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Abstract

Considering that one-patch particles rotate three-dimensionally and translate on a

two-dimensional �at plane, I perform isothermal-isochoric Monte Carlo simulations to

study how two-dimensional self-assemblies formed by spherical patchy particles depend

on the interaction length and patch area. As the interaction potential between one-

patch particles, the Kern-Frenkel (KF) potential is used in the simulations. With

increasing the patch area, the shape of the most numerous clusters changes from dimers

to island-like clusters with a square lattice via triangular trimers, square tetramers,

and chain-like clusters when the interaction length is as long as the particle radius.

With a longer interaction length, other shapes of polygonal clusters such as another

type of square tetramers, two types of pentagonal pentamers, hexagonal hexamers, and

hexagonal heptamers also form.
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Introduction

Particles having patch areas, whose properties are di�erent from those of the other surface

area, are termed patchy particles. They are promising building blocks for functional materials

because unique and complicated structures that are not created with isotropic particles form

owing to the anisotropic interaction induced by the patch areas. For example, the triblock

patchy particles which have two patches on their polar positions are considered to be used

building blocks for photonic crystals with complete photonic band gap.1�4 Many groups3�40

have studied self-assemblies formed by patchy particles. Preisler et al.26 used the Kern-

Frenkel (KF) potential44 and performed Monte Carlo simulations for one-patchy particles

with a short interaction length. They showed that close packed structures with complicated

bondings are created by controlling the coverage of the patch area.24 They also examined

how the three-dimensional structures formed by Janus particles depend on the interaction

length and showed that various types of open structures, which are not created with short

interaction lengths, are created with long interaction lengths.26 In the study, the patch area

was set to be the half of the whole surface. In addition, the interaction lengths were shorter

than the half of the particle diameter. Thus, it remains as an interesting problem to study

which kinds of new structures are created when the ratio of the patch area changes with

much longer interaction lengths.

The formation of two-dimensional materials with a single layer thickness becomes a pop-

ular topic because the two-dimensional materials are used for broad applications such as

photovoltaics, semiconductors, electrodes and water puri�cation.42,43 To create quality two-

dimensional structures are also bene�cial because these �lms can be used as substrates for

colloidal epitaxy.47�49 It is hard to create quality three-dimensional functional materials in

the free three-dimensional space spontaneously, but it might be easy to create desired struc-

tures on substrates by epitaxial growth. To create quality substrates formed by patchy

particles, it is important to understand how two-dimensional structures depend on the patch

area and interaction length. Thus, I focus on studying the two-dimensional structures.
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In this paper, assuming that one-patch particles with rotating three-dimensionally trans-

late on �at planes, I perform isothermal-isochoric Monte Carlo simulations to examine how

two-dimensional self-assemblies change with the strength of interaction energy, the patch

area, and the density of patchy particles. In previous studies,45,46 I performed isothermal-

isobaric Monte Carlo simulations and studied the dependence of structures on the patch area

in two-dimensional systems and thin systems, where the interaction length is �xed at the

half of the diameter of particles. Here, I focus on the systems, where the interaction length

is equal to or longer than the half of the diameter. First, I introduce the model used in

my simulations. In this study, the Kern-Frenkel potential is used as the potential between

patchy particles. Next, I show the results of my simulations. In previous papers,3,4 it was

reported that the two-step process, in which colloidal crystal form via the formation of col-

loidal molecules, is useful to create complicated structures. it was also suggested that the

formation of clusters with uniform size and shape is important to create quality structures.3,4

Thus, after showing several snapshots of typical clusters, I study how the distribution of clus-

ter types changes with the patch area. I also examine the dependence of the shape of most

numerous cluster on parameters such as the interaction length, the interaction range, the

interaction energy, and the particle density. Lastly, I summarize my results in conclusions.

Methods

It is assumed that spherical patchy particles rotating three-dimensionally translate on a �at

plane. The particles interact with the KF potential.44 The interaction potential between the

ith and jth particles, UKF(rij), is expressed as

UKF(rij) = Urep(rij) + Uatt(rij)f(r̂ij, n̂i, n̂j), (1)

where ri represents the position of the center of the ith particle, rij = rj − ri, rij = |rij|,

r̂ij = rij/rij, and n̂i indicates the patch direction of the ith particle. The �rst term in
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Eq. (1) represents the hard-core repulsive potential given by

Urep(rij) =


∞ (rij ≤ σ)

0 (σ < rij)

, (2)

where σ is the diameter of spherical patchy particles and set to unity. The second term in

Eq. (1) is the attractive part in the KF potential. Uatt(rij) is the square-well potential given

by

Uatt(rij) =


−ϵ (σ < rij ≤ σ +∆)

0 (σ +∆ < rij)

, (3)

where ϵ represents the strength of attraction and ∆ is the interaction length. f(rij, n̂i, n̂j)

represents the anisotropy in the attraction, which is given by

f(r̂ij, n̂i, n̂j) =


1 (n̂i · r̂ij > cos θ and n̂j · r̂ji > cos θ )

0 otherwise

. (4)

Since the diameter of the patchy particles is given by σ, the patch area S is estimated as

πσ2(1 − cos θ)/2. The relationship between θ and the ratio of the patch area to the whole

surface area, χ, is given by (1 − cos θ)/2. θ changes from 20◦ and 100◦ in my simulations.

Thus, χ changes from 3.0× 10−2 to 5.9× 10−1.

I study systems with long interaction lengths. In my previous studies,45,46 I examined the

structures formed in isothermal-isobaric systems for ∆/σ = 0.5 and showed that structures

which are not observed in systems with short interaction lengths are created. Here, I study

the possibility of the formation of various clusters for ∆/σ ≥ 0.5. Recently, DNA guided

crystallization has been studied,50�68 and various types of lattice structures were created.

In several studies,38,40 the DNA strands are used as the source of the attractive interaction

of patchy particles. The KF interaction with long ∆ might be realized by the attraction

caused by DNA strands because �exible and desired DNA strands are synthesized freely
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now. However, the e�ects of steric hindrance should not be neglected when ∆/σ is too long.

For example, for large clusters such as heptemers I show later in this paper, DNA strands

have trouble bonding to the diagonal particle because another particle sets exactly between

the two particles. Since the DNA strands have to curve around the intermediate particle, the

signi�cant entropic cost is necessary and the interaction range are e�ective reduced. Thus,

the cases that ∆ is as long as σ should be considered carefully.

Results and discussions

Square systems whose size is given by L × L with the periodic boundary conditions are

considered. When the number of particles is N and the area fraction of system is ϕ, L

is given by (Nπσ2/4ϕ)1/2. In my simulations, N and ϕ are mainly set to 2048 and 0.2,

respectively. Initially, particles are put in the system at random. Then, their translation

and rotation are performed for every particle. In a Monte Carlo (MC) trial, both translation

and rotation are tried for a particle. At least 8× 106 MC trials are performed per particle.

To avid making the success rate of MC trials too low, the amplitude of both translation and

rotation is tuned every 100N MC trials. The interaction strength used in my simulations is

set to be equal to or less than ϵ/kBT = 8.0, which is about as large as the he interaction

strength reported in the experimental study.16 The interaction strength is feasible and the

clusters obtained in our simulations can be created experimentally when the interaction

potential like the KF potential with long interaction is realized.

Clusters forming with ∆/σ = 0.5

First, the dependence of cluster types on θ is examined for ∆ = 0.5σ. Figure 1(a)-(f) show

snapshots of systems for several θ with ϵ/kBT = 8.0. The zoomed snapshots of the clusters

indicated by (A), (B), (C), (D), (E), and (F) in Figure 1(a)-(f) are shown in Figure 1(g).

The snapshots where interacting particles are connected with yellow lines are also shown
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Figure 1: (a)-(f) snapshots of clusters for ∆/σ = 0.5 and (g) clusters indicated as (A), (B),
(C), (D), (E), and (F) in (a)-(f). Attractive interactions in the clusters, where the interacting
particles are connected by yellow lines, are also shown. For the snapshots, ϕ = 0.2, N = 2048,
and ϵ/kBT = 8.0. θ is (a) 25◦, (b) 45◦, (c) 65◦, (d) 75◦, (e) 90◦, and (f) 95◦. In these �gures,
red regions of particles represent patch areas.
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in Figure 1(g). When θ = 25◦ [Figure 1(a)], particles seem to be distributed randomly. In

region (A) surrounded by yellow circle, eight particles form four dimers, and one particle

remains as a monomer. Monomers and dimers seem to be dominant with this angle. When

θ = 45◦ [Figure 1(b)] and 65◦[Figure 1(c)], the shapes of the most numerous clusters become

more obvious than that in Figure 1(a); many triangular trimers such as (B) and square

tetramers such as (C) are created, respectively. Since ∆ is set to be longer than (
√
2− 1)σ,

it is possible that the particles at the diagonal positions interact with each other in the

square tetramers. Thus, in cluster (C), each particle in the square tetramers connects with

the other three particles, which are the two neighboring particles and the particle in the

diagonal position. When θ = 75◦ [Figure 1(d)], small clusters connect and short straight

string-like clusters such as (D) form. In cluster (D), one square tetramer at the upper edge

and three rhombic tetramers are connected. In the rhombic tetramers, the particles in the

long diagonal positions do not connect with each other. Instead, these particles connect

with a particle in the neighboring tetramer. When θ = 90◦ [Figure 1(e)], string-like clusters

become longer and more meandering than those for θ = 75◦. Small double rings such as (E)

in Figure 1(e) are also observed. The double ring-like cluster is created by the connection

of square tetramers via one particle. When θ = 95◦ [Figure 1(f)], crystallization occurs and

island-like clusters such as (F) are created. The patch directions of almost all the particles in

the island-like clusters are approximately perpendicular to the plane. The compact island-

like clusters consist of the square lattice and the particles inside the island-like clusters have

eight connections, which are four connections with the nearest neighbors and four connections

with the second nearest neighbors in the diagonal positions, no matter whether the patch

direction of each particle is toward or against the wall. In our simulations, coalescence of

large island-like clusters is very slowly because we used a simple algorithm. Probably, larger

island-like clusters appear if much longer simulations are performed.

Figure 2 shows the distribution of cluster size [Figure 2(a)] and the dependence of the

cluster numbers on θ for small clusters [Figure 2(b)]. In Figure 2(a), the color strength is
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Figure 2: (a) Distribution of cluster size and (b) dependence of numbers of small clusters on
θ for ∆/σ = 0.5, where ϵ/kBT and ϕ are set to 8 and 0.2, respectively. The data in a single
run are averaged over ten points every 2N × 105 MC step from 6N × 106 to 8N × 106.
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proportional to knk/N , where nk means the total number of the cluster whose size is k.

When θ < 75◦, the cluster sizes are small for almost all the clusters, and the distribution of

the cluster size is narrow. The cluster size of the most numerous cluster increases gradually

with increasing θ. When θ exceeds 75◦, large clusters start to be created and the distribution

of cluster size becomes broader than that for θ < 75◦, which is consistent of the formation

of sting-like clusters shown in Figure 1(d). Clusters consisting of less than 30 particles are

rarely created when θ = 95◦, which is because many particles gather and large island-like

clusters form as shown in Figure 1(f). The dependence of nk on θ for small clusters is

shown in Figure 2(b). When θ ≤ 35◦, there are mainly dimers and monomers in the system.

Trimers are dominant when 35◦ < θ < 55◦, and tetramers are the most numerous cluster

when 55◦ ≤ θ ≤ 75◦. When 75◦ ≤ θ, a few number of clusters consisting of more than

ten particles are created, which indicates that long chain-like clusters and large island-like

clusters form.

Dependence of cluster shapes on ∆

Here, I examine which types of clusters form when ∆/σ > 0.5. After showing several typical

snapshots, e�ects of θ and ∆/σ on the cluster type are studied.

Formation of another type of square tetramers. Clusters which are not created with

∆/σ = 0.5 form when ∆/σ > 0.5. Cluster (A) in Figure 3(a) shows another type of square

tetramer observed with ∆/σ = 0.8. Hereafter, this type of cluster is called tetramer (I).

The connections of particles in tetramers (I) are di�erent from those in the square tetramers

created with ∆/σ = 0.5 and θ = 75◦ [Cluster (C) in Figure 1(c), which I call tetramer (II)].

While particles in tetramers (II) connect with all the other particles in the same clusters,

particles in tetramers (I) have only two connections with other two particles. Since θ is

small, the particles cannot connect with both two nearest neighbors. Each particle just

connects with one of the two nearest neighbors and the particle in the diagonal position.
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(B)

Figure 3: Snapshots of systems and zoomed snapshots of clusters, where ϕ = 0.2, N = 2048,
and ϵ/kBT = 8.0. ∆/σ and θ is (a) 0.8 and 30◦ and (b) 0.5 and 35◦.

As a reference, a tetramer formed with θ = 35◦ and ∆/σ = 0.5 are shown as cluster (B) in

Figure 3(b). It looks like a tetragonal tetramer, but the cluster is actually a zigzag chain-like

cluster. A few tetramers were observed in Figure 2(b), but almost all the tetramers were

this type of cluster.

Formation of pentamers, hexamers, and heptamers. Polygonal clusters which are

larger than tetramers also form when ∆/σ > 0.5. Figure 4 shows snapshots of systems

with numerous pentamers, hexamers, and heptamers. The pentamers such as cluster (A)

in Figure 4(a), which I call pentamers (I), are created with ∆/σ = 0.8 and θ = 45◦. Not

all particles interact with their nearest neighbors in pentamer (I) because θ is small. On

the other hand, in the pentamer observed with ∆/σ = 0.8 and θ = 45◦ such as cluster (B)

in Figure 4(b), which I call pentamer (II), all the neighboring particles connect with each

other because θ is su�ciently large. Hexamers such as cluster (C) and heptamers such as

cluster (D) form when ∆/σ = 1.0 and θ = 70◦ [Figure 4(c)]. There is a vacancy in which one

particle can be placed at the center of the hexagonal hexamers. Since ∆/σ is just unity, the
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Figure 4: Snapshots of systems and zoomed snapshots of clusters, where ϕ = 0.2, N = 2048,
and ϵ/kBT = 8.0; ∆/σ and θ are (a) 0.8 and 45◦, (b) 0.8 and 70◦, and (c) 1.0 and 70◦.
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connections between particles in diagonal positions in the ring-shaped hexamers are easily

broken by thermal �uctuations. That is why one connection between particles in a diagonal

position is broken in cluster (C). Its shape seems to be a bit deformed from the regular

hexagonal hexamer. Heptamers such as (D) were also created when the central vacancies

of ring-shaped hexamers are occupied by particles, but regular polygonal clusters which are

larger than the heptamers were not observed in my simulations.

E�ects of ∆/σ on chain-like clusters and island-like clusters. The same types of

clusters forming with ∆/σ = 0.5 are created when ∆/σ = 0.6. The shapes of small polygonal

clusters are hardly a�ected by the di�erence in ∆/σ, but chain-like clusters become more

straight as shown in Figure 5, which is probably because the square tetramers with∆/σ = 0.6

are more stable against thermal �uctuations than those with∆/σ = 0.5. Since the interaction

length is much longer than (
√
2−1)σ, the square tetramers can keep the interactions between

particles even if their shapes are a bit warped. For θ = 75◦, the square tetramers seem to

be the growth unit of chain-like clusters [Figure 5(a)], which is similar to the cooperative

assembly.38 Figure 5(c) shows the relationship between the number of clusters and the cluster

size for θ = 75◦ and ∆/σ = 0.6. The number of clusters is large when cluster sizes are the

multiples of four, which supports that the growth unit of the double chain-clusters observed

in Figure 5 is the square tetramer. For θ = 90◦ [Figure 5(b)], double rings and loops are

observed, but their shapes are sti�er than those in Figure 1(e).

When ∆/σ is long enough for pentagonal pentamers to form, the shapes of chain-like

clusters and island-like clusters are di�erent from those obtained with ∆/σ = 0.5. The

growth unit of chain-like clusters changes from the square tetramer to the pentagonal pen-

tamer. Chain-like clusters form by the connection of pentagonal pentamers as shown in

(A) in Figure 6(a). The structure in island-like clusters also changes. For ∆/σ = 0.5, the

structure inside island-like clusters is the square lattice, and the peripheries of the clusters

consist of facets as shown in the cluster (F) in Figure 1(g). However, the structure becomes
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Figure 5: (a) and (b) snapshots of systems for ∆/σ = 0.6, and (c) relationship between the
number of clusters and the cluster size for θ = 75◦ and ∆/σ = 0.6. In snapshots (a) and
(b), ϕ = 0.2, N = 2048, and ϵ/kBT = 8.0. θ is (a) 75◦ and (b) 90◦. In these �gures, red
regions of particles represent patch areas. In (c) The data are averaged over 10 points every
2N × 105 Monte Carlo steps from 6N × 106 Monte Carlo steps to 8N × 106 Monte Carlo
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Figure 6: Snapshots of systems and zoomed snapshots of clusters, where ϕ = 0.2, N = 2048,
and ϵ/kBT = 8.0. θ and ∆/σ are (a) 85◦ and 0.8 and (b) 95◦ and 0.7.

disorder and seems to consist of the mixture of square tetramers and pentagonal pentamers

when ∆/σ = 0.7 as shown in Figure 6(b).

Dependence of the type of the most numerous cluster on ∆/σ and θ. For ϕ = 0.2

and ϵ/kBT = 8.0, the dependence of the type of the most numerous cluster on θ and ∆/σ

is shown in Figure 7(a). In Figure 2(b), the number of tetramers n4 is larger than the sum

of the numbers of clusters consisting of more than 10 particles when θ = 75◦. However,

the total number of particles in chain-like clusters is more numerous than that in tetramers

because the size of chain-like clusters is su�ciently larger than that of tetramers. Thus,

(∆/σ, θ) = (0.5, 75◦) is classi�ed in the region of chain-like clusters in Figure 7(a).

Ideal shapes of several polygonal clusters we observed in our simulations are shown in

Figure 7(b). When the patch directions of all particles are set to parallel to the plane where

the particles are placed, the numbers of connections between particles are maximum for small

polygonal clusters. Thus, the patch directions in the clusters in Figure 7(b) are assumed to

be parallel to the plane. When θ is su�ciently small, the clusters shown in Figure 7(b) are
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not created. The dimer is the most numerous cluster in the small θ region. The interaction

energy change per particle by forming a dimer, u2, is estimated to −ϵ/2. The dimers can be

created even when the interaction length is very short if the interaction is strong. When θ

increases, the formation of larger clusters becomes possible. In square tetramers (I) [(b1) in

Figure 7(b)], particles do not interact with one of the nearest neighbors. For example, particle

(A) interacts with particles (C) and (B) but does not interact with particle (D). Thus, θ

necessary for creating square tetramers (I) is given by 22.5◦ when ∆/σ = (
√
2− 1) = 0.414,

which is the minimum interaction length for creating the tetramers. The minimum ∆ for

creating the regular triangular trimers [(b2) in Figure 7(b)] is smaller than that for square

tetramers (I). Like the formation of dimers, the regular triangular trimers can be created with

vary short interaction lengths. With the minimum interaction length, θ should be larger than

30◦ for the timers. Thus, the minimum θ is larger than the minimum θ for creating square

tetramers (I). When the ideal regular trimers are created, the recovered connections per

particle are two, which are the same as those for ideal square tetramers (I). The interaction

energy change per particle by creating a trimer u3 and that by creating a square tetramer

(I) u4(I) are both estimated to −ϵ. Taking into account thermal �uctuations, criteria on θ for

creating these two clusters seem to be satis�ed in Figure 7 because square tetramers (I) and

trimers are the most numerous clusters when 25◦ ≤ θ and 40◦ ≤ θ, respectively. Since dimers

and trimers can be created even with a very short interaction length,22,25,31 these clusters

are more stable more than tetramers for the �uctuation of interparticle distance. Thus, the

dimers and trimers become the most numerous clusters in small ∆/σ region in Figure 7.

The minimum ∆/σ necessary to create other ideal regular clusters and the minimum θ

with the minimum ∆/σ are (
√
2−1) and 45◦ for a square tetramer (II) [(b3) in Figure 7(b)],

54◦ and (2 sin 54◦ − 1) for a pentagonal pentamer (II) [(b4) in Figure 7(b)], and unity and

60◦ for a hexagonal hexamer [(b5) in Figure 7(b)]. For pentagonal pentamers (I) with the

minimum ∆/σ, the minimum θ is 18◦ if all the neighboring particles are not connected. The

minimum ∆/σ is the same, but the minimum θ is much smaller than that of pentagonal
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pentamers (II). Thus, the parameter regions where these clusters become dominant satisfy

the criteria about θ and ∆/σ in Figure 7. The interaction energy changes per particle by

creating these clusters are estimated to u4(II) = −3ϵ/2 for square tetramers (II), u5(I) = −ϵ

for pentagonal pentamers (I), u5(II) = −2ϵ for pentagonal pentamers (II), and u6 = −5ϵ/2

for hexagonal hexamers. If all the particles in a pentagonal pentamer (I) do not interact

with their two nearest neighbors, |u5(I)| < |u4(II)|. Thus, creating tetragonal tetramers (II)

seems to be more favorable than creating pentagonal pentamers (I) to lower the total energy.

In the simulations, however, pentagonal pentamers (I) are more numerous than tetragonal

tetramers (II) when ∆/σ ≥ 0.9 and θ is 50◦ or 55◦, which is probably because some of the

nearest neighbors in pentagonal pentamers (I) are connected.

A hexagonal heptamer forms when one particle is included in the center of a ring-shaped

hexagonal hexamer [(b6) in Figure 7(b)]. When ∆/σ is minimum, the minimum θ is the

same as that of regular hexagonal hexamer. Since the center particle in the ideal hexagonal

heptamer can interact with three other particles in the same cluster, the interaction energy

change per particle for creating a hexagonal heptamer, u7, is given by −18ϵ/7. Since the

minimum ∆ necessary for creating hexagonal heptamers and hexagonal hexamers are same

and |u6| < |u7|, the hexagonal heptamers should be created more easily than the regular

hexagonal hexamers. However, the hexagonal hexamers are more numerous than the hexag-

onal heptamers. The hexagonal heptamers are created by adding particles in ideal regular

hexagonal hexamers. As shown cluster (C) in Fig 4(c), the hexagonal hexamers are a bit

deformed. To create the hexagonal heptamers, such deformations are not acceptable for the

ring-shaped hexamer part in the heptamers. The hexagonal hexamer part is unstable be-

cause ∆/σ = 1 is too short to keep its shape against thermal �uctuations. Thus, the number

of the hexagonal heptamers appearing in our simulations is small.

To create long chain-like clusters formed by the connections of square clusters,∆/σ should

be larger than (
√
2− 1). With the minimum ∆, particle (E) can interact with particles (F),

(J), and (K) in (b7) in Figure 7(b) when θ > 67.5◦. When the e�ect of thermal �uctuations
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is taken into account, the criterion of θ for creating long chain-like clusters seems to be

satis�ed because the chain-like clusters are numerous when θ ≥ 75◦ in my simulations. In

Figure 1(f), the minimum ∆/σ for creating island-like clusters consisting of a square lattice

with the lattice constant σ is also estimated to (
√
2−1) because the particles in the diagonal

positions need to be able to interact with each other. θ should be larger than 90◦ for the

minimum ∆/σ. Even when θ is larger than the minimum value, there are non-interacting

neighboring particles if the patch directions are parallel to the plane where particles are

placed. However, all the neighboring particles can interact when the patch directions are

perpendicular to the plane no matter whether the patch directions are same or opposite,

which is because the path area is large enough for the particles with the opposite patch

directions to interact with each other. Thus, the patch directions in the island-like clusters

are perpendicular to the plane.

Dependence of cluster shape on ϵ/kBT and ϕ

Lastly, I study the dependence of cluster shape on ϵ/kBT and ϕ and show how the dependence

of the type of the most numerous cluster on θ changes with these parameters.

Dependence of cluster shape on ϵ/kBT . The dependence of the most numerous cluster

on θ and ∆ for ϵ/kBT = 4.0 and 12.0 is shown in Figure 8. When the interaction energy

is smaller than that in Figure 7 [Figure 8(a)], the parameter region where the dimer is

the most numerous cluster spreads larger than that with ϵ/kBT = 8.0. The parameter

regions where square tetramers (I) and pentagonal pentamers (I) are the most numerous

clusters do not appear. These results mean that tetramers (I) and pentamers (I) are more

unstable than other polygonal clusters, which is probably because there are unconnected

particles in tetramers (I) and pentamers (I). Since the parameter regions with other polygonal

clusters shift to large θ direction, the area of the parameter region with chain-like clusters

decreases, and the chain-like clusters becomes shorter than those with ϵ/kBT = 8 as shown
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Figure 8: Dependence of the type of the most numerous cluster on θ and ∆ for (a) ϵ/kBT =
4.0 and (b) ϵ/kBT = 12.0. ϕ = 0.2 for both cases.
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in Figure 9(a).

(b)(a)

Figure 9: (a) Snapshot of a system with small chain-like clusters, where ϕ = 0.2, N = 2048,
and ϵ/kBT = 4.0. ∆/σ and θ are 0.7 and 85◦, and (b) Snapshot of a system and a zoomed
snapshot of square tetramers (I), where ϕ = 0.2, N = 2048, and ϵ/kBT = 12.0. ∆/σ and θ
are 1.0 and 20◦, respectively.

When ϵ/kBT = 12.0 [Figure 8(b)], tetragonal tetramers (I) and pentagonal pentamers

(I) are created, which is similar to systems with ϵ/kBT = 8.0. The region with tetramers

(I) is larger than that with ϵ/kBT = 8.0. When ∆/σ ≥ 0.9, tetramers (I) form even with

θ = 20◦, which is smaller than the minimum θ for forming regular square tetramers (I) with

the minimum ∆/σ. The formation of tetramers (I) in the small θ region is caused by the

deformation of the cluster shape. Figure 9(b) shows a snapshot of a system with θ = 20◦

and a zoomed snapshot of a deformed tetramer (I). Since its shape seems to be rectangular

rather than square, the angle formed by a connected nearest neighbor and the particle in the

diagonal position is small, which makes the formation of tetramers (I) with small θ possible.

Dependence of cluster shape on ϕ. The dependence of the types of the most numerous

clusters on θ and ∆ for ϕ = 0.1 and ϕ = 0.3 is shown in Figure 10. When ϕ = 0.1

[Figure 10(a)], the region where chain-like clusters are dominant becomes smaller than that

with ϕ = 0.2. On the contrary, when ϕ = 0.3 [Figure 10(a)], the region where chain-like

clusters are the most numerous clusters becomes larger than that with ϕ = 0.2. Compared

with the changes in the dependence of the types of the most numerous clusters, which is
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Figure 10: Dependence of the type of the most numerous cluster on θ and ∆ for (a) ϕ = 0.1
and (b) ϕ = 0.3. ϵ/kBT = 8.0 for both cases.
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induced by the di�erence in the interaction energy (Figure 8), the changes in the parameter

regions induced by the di�erence in the particle density are small in these causes. Thus, the

parameters which mainly determine cluster shape are the interaction energy, the interaction

length, and the interaction width. The dependence of the type of the most numerous cluster

on ϕ is small if the particle density is not too large.

Conclusions

In this paper, I performed isothermal-isochoric Monte Carlo simulations and study the clus-

ters formed by one-patch particles. I studied the possibility of formation of various types of

clusters for ∆/σ ≥ 0.5, which is longer than that in previous studies,7,16,18,20,26,46 focusing

on the cluster formation in two-dimensional systems because structures and clusters in these

systems were interested as functional materials.42,43 I considered that one-patch particle ro-

tate three-dimensionally and translate on a two-dimensional �at plane. The KF potential

was used as the potential between the spherical patchy particles, and the dependence of the

two-dimensional self-assemblies on the patch area and interaction length were examined.

In previous studies,18,20 chain-like clusters are created in the three-dimensional systems

when the patch area is small. The unit of the chain-like clusters are a dimer or a trimer

because interaction length is short. In my simulations, I found that regular polygonal clus-

ters such as square tetramers, pentagonal pentamers, hexagonal hexamers, and hexagonal

heptamers are created for long-range interaction. When we use those polygonal clusters as

building blocks, we may be able to create chain-like clusters whose unit is square tetramers

or larger polygonal clusters. When the patch area is large, bilayers are created in the three-

dimensional systems. The lattice structures in their sheets is a triangular lattice when

∆/σ < 0.5.18,46 However, since island-like clusters with square lattice form with ∆/σ > 0.5,

it may be possible to create the bilayers with square lattice when the interaction length ∆/σ

is long.
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