N =
N0 − θHS0

1 + θ2
H

. (2.67)
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2.7 Computational Scheme

The density functional theory calculation is applied by OpenMX code [25]. The

generalized gradient approximation with the Perdew-Burke-Ernzerhof functional is

used for treating the exchange-correlation potential [34]. The norm-conserving pseu-

dopotentials and pseudo-atomic localized basis functions are employed. The wave

functions are extended by using a linear combination of multiple pseudoatomic or-

bitals [26]. We specify the pseudoatomic orbitals as Fe6.0S-s2p3d3f1 and Cl7.0-

s3p3d2 where 6.0 and 7.0 are the cutoff radius of Fe and Cl atom in the unit Bohr

respectively, S is soft pseudopotential, and radial function multiplicity of each an-

gular momentum component is defined by the number after s, p, d, f in the pseu-

doatomic orbitals format. We set the charge density cutoff energy at 500.0 Rydbergs

and (20,20,1) k-point mesh for the self-consistent field calculations (SCFs). More-

over, the spin-orbit interaction (SOI) was included [35] for the noncollinear density

functional calculations. The convergence during k-point sampling and the cut-off

energies are checked. We optimized all the atomic positions and lattice parameters

of the 1T-FeCl2 monolayer using the eigenvector-following quasi-Newton algorithm

until all the forces were smaller than 10−6 Hartrees/Bohr reached [36]. We also

determined the lattice constant based on the total energy minimum.

The Wannier90 code was applied to construct maximally localized Wannier func-

tions (MLWFs) based on the results of the DFT calculations for calculating the ther-

moelectric properties [37]. The 22 Wannier bands are constructed within range of

-15 eV to 15 eV for outer window energy and -4 eV to 4 eV for inner window energy.

The transport properties based on the MLWFs is computed by using the semiclassi-

cal Boltzmann transport theory [38] within constant relaxation time approximation,

τ=10 fs, and k-point mesh (300,300,1). This method was used successfully to study

the thermoelectric properties of skyrmion crystal and half-Heusler compounds [39,

7, 14].
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Chapter 3

Magnetic and Electronic

Properties of 1T-FeCl2 Monolayer

In this chapter, we explore some properties of a 1T-FeCl2 monolayer. In the atomic

structure section, we compare between bulk and monolayer structure. we also com-

pare our calculation with other references to make sure our calculation on the right

track. In the magnetic properties section, the magnetic anisotropy energy, superex-

change interaction, and Curie temperature are explored. These properties are es-

sential to determine the magnetism in the monolayer system. Next section, the

electronic structures are described. we pointed out the relation between band struc-

ture and density of states with the octahedral crystal field which will affect the

thermoelectric properties of 1T-FeCl2 monolayer.

3.1 Atomic Structure of 1T-FeCl2 Monolayer

The side view of the 1T-FeCl2 monolayer structure can be seen in Fig. 3.1(a) while

Fig. 3.1(b) shows the top view of the 1T-FeCl2 monolayer. Both of the Fig. 3.1(a)

and Fig. 3.1(b) show that Fe atom is encircled by six Cl atoms. Those figures also

show the hexagonal lattice as the primitive cell of the 1T-FeCl2 monolayer, wherein

the magnitude of the lattice constant (a) is equal to that of b with the vacuum region

c = 17.26 Å. The a of the 1T-FeCl2 monolayer was 3.48 Å. The vertical distance

between the Cl atoms (dCl−Cl) is 2.78 Åwhile the distance between the Fe and Cl

atoms (dFe−Cl) is 2.44 Å. The angle of Fe-Cl-Fe (θ) is 89.90◦. These calculated

parameters of monolayer were in good agreement with previous theoretical studies

on FeCl2[41, 42, 43, 40]. The calculated lattice constant for monolayer FeCl2 were

similar value to those of bulk FeCl2, a=3.6 Å[45, 44].

According to its atomic structure, the 1T-FeCl2 monolayer possesses the dis-

torted octahedral crystal field. Four Fe atoms are positioned in a plane, the Cl
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θ

dCl-Cl

(a) (b)
dFe-Cl

Figure 3.1: (a) Side and (b) top views of 1T-FeCl2 monolayer structure. Brown
and green spheres indicate Fe and Cl atoms, respectively. Structural parameters
of 1T-FeCl2 monolayer, namely, angle between Fe-Cl-Fe atoms, vertical distance of
Cl-Cl atoms, and distance between Fe-Cl atom are represented by θ, dCl−Cl, dFe−Cl,
respectively.

atom is in a symmetrical position just above or below. All spheres can be consid-

ered to be hardly filled and touching each other. The six spheres define a regular

octahedron, in its interior, there is a defined space for an interstitial atom, bordered

by six spheres. This structure will affect the splitting energy which essential in

determining the magnetic and electronic properties.

3.2 Magnetic Properties

The magnetic properties of 1T-FeCl2 monolayer can be appeared due to magnetic

anisotropy energy (MAE). In this research, we calculate MAE based on the different

energy between the in-plane and out of plane magnetization of 1T-FeCl2 monolayer.

If the different energy is positive, the ground states are out of plane magnetization.

If it is negative, the magnetization will be in-plane. The magnitude from our cal-

culation is 0.05 meV. According to that, MAE of 1T-FeCl2 monolayer is positive

which is out of plane magnetization. The MAE magnitude is originated dominantly

from the d-orbital of Fe atom. This result has in good agreement with other results

[46].

The next step is to identify the magnetic ordering in 1T-FeCl2 monolayer. The

2 × 2 supercell is constructed and the spin ordering has been set to either ferromag-

netic (FM) or antiferromagnetic (AFM) as shown in Fig. 3.2(a) and Fig. 3.2(b). We

also try another AFM mode but the result remains the same. The exchange energy

is calculated based on the different total energy of AFM and FM mode which can be

written EEX = EAFM − EFM . Positive magnitude indicates that the ground state
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(a) (b)

Figure 3.2: Configuration mode for (a) FM and (b) AFM spin arrangements

system is FM. In our calculation, we obtain that the 1T-FeCl2 monolayer ground

states have FM spin ordering. The FM states of 1T-FeCl2 also can be explained in

Goodenough-Kramer-Anderson (GKA) rules [29].

The magnetic properties of 1T-FeCl2 monolayer can be determined by the com-

petition between the direct exchange interaction of two Fe atoms and the superex-

change interaction of Fe-Cl-Fe atoms. The Fe-Cl-Fe superexchange interaction sign

can be investigated from the bond angle θ of Fe-Cl-Fe and d orbital configuration.

Because θ 1T-FeCl2 monolayer is 90◦, the d orbital of Fe atoms will overlap p or-

bital of Cl atoms. According to GKA rules, in such bond angles, the superexchange

interaction between Fe atoms is deduced only from a potential exchange which is

always FM. Beside of that, due to nearly filled d orbital of Fe atoms, the AFM direct

exchange interaction between Fe atoms is weakened. It gives rise FM ground states

in the 1T-FeCl2 monolayer.

The transition between paramagnetic (PM) to FM depends on the Curie tem-

perature. There are many methods for calculating the Curie temperature. In our

case, we primary use mean-field theory (MFT) [42]. We use the Heisenberg model

in which the Hamiltonian can be written as

Ĥ = −
j∑
i

Jm̂i.m̂j. (3.1)

Where J is the Heisenberg exchange energy and m̂i,j is the magnetic moment of
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each site in µB. The formulation of J in our system is

J =
EEX
12S2

Fe

, (3.2)

where SFe is the high spin magnitude of Fe atoms in the octahedral configuration

which has magnitude 2. From that, the Curie temperature in the MFT approxima-

tion can be calculated by

Tc =
3J

2kB
, (3.3)

where kB is Boltzmann constant. We summarized the calculation result in Table

3.1. Most of our calculation parameter results show in good agreement with earlier

studies of 1T-FeCl2 monolayer. However, Tc is slightly different in using Eq. 3.2

although in the same order. This condition is occurred due to the different methods.

We use the MFT method while Kulish et al use the Monte Carlo simulation method.

The magnitude of the Curie temperature is relatively small. However, the Curie

temperature can be increased by strain and charge doping [42].

Table 3.1: The atomic and magnetic parameters of 1T-FeCl2 monolayer which con-
sist of lattice constant a, the angle of Fe-Cl-Fe atoms θ, magnetic anisotropy energy
(MAE) EMAE, magnetic moment m, the different energy between FM and AFM
EEX , exchange splitting energy J , and Curie temperature Tc

Parameters Our Calculation Earlier Studies References

a(Å) 3.48 3.47 [42]

θ(◦) 91.06 88.80 [46]

EMAE 0.05 0.07 [46]

m(µB) 4 4 [42, 41, 46]

EEX 0.371 0.372 [42]

J(meV) 7.73 7.75 [42]

Tc(K) 134 109 [41]

3.3 Electronic Properties

The electronic band structure of 1T-FeCl2 monolayer in the FM configuration is

shown in the Figure 3.3 (a) and 3.3 (b). It can be seen that the minority states

cross the Fermi level, while the majority states have a large gap. It indicates that

the ground states of the 1T-FeCl2 monolayer are half-metallic. These results are in

fairly good agreement with those of earlier studies [41, 46].

The bonding mechanism can be explained in the density of states distribution as

shown in Fig. 3.3 (c). The distinctive feature of 1T-FeCl2 monolayer is a significant
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(a) (b)

(c)

Minority

Majority

Minority

Majority

Figure 3.3: The electronic structure of the ferromagnetic 1T-FeCl2 monolayer, which
consists of spin polarized (a) band structure and (b) density of states where red
and black lines indicate the majority and minority states, respectively, and (c) the
projected density of states (PDOS)

charge transfer. The bonding has a profound ionic character. Cl atoms have a

strong affinity for acquiring an extra electron to fill its outer shell. The valence

band is formed by Cl atoms 2p bands, while the bottom of the conduction band

mainly originates from Fe atom 4s and 3d states. The Fe atom transfers their 4s

and 3d electrons to Cl atoms and have a +2 oxidation state; therefore, Fe 4s states

are completely unoccupied while 3d orbitals are partly occupied. The spin polarized

3d states of Fe atoms are located within the bandgap. We can observe significant

hybridization between Fe atom 3d and Cl atom 2p orbitals.

Most of the states near the Fermi level of the 1T-FeCl2 monolayer were composed

by the 2p orbitals of the Cl atoms and the 3d orbital of the Fe atom, as shown in

Fig. 3.3 (c). These states are investigated as anti-bonding states of Fe 3d and Cl

2p. According to the ligand field theory [47], the Cl atoms are weak ligands from

the spectroscopic series, therefore 3d Fe atoms in the octahedral field are expected

to prefer high spin states. The octahedral geometry of Cl atoms around a Fe atom
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leads to the splitting of the energy between the d orbitals. This is identified by

electron-electron repulsion between the Fe and Cl orbitals. The eg (dx2−y2 and

d3z2−r2) orbitals are directly connected to six Cl atoms so that they have higher

Coulombic energy while t2g (dxy, dxz, dyz) orbitals are relatively stable because its

position lies between the Cl atoms. The d orbital states, in particular, t2g, will affect

the magnitudes of the thermoelectric coefficients of the 1T-FeCl2 monolayer.
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Thermoelectric Properties of

1T-FeCl2 Monolayer

In this chapter, we explore the thermoelectric properties based on the anomalous

Nernst effect (ANE) of 1T-FeCl2 monolayer. Anomalous Nernst coefficient(ANC) is

related to the pure Seebeck and pure Nernst coefficient. ANC also originated from

anomalous Hall conductivity (AHC). The bands near the Fermi level determine the

AHC as an intrinsic contribution.

4.1 Anomalous Nernst Coeffcient

Table 4.1 shows the thermoelectric properties of the 1T-FeCl2 monolayer without

carrier doping. The main component of N consists of the pure ANC (N 0), the pure

Seebeck coefficient (S 0), the Hall angle (θH). S 0 contributes to N around 0.2% each.

However, since the sign of N 0 and θHS 0 are same at both 50 K and 100 K, N 0, and

θHS 0 weaken each other. If the chemical potential µ is tuned by carrier doping, N

can be increased as can be viewed from the rigid band approximation (RBA) in Fig.

4.1.

Fig. 4.1 describes the chemical potential dependences of the Nernst, N, coeffi-

cients of the 1T-FeCl2 monolayer at 50 K and 100 K . According to it, the value of

N is small at µ = 0 at both 50 K and 100 K. Beside of that, a large value N occurs

at approximately µ = 0.16 eV, µ = 0.31 eV, and µ = 0.35 eV which denoted by

Table 4.1: Thermoelectric properties of 1T-FeCl2 monolayer without carrier doping
calculated by constant relaxation time, τ = 10fs.

T(K) S0(µV/K) N0(µV/K) θH [x10−2] N(µV/K)

50 0.46 0.24 0.19 0.24

100 5.51 0.49 0.21 0.48
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1

2

3

Figure 4.1: Chemical potential and temperature dependence of anomalous Nernst
coefficient (ANC), N , at 50 K and 100 K on 1T-FeCl2 monolayer.

Table 4.2: The peaks of N at chemical potential µ in the Figure 4.1a which is
contributed by N0, θH , and S0 at 100 K.

Peak µ N0(µV/K) θH S0(µV/K) N(µV/K)

1 0.16 0.62 -0.02 14.2 1.35

2 0.31 -3.96 -0.02 77.2 -2.32

3 0.35 8.13 -0.03 -44.6 6.65

peak 1, 2, and 3, respectively. By using self-consistent field carrier doping methods,

the RBA calculation is quite well for 1T-FeCl2.

The origin of peak 1, 2, and 3 is composed by N0 and θH S0 in the Fig. 4.2(a)

and 4.2(b) respectively. In the peak 1, N0 and θH S0 have different sig. According

to the Eq. (2.67), N0 and θH S0 will strengthen each other. In Table 4.2, it is

demonstrated that S0 gives 2 % contribution for N which produces N value more

than 1 µV/K. The different condition is occurred in peak 2 and peak 3. According

to Fig. 4.2(a) and 4.2(b), N0 and θH S0 have same sign which indicate that those

variable are weaken each other. However, although the N0 is decreased, the N is

still large as presented in the Table 4.2.

4.2 Anomalous Hall Conductivity

The chemical potential dependence of the AHC (σxy) and the longitudinal electri-

cal conductivity (σxx) with τ = 10 fs is exhibited in Fig. 4.3 for elucidating the
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Figure 4.2: Chemical potential and temperature dependence of (a) pure Nernst
coefficient, N0, and (b) pure Seebeck coefficient, S0, at 50 K and 100 K on 1T-FeCl2
monolayer.

Figure 4.3: Chemical potential and temperature dependence of (a) the AHC (σxy)
and the (b) longitudinal electrical conductivity (σxx) with τ = 10 fs at 0 K.

properties of coefficients N. σxx as a function of chemical potential influences the

magnitude and sign of S 0. As shown in Fig. 4.3(a), σxx shows a positive slope

at energy values lower than ε = -0.2 eV, which make S 0 demostrating a negative

value. This is also occurred in the case for N 0 in Fig. 4.3(b). The magnitude and

sign of N 0 rely on σxy as a function of energy. If there is a slope at a energy in

σxy(ε), the N 0 will large around the energy. As stated from Mott’s formula, which

is αij = − (πkB)2

3e

∂σij(ε)

∂ε
T |ε=µ, the N 0 is affected by slope of σxy. The slope of σxy

on µ = -0.3 eV to µ = -0.1 eV, did not contributes to N 0 because σxx is large at

this point. However, the slope of σxy around µ = -0.1 eV to µ = -0.18 eV gives
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large contribution for N 0. Moreover, the large of N around µ = 0.3 eV and µ

= 0.35 eV which denoted by peak 2 and 3 as presented on the Figure 4.1 is not

mainly originated from σxy. It is contributed by the σxx which approaching to zero

magnitude.

Figure 4.4: Chemical potential dependence of αxy, and σxyS0 at 100 K.

Chemical potential dependence of αxy and σxy S0 at 100 K in the Fig. 4.4

is demonstrated for better understanding the origin of large N in Fig. 4.1. The

intrinsic of thermoelectric properties which independent from relaxation time τ is

also explained in Fig. 4.4 and it is also accessible in the experiment. It is possible to

compare experimental results with theoretical results for the αxy without assuming

relaxation time τ [48]. From the Eq. (2.67), the ANC can be expressed as N =
αxy−σxyS0

γ
where γ = (1 + θ2

H)σxx. According to the Fig. 4.4, the different sign of

αxy and σxy S0 give contribution to peak 1 which shown in Fig. 4.1(a). In the αxy

and σxy S0 at chemical potential, peak 2 and peak 3 have same sign and almost

same magnitude. Corresponding to this condition, αxy and σxy S0 are reduced each

other which will cause that N should be approached zero at these chemical potential.

However, because of band gap around chemical potential in those peaks, σxx becomes

small which lead to generate peak 2 and peak 3 in Fig. 4.1. In addition, αxy is tend

to stable between µ = 0.04 eV to µ = 0.16 eV. It is generated from a large slope of

σxy in Fig. 4.1(b). This result match with Mott’s relation. It also illustrated that

the large N can be achieved without the change of αxy. Beside of that, although

their electronic structures are different, αxy of 1T-FeCl2 monolayer is almost same

with Fe3GeTe2 (FGT)[49]. FGT has thermoelectric conductivity αxy = 0.3 A/mK

and large Hall ratio θH =0.07 while as shown the Fig.4.2(b) and Fig.4.4, 1T-FeCl2
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monolayer possess θH = 0.072 and αxy = 0.35 A/mK.

4.3 Band Contribution to Anomalous Hall Con-

ductivity

Figure 4.5: (a) Band structure with SOI, band decomposition in the chemical po-
tential dependence of (b) σxy and (c) αxy of 1T-FeCl2 monolayer. Red, blue, and
green lines indicate the band contribution near Fermi level.

Next, we will investigate the origin of σxy peaks which lead to large N. Fig. 4.5(a)

demonstrates the band structure with SOI. The σxy sign change can be associated

with the band filling near the Fermi level. In Fig. 4.5(a), the red band is about

1/4 filling, the blue band is about 3/4 filling and the green band is no filling due to

lies in the conduction band. If the charge doping is given, it will alter the charge

filling near Fermi level between the red and blue band and the Fermi level will be

shifted. The band filling effect on σxy is presented in Fig. 4.5(b). The red band has

a positive sign of σxy and the blue band has a negative sign of σxy while the green

band has zero magnitudes which indicate that the band does not give a contribution

to σxy near Fermi level. The total σxy which marked by purple lines is contributed
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by the sum of the red and blues band. The αxy is displayed in Fig. 4.5(c). The αxy

which is described by the purple line in Fig. 4.1d near Fermi level is generated by

the slope of the red and blue band at the chemical potential. Beside of that, because

there is no slope, the green band does not give any contribution to αxy. According

to Fig. Fig. 4.5(a), it is found that the peak of σxy occurred at µ ∼ 0.2 eV. There

is possibility to obtain large Berry curvature in this chemical potential based on Eq.

(2.58).

The origin of red and blue band contribution also can be elucidated in the Berry

curvature as presented in Fig. 4.5. The detailed interpretation of Berry curvature

which is associated with the blue and red band is demonstrated in Fig. 4.5(a).

Berry curvatures in the Γ-K line have a value which is composed of the red and

blues band. These magnitudes are generated because mirror symmetry is broken in

Γ-K line that resulting unusual SOI which called Ising SOI [52, 50, 51]. The origin

of Ising SOI comes from d -orbitals of a transition metal which rising large Berry

curvature in Γ-K line. However, Berry curvatures of the blue and red bands on the

Γ-K line around Γ-point cancel each other while it strengthens around the K-point.

The sign difference of the Berry curvature also affects σxy. The blue band leads to

σxy exhibiting a negative peak while the red band generates a positive peak of σxy.

Beside of that, the large summation of Berry curvature is exposed around K-point

in the Brillouin zone at µ ∼ 0.2 eV in Fig. 4.5(b). These facts indicate that the σxy

origin can be attributed to the Berry curvature around K-point mentioned above.

Figure 4.6: The chemical potential dependence of (a) Berry curvature summation
at µ ∼ 0.2 eV, and (b) Berry curvature from band decomposition of 1T-FeCl2
monolayer. Red, blue, and green lines indicate the band contribution near Fermi
level.
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Conclusion

5.1 Summary

The density functional calculations were performed for 1T-FeCl2 monolayer. The

atomic structure of 1T-FeCl2 monolayer is formed by a hexagonal lattice primitive

cell. Because Fe atom lies in the plane and its position above and below is sur-

rounded by Cl atoms, the distorted octahedral crystal field is constructed. The

octahedral crystal field affects the magnetic and electronic properties of a 1T-FeCl2

monolayer. In the magnetic case, the ferromagnetic becomes ground states of 1T-

FeCl2 monolayer because the angle between Fe-Cl-Fe atoms is 90 ◦ which gives the

ferromagnetic superexchange interaction dominant compared with antiferromagnetic

direct exchange interaction. In the electronic properties, the half-metal character-

istics are obtained because there is large splitting in the d orbital of Fe atom as

consequences of Coloumb interaction with p orbital of Cl atoms.

There are two origins of large anomalous Nernst coefficient (ANC) which can be

reached in the 1T-FeCl22 monolayer based on the rigid band approximation (RBA).

First, the ANC is reinforced by the pure Nernst and Seebeck coefficient. In this case,

the slope of anomalous Hall conductivity gives a significant contribution to ANC.

Second, the large ANC comes from the near-zero electrical conductivity although

the pure Nernst and Seebeck coefficient are weakened each other. The maximum

magnitude of ANC has a value as high as 6.65 µV/K for chemical potentials of

0.33 eV to 0.36 eV based on rigid band approximation (RBA). The high value of

the ANC can be attributed to the large Berry curvature, which is induced by the

bands around the K-point of the Brillouin zone of the 1T-FeCl2 monolayer. These

results suggest that the ferromagnetic half-metallic 1T-FeCl2 monolayer possesses

high ANC magnitudes which can potentially be applied in thermoelectric devices.
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Table 5.1: The 2D magnetic materials which experimentally discovered

2D Magnetic Material References

Fe3GeTe2 (FGT) [54]

Cr2Ge2Te6 (CGT) [17]

CrI3 [16]

VSe2 [55]

5.2 Future Scope

The anomalous Nernst effect of 1T-FeCl2 monolayer has not experimentally explored

yet although its layered structures have been recently discovered [53]. In the density

functional calculation, several cases can be evaluated and challenged. The chal-

lenge in the 1T-FeCl2 is the vacuum region which in the calculation, it can affect

the thermoelectric conductivity tensors as same as Chern number. It is required

some explanation of how to choose the vacuum region in the slab calculation which

matches the experimental case. Second, the relaxation time calculation is required

for a better explanation of anomalous Nernst coefficient. In the magnetic material

cases, the magnon and electron interaction should be included in the relaxation time

calculation. Beside of that, the RBA calculation can be proved with charge dop-

ing self-consistent field with using supercell size. It also can be cleared about the

required charge doping concentration.

Another 2D magnetic material that has been found experimentally can poten-

tially possess the large anomalous Nernst effect which can be seen in Table 5.1. The

anomalous Nernst coefficient calculation of those materials will be performed in the

future. In the FGT case, the anomalous Nernst effect has been discovered. It is

obtained that the αxy = 0.3 A/mk. However, we believe that αxy depends on the

vacuum region (sample thickness). So, the layer dependent calculation in the 2D

magnetic material will be important to investigate. Furthermore, the CGT has a

high Seebeck coefficient [56]. This large magnitude has the possibility to be coupled

with a pure Nernst coefficient which affects the large anomalous Nernst coefficient.

This advantage also can be occurred in the CrI3 due to the same insulator charac-

teristics. Lastly, the VSe2 can be the candidate for thermoelectric based anomalous

Nernst effect because its Curie temperature exceeds the room temperature. In other

words, the study of anomalous Nernst effect of VSe2 monolayer is clearly visible in

the experiment.

43



Bibliography

[1] Yuya Sakuraba. “Potential of thermoelectric power generation using anoma-

lous Nernst effect in magnetic materials”. In: Scr. Mater. 111 (2016), pp. 29–

32.

[2] TC Harman and JM Honig. “Theory of galvano-thermomagnetic energy con-

version devices. II. Refrigerators and heat pumps”. In: J. Appl. Phys. 33

(1962), pp. 3188–3194.

[3] Shinji Isogami, Koki Takanashi, and Masaki Mizuguchi. “Dependence of anoma-

lous Nernst effect on crystal orientation in highly ordered γ-Fe4N films with

anti-perovskite structure”. In: Applied Physics Express 10.7 (2017), p. 073005.

[4] Tsao-Chi Chuang et al. “Enhancement of the anomalous Nernst effect in fer-

romagnetic thin films”. In: Physical Review B 96.17 (2017), p. 174406.

[5] K Hasegawa et al. “Material dependence of anomalous Nernst effect in per-

pendicularly magnetized ordered-alloy thin films”. In: Applied Physics Letters

106.25 (2015), p. 252405.

[6] Yo Pierre Mizuta and Fumiyuki Ishii. “Contribution of Berry curvature to ther-

moelectric effects”. In: Proceedings of the International Conference on Strongly

Correlated Electron Systems (SCES2013). 2014, p. 017035.

[7] Yo Pierre Mizuta and Fumiyuki Ishii. “Large anomalous Nernst effect in a

skyrmion crystal”. In: Sci. Rep. 6 (2016), p. 28076.

[8] Robert Karplus and JM Luttinger. “Hall effect in ferromagnetics”. In: Phys.

Rev. 95.5 (1954), p. 1154.

[9] Jan Smit. “Physica (Amsterdam) 21, 877 (1955)”. In: Phys. Rev. B 8 (1973),

p. 2349.

[10] Arup Ghosh, Rajasree Das, and Ramanathan Mahendiran. “Skew scattering

dominated anomalous Nernst effect in La1−xNaxMnO3”. In: J. Appl. Phys.

125.15 (2019), p. 153902.

[11] Xiaokang Li et al. “Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry

curvature and entropy flow”. In: Phys. Rev. Lett. 119.5 (2017), p. 056601.

44



Chapter 5 – BIBLIOGRAPHY

[12] Muhammad Ikhlas et al. “Large anomalous Nernst effect at room temperature

in a chiral antiferromagnet”. In: Nat. Phys. 13.11 (2017), pp. 1085–1090.

[13] Di Xiao, Ming-Che Chang, and Qian Niu. “Berry phase effects on electronic

properties”. In: Rev. Mod. Phys. 82.3 (2010), p. 1959.

[14] Yo Pierre Mizuta, Hikaru Sawahata, and Fumiyuki Ishii. “Large anomalous

Nernst coefficient in an oxide skyrmion crystal Chern insulator”. In: Phys.

Rev. B 98 (2018), p. 205125.

[15] Cui-Zu Chang et al. “Experimental observation of the quantum anomalous

Hall effect in a magnetic topological insulator”. In: Science 340 (2013), pp. 167–

170.

[16] Bevin Huang et al. “Layer-dependent ferromagnetism in a van der Waals crys-

tal down to the monolayer limit”. In: Nature 546 (2017), p. 270.

[17] Cheng Gong et al. “Discovery of intrinsic ferromagnetism in two-dimensional

van der Waals crystals”. In: Nature 546 (2017), p. 265.

[18] Roman Anufriev, Jeremie Maire, and Masahiro Nomura. “Reduction of ther-

mal conductivity by surface scattering of phonons in periodic silicon nanos-

tructures”. In: Phys. Rev. B 93 (2016), p. 045411.

[19] Kostya S Novoselov et al. “Two-dimensional gas of massless Dirac fermions in

graphene”. In: Nature 438 (2005), p. 197.

[20] LD Hicks and Mildred S Dresselhaus. “Effect of quantum-well structures on

the thermoelectric figure of merit”. In: Phys. Rev. B 47 (1993), p. 12727.

[21] Myoung-Jae Lee et al. “Thermoelectric materials by using two-dimensional

materials with negative correlation between electrical and thermal conductiv-

ity”. In: Nat. Commun. 7 (2016), p. 12011.

[22] Hiromichi Ohta et al. “Giant thermoelectric Seebeck coefficient of a two-

dimensional electron gas in SrTiO3”. In: Nat. Mater. 6 (2007), p. 129.

[23] Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas”. In: Phys-

ical review 136.3B (1964), B864.

[24] Walter Kohn and Lu Jeu Sham. “Self-consistent equations including exchange

and correlation effects”. In: Physical review 140.4A (1965), A1133.

[25] Taisuke Ozaki et al. “www.openmx-square.org”. In: ().

[26] T. Ozaki. “Variationally optimized atomic orbitals for large-scale electronic

structures”. In: Phys. Rev. B 67 (15 Apr. 2003), p. 155108.

[27] Nicola Marzari and David Vanderbilt. “Maximally localized generalized Wan-

nier functions for composite energy bands”. In: Physical review B 56.20 (1997),

p. 12847.

45



BIBLIOGRAPHY

[28] Claude A Daul. “Ligand Field Theory: An ever-modern theory”. In: Journal

of Physics: Conference Series. Vol. 428. 1. IOP Publishing. 2013, p. 012023.

[29] John B Goodenough. “An interpretation of the magnetic properties of the

perovskite-type mixed crystals La1−xSrxCoO3- λ”. In: Journal of Physics and

chemistry of Solids 6.2-3 (1958), pp. 287–297.

[30] Junjiro Kanamori. “Superexchange interaction and symmetry properties of

electron orbitals”. In: Journal of Physics and Chemistry of Solids 10.2-3 (1959),

pp. 87–98.

[31] Philip W Anderson. “Theory of magnetic exchange interactions: exchange in

insulators and semiconductors”. In: Solid state physics. Vol. 14. Elsevier, 1963,

pp. 99–214.

[32] Shigeki Onoda, Naoyuki Sugimoto, and Naoto Nagaosa. “Quantum transport

theory of anomalous electric, thermoelectric, and thermal Hall effects in fer-

romagnets”. In: Phys. Rev. B 77.16 (2008), p. 165103.

[33] Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki. “Chern Numbers in

Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Con-

ductances”. In: J. Phys. Soc. Jpn. 74 (2005), pp. 1674–1677.

[34] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized Gra-

dient Approximation Made Simple”. In: Phys. Rev. Lett. 77 (18 Oct. 1996),

pp. 3865–3868.

[35] Gerhard Theurich and Nicola A Hill. “Self-consistent treatment of spin-orbit

coupling in solids using relativistic fully separable ab initio pseudopotentials”.

In: Phys. Rev. B 64 (2001), p. 073106.

[36] Jon Baker. “An algorithm for the location of transition states”. In: J. Comput.

Chem. 7 (1986), pp. 385–395.

[37] Arash A Mostofi et al. “An updated version of wannier90: A tool for obtaining

maximally-localised Wannier functions”. In: Comp Phys. Comm. 185.8 (2014),

pp. 2309–2310.

[38] John M Ziman. Principles of the Theory of Solids. Cambridge university press,

1979.

[39] Susumu Minami et al. “First-principles study on thermoelectric properties of

half-Heusler compounds CoMSb (M= Sc, Ti, V, Cr, and Mn)”. In: Appl. Phys.

Lett. 113 (2018), p. 032403.

[40] Yulin Feng et al. “Robust half-metallicities and perfect spin transport prop-

erties in 2D transition metal dichlorides”. In: J. Mater. Chem. C 6.15 (2018),

pp. 4087–4094.

46



Chapter 5 – BIBLIOGRAPHY

[41] Vadym V. Kulish and Wei Huang. “Single-layer metal halides MX2 (X = Cl,

Br, I): stability and tunable magnetism from first principles and Monte Carlo

simulations”. In: J. Mater. Chem. C 5 (2017), pp. 8734–8741.

[42] Engin Torun et al. “Stable half-metallic monolayers of FeCl2”. In: Appl. Phys.

Lett. 106 (2015), p. 192404.

[43] Sherin A Saraireh and Mohammednoor Altarawneh. “Thermodynamic stabil-

ity and structures of iron chloride surfaces: A first-principles investigation”.

In: J. Chem. Phys. 141 (2014), p. 054709.

[44] MK Wilkinson et al. “Neutron Diffraction Investigations of the Magnetic Or-

dering in FeBr2, CoBr2, FeCl2, and CoCl2”. In: Phys. Rev. 113 (1959), p. 497.

[45] C Vettier and WB Yelon. “The structure of FeCl2 at high pressures”. In: J.

Phys. Chem. Solids 36 (1975), pp. 401–405.

[46] Huiling Zheng et al. “Enhancing the perpendicular magnetic anisotropy of

1T-FeCl2 monolayer by applying strain: first-principles study”. In: J. Magn.

Magn. Mater. 444 (2017), pp. 184–189.

[47] F. Albert Cotton. “I - Ligand field theory”. In: J. Chem. Educ. 41 (1964),

p. 466.

[48] Akito Sakai et al. “Giant anomalous Nernst effect and quantum-critical scaling

in a ferromagnetic semimetal”. In: Nat. Phys. 14.11 (2018), p. 1119.

[49] Jinsong Xu, W Adam Phelan, and Chia-Ling Chien. “Large anomalous Nernst

effect in a van der Waals ferromagnet Fe3GeTe2”. In: Nano Lett. 19.11 (2019),

pp. 8250–8254.

[50] Girish Sharma. “Tunable topological Nernst effect in two-dimensional transition-

metal dichalcogenides”. In: Phys. Rev. B 98 (7 Aug. 2018), p. 075416.

[51] E. Cappelluti et al. “Tight-binding model and direct-gap/indirect-gap transi-

tion in single-layer and multilayer MoS2”. In: Phys. Rev. B 88 (7 Aug. 2013),

p. 075409.

[52] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl. “Giant spin-orbit-induced

spin splitting in two-dimensional transition-metal dichalcogenide semiconduc-

tors”. In: Phys. Rev. B 84 (15 Oct. 2011), p. 153402.

[53] Xuhan Zhou et al. “Atomically Thin 1T-FeCl2 Grown by Molecular-Beam

Epitaxy”. In: The Journal of Physical Chemistry C 124.17 (2020), pp. 9416–

9423.

[54] Zaiyao Fei et al. “Two-dimensional itinerant ferromagnetism in atomically thin

Fe3GeTe2”. In: Nature materials 17.9 (2018), pp. 778–782.

47



BIBLIOGRAPHY

[55] Zhong-Liu Liu et al. “Epitaxially grown monolayer VSe2: an air-stable mag-

netic two-dimensional material with low work function at edges”. In: Science

Bulletin 63.7 (2018), pp. 419–425.

[56] Dingfeng Yang et al. “Cr2Ge2Te6: high thermoelectric performance from lay-

ered structure with high symmetry”. In: Chemistry of Materials 28.6 (2016),

pp. 1611–1615.

48


