Identification of the laterality of motor unit behavior in female patients with parkinson's disease using high-density surface electromyography

<u> </u>	=雨, opg
メダナーダ	言語: eng
	出版者:
	公開日: 2021-05-10
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00061886
	This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 International License.

1 Graphical Abstract

2	Parkinson's disease patients have greater laterality of muscle contraction properties than other
3	parkinsonian diseases. This study demonstrated that identify the laterality of motor unit
4	behavior in Parkinson's disease patients using high-density surface electromyography. From
5	high-density surface electromyography signals, individual motor unit behavior firing patterns
6	were decomposed using the Convolution Kernel Compensation technique. Our findings
7	showed that this technique can detect laterality of motor unit behavior and experience motor
8	unit behavioral abnormalities even with mild symptoms.

Graphical Abstract: Parkinson's disease patients have greater laterality of muscle contraction properties than other parkinsonian diseases. This study demonstrated that identify the laterality of motor unit behavior in Parkinson's disease patients using high-density surface electromyography. From high-density surface electromyography signals, individual motor unit behavior firing patterns were decomposed using the Convolution Kernel Compensation technique. Our findings showed that this technique can detect laterality of motor unit behavior and experience motor unit behavioral abnormalities even with mild symptoms.

49x54mm (300 x 300 DPI)

1	Tit	tle: Identification of the laterality of motor unit behavior in female patients with Parkinson's
2	dis	ease using high-density surface electromyography
3	Au	thors' full names
4	Yu	ichi Nishikawa, Ph.D. ^{1, 2*} ; Kohei Watanabe, Ph.D. ³ ; Aleš Holobar, Ph.D. ⁴ ; Noriaki Maeda,
5	Ph	.D. ⁵ ; Hirofumi, Maruyama, Ph.D. ⁶ ; and Shinobu Tanaka, Ph.D. ¹
6	Au	thor affiliations
7	1)	Faculty of Frontier Engineering, Institute of Science & Engineering, Kanazawa University,
8		Kanazawa, Japan
9	2)	Division of Rehabilitation, Department of Clinical Practice and Support, Hiroshima
10		University Hospital, Hiroshima, Japan
11	3)	Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies,
12		Chukyo University, Nagoya, Japan
13	4)	Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia
14	5)	Division of Sports Rehabilitation, Graduate School of Biomedical and Health Sciences,
15		Hiroshima University, Hiroshima, Japan
16	6)	Department of Clinical Neuroscience and Therapeutics, Graduate School of Biomedical
17		and Health Sciences, Hiroshima University, Hiroshima, Japan

18	
19	Running Title: Laterality of MU behavior in female patients with PD
20	
21	Keywords: Parkinson's disease, electromyography, laterality, motor unit recruitment
22	
23	Correspondence:
24	Yuichi Nishikawa, Faculty of Frontier Engineering, Institute of Science & Engineering,
25	Kanazawa University, Kanazawa, Japan
26	Kakuma-machi, Kanazawa, 920-1192
27	Tel. & Fax.: +81-76-234-4790, Email: yuichi@se.kanazawa-u.ac.jp
28	
29	Word counts
30	The total number of pages: 34, including 7 figures and 3 tables.

31 The total number of words in (i) the whole manuscript: 6265 and (ii) the abstract: 233.

32 Abstract

33	Patients with Parkinson's disease (PD) have greater laterality of muscle contraction properties
34	than other people with parkinsonian diseases. However, few studies have reported the
35	laterality of MU activation properties of the lower extremity muscles in patients with PD. The
36	aim of the present study was to identify the laterality of MU behavior in PD patients using
37	high-density surface electromyography (HD-SEMG). Eleven female patients with PD (age,
38	69.2±6.2 years, disease duration, 2.7±0.9 years, Unified Parkinson's disease Rating Scale
39	score, 13 (9-16)) and 9 control female subjects (age, 66.8±3.5 years) were enrolled in the
40	present study. All subjects performed sustained isometric knee extension in a 30% maximal
41	voluntary contraction (MVC) task for 20 s. HD-SEMG signals were used to record and
42	extract single MU firing behavior in the vastus lateralis muscle during submaximal isometric
43	knee extensor contractions with 64 electrodes and decomposed with the convolution kernel
44	compensation technique to extract individuals MUs. Compared to the control subjects, the
45	patients with PD exhibited laterality of the MU firing rate and an absence of a relationship
46	between the mean MU firing rate and MU threshold. Patients with PD exhibit laterality of
47	MU behavior and experience MU behavioral abnormalities even with mild symptoms such as
48	Hoehn & Yahr stage \leq 3 and disease duration=2.7±0.9. These findings suggest the importance

- 49 of considering the detection of abnormal muscle properties in PD patients beginning in the
- 50 early phase of the disease.

51 Introduction

Parkinson's disease (PD) is one of the most common neurodegenerative disorders 52 and is characterized by motor and cognitive dysfunction (Kalia & Lang, 2015). Motor 53 dysfunction in PD can be partly attributed to impaired muscle contractions and force output due 54 to central mechanisms (Stevens-Lapsley et al., 2012). The central nervous system regulates 55 56 force output through the recruitment of motor units (MUs) and the modulation of their discharge 57 rates (De Luca et al., 1982). Previous studies using intramuscular electromyography (EMG) have reported that PD patients show aberrant MU discharge patterns (Milner-Brown et al., 58 59 1979; Dengler et al., 1986). Glendinning and Enoka reported that PD patients exhibited more variable and intermittent MU discharge rates and a greater number of MUs recruited at lower 60 61 force thresholds compared to healthy subjects in a submaximal voluntary contraction task (Glendinning & Enoka, 1994). Taken together, these studies demonstrate altered MU 62 recruitment and rate coding in PD patients that may affect force output and regulation. 63 As measured clinically, PD is often an asymmetric condition whereby tremor, rigidity, 64 65 and muscle weakness are often greater on one side versus another (Djaldetti et al., 2006). This is unlike other parkinsonism diseases (e.g., Lewy body dementia, multiple system atrophy, and 66 progressive supranuclear palsy) that have a more symmetric presentation (Cubo et al., 2010; 67

68	Baumann et al., 2014). Based on clinical presentation, it is plausible that PD patients have
69	greater laterality of muscle contraction properties than other people with parkinsonian diseases.
70	However, no report has compared the symmetry of MU activation properties limbs in PD
71	patients. A better understanding of the asymmetries in whole muscle activation in the lower
72	extremities may lead to the development of novel therapies. However, to the best of our
73	knowledge, few reports have examined the symmetry of MU behavior (e.g., neural drive to the
74	skeletal muscles) in patients with PD using the high-density surface electromyography (HD-
75	SEMG) method (Povalej Bržan et al., 2017; Holobar et al., 2018). In particular, no report has
76	identified the laterality of MU activation properties of lower extremity muscles in patients with
77	PD and the relationship to clinical measures of function.
78	The purpose of this study was to clarify the disease-specific changes in and
79	laterality of MU behavior during sustained isometric knee extensor contractions in patients
80	with PD using HD-SEMG. According to a previous study, healthy elderly people exhibited a
81	lower mean MU firing rate than young subjects (Watanabe et al., 2016). In general, the firing
82	rates of earlier-recruited MUs are higher than later-recruited MUs at any time and force (e.g.,
83	onion skin). Watanabe et al. reported that for ramp-up contraction to 30% maximal voluntary
84	contraction (MVC), the MU firing rates of earlier-recruited MUs were generally higher than

85	later-recruited MUs at each torque level in both elderly and young adults, although these
86	relationships were not observed in all MU pairs of elderly individuals (Watanabe et al., 2016).
87	Based on these findings the onion skin phenomenon is impaired in elderly people during force
88	production at low to moderate force levels. Furthermore, a previous study reported that
89	patients with PD exhibited a shift in the MU population to lower recruitment thresholds
90	(Glendinning & Enoka, 1994). We hypothesized that compared with the less-affected side and
91	age-matched control subjects, the more-affected side of patients with PD may display more
92	variable MU firing rates, an abnormal recruitment threshold, and MU firing rates reflecting
93	the degree of disease severity.
94	
95	Materials and Methods
96	Subjects
97	Eleven female patients with PD and 9 control female subjects were enrolled in this
98	study. Previous studies have reported sex-related differences among motor symptoms (Haaxma
99	et al., 2007; Solla et al., 2012). In particular, Szewczyk-Krolikowski K et al. reported greater
100	alterations in the symmetricity of motor function in male patients with PD than in female
101	patients with PD (Szewczyk-Krolikowski et al., 2014). Thus, female patients with PD may

102	exhibit greater laterality of motor function than male patients with PD. Therefore, we included
103	only female subjects in the current study to detect the laterality of MU behavior. The exclusion
104	criteria were as follows: Hoehn & Yahr stage > 3, injury to lower limb extremities,
105	neurodegenerative disease (e.g., progressive supranuclear palsy, frontotemporal dementia,
106	Alzheimer's disease, and dystonia), and diabetes mellitus. All procedures were in accordance
107	with the Declaration of Helsinki and were approved by Hiroshima University's Committee on
108	Ethics in Research (approved number No. E-53-2). All subjects signed an informed consent
109	form prior to enrollment. The Unified Parkinson's Disease Rating Scale (UPDRS) was used to
110	assess physical function. The UPDRS characterizes impairments and functional ability using a
111	rating scale from 0 to 4. The same neurologist performed the UPDRS assessments on all
112	participants. PD patients were defined as left side- or right side-affected considering anamnesis
113	and based on UPDRS scores. All measurements were performed during the on-medication
114	period.

115 Motor testing and clinical evaluation protocols

For both legs, participants performed MVCs of the knee extensors, and the order of
leg tested was randomized. Isometric knee extension was performed using a Biodex system
(Biodex System 4; Biodex Medical Systems, Shirley, NY, USA). During contractions, both the

119	hip and knee extension angles were positioned at 90 degrees. The MVC involved a gradual
120	increase in knee extension torque from 0 Nm to their maximal torque over 3 s, with the
121	maximum torque held for 2 s. The participant performed at least two MVC trials with > 120 s
122	of rest between trials and a warm-up for 10 min, including indoor walking and lower limb
123	stretching before MVC measurements (Nishikawa et al., 2019). The peak torque was used as
124	the maximal effort and to calculate the target torque for the submaximal ramp-up contraction.
125	After MVC measurements, participants were asked to perform submaximal isometric
126	contractions at 30% MVC task, which were sustained for 20 sec, and rising phase and decline
127	phase for 5 sec. The participant-generated torque and target torque were shown to the
128	participants on a computer monitor. The participants practiced the MVC and submaximal
129	contraction at least 10 min before the motor testing session began. We calculated the coefficient
130	of variation (CV) of force (standard deviation (SD)/mean x 100, CV force) during the sustained
131	submaximal isometric contraction and ramp-up contraction at 0-30% MVC.
132	EMG recording
133	During submaximal contraction, HD-SEMG signals were detected from the bilateral

134 vastus lateralis (VL) muscles using a semidisposable grid of 64 electrodes (ELSCH064NM2,

135 OT Bioelettronica, Torino, Italy) according to the same procedure used in previous studies

136	(Watanabe et al., 2012; Nishikawa et al., 2017a; Nishikawa et al., 2017b; Nishikawa et al.,
137	2019). The grid consisted of 13 columns and 5 rows of electrodes (diameter, 1 mm;
138	interelectrode distance, 8 mm in each direction), with one missing electrode at the upper left
139	corner. The participants' hair was removed, and the skin was cleaned with alcohol. The
140	electrode was attached to the skin with a bi-adhesive sheet (KITAD064, OT Bioelettronica)
141	after applying conductive paste (Elefix Z-181BE, NIHONKOHDEN, Tokyo, Japan). The
142	center of the electrode grid was positioned at the center of the line between the superior lateral
143	edge of the patella and the greater trochanter protuberance. The columns of the electrode grid
144	were placed parallel to the longitudinal axis of the VL muscle. A reference electrode was
145	attached at the anterior superior iliac spine (Nishikawa et al., 2017a).
146	Monopolar HD-EMG signals (64 channels) were amplified by a factor of 1,000,
147	sampled at 2,048 Hz, and digitized by a 12-bit analog-to-digital converter (EMG-USB2+,
148	OTBioelettronica). The recorded monopolar signals were off-line bandpass filtered (10-500
149	Hz) and transferred to analysis software (MTALAB 2019b, Math Works GK, MA, USA).
150	Bipolar HD-SEMG signals ($n = 59$) along the columns were obtained from the 64 electrodes.

151 Data processing

152	Individual EMG channels were visually examined to remove noisy channels. The
153	remaining channels were decomposed to attain information on a single MU. From high-
154	density SEMG signals, individual MU firing patterns were decomposed using the
155	Convolution Kernel Compensation technique (Figure 1) (Holobar & Zazula, 2004; Merletti et
156	al., 2008; Holobar et al., 2009). We followed the decomposition procedure that was
157	previously extensively validated on signals from various skeletal muscles (Holobar et al.,
158	2009; Farina et al., 2010; Gallego et al., 2015a; Gallego et al., 2015b; Yavuz et al., 2015;
159	Watanabe et al., 2016; Watanabe et al., 2018). The pulse-to-noise ratio introduced by Holobar
160	(Holobar et al., 2014) was used as an indicator of the MU identification accuracy, and only
161	MUs with a pulse-to-noise ratio > 30 dB (corresponding to an accuracy of MU firing
162	identification > 90%) were used for further analysis, whereas all other MUs were discarded
163	(Holobar et al., 2014). After decomposition, the discharge patterns of individual MUs were
164	inspected and correlated by two experienced investigators together. Discharge times for
165	individual MUs were used for calculation of instantaneous MU firing rates. During this
166	calculation, we excluded abnormal interspike intervals (<33.3 or >250 ms (30 and 4 Hz,
167	respectively)) (Holobar et al., 2009; Watanabe et al., 2013; Watanabe et al., 2016). The
168	instantaneous firing rates (pulses per second, pps) of individual MUs were calculated by

170	calculated as the average of the instantaneous firing rates during the submaximal voluntary
171	contraction task. The CV of the firing rates for each MU, which was defined as the ratio of its
172	SD to the mean, was computed. The mean MU firing rate with $> 30\%$ CV were excluded
173	from further analysis (Fuglevand et al., 1993). Detected MUs were divided into three groups
174	by recruitment torque: MUs recruited at (1) MU10; <10%, (2) MU20; 10–20%, and (3)
175	MU30; 20–30% MVC. The three MU groups were used for further analysis.
176	Statistical analyses
177	Statistical analyses were performed using SPSS ver. 22.0 (SPSS, Inc., Chicago, IL, USA). The
178	continuous data are presented as the mean \pm SD or the median (min–max). Before analysis, the
179	normal distribution of the data was confirmed using the Shapiro-Wilk test. The age, height, and
180	weight were compared between patients with PD and control subjects using unpaired <i>t</i> -tests.
181	The scores for subcomponents of UPDRS part III were compared between the more-affected
182	side and less-affected side using a Wilcoxon signed rank test. The MMSE was compared
183	between patients with PD and control subjects using the Mann-Whitney U test. A multiple
184	regression analysis was performed to estimate the influence of laterality on knee extensor torque,
185	the CV of force, the cross-correlation function, the mean MU firing rate, the number of MUs

taking the inverse of the interspike interval. The mean MU firing rate for each MU was

186	in MU groups (MU10, MU20, and MU30), and MU firing rate with matched recruitment
187	threshold (21.5 %MVC, a tolerance of \pm 0.5 %MVC). The dependent variable was the
188	difference between the less-affected side and more-affected side or between the dominant side
189	and non-dominant side, and the explanatory variables is the group (PD or control) were adjusted
190	according to the less-affected or dominant leg (based on kicking preference). Pearson's
191	correlation coefficients were computed to assess bivariate correlations between the mean MU
192	firing rate and MU threshold on both sides of patients with PD. The correlation coefficients
193	were qualitatively interpreted according to the following thresholds: 0.2–0.4, small; 0.4–0.7,
194	moderate; 0.7–0.9, strong; and 0.9–1.0, very strong. Analysis of covariance (ANCOVA) was
195	performed to compare the slopes of the mean MU firing rate and MU threshold bilaterality in
196	the limbs of patients with PD and control subjects. A mixed-effects model with a random
197	intercept and a random slope was applied to analyze the mean MU firing rate. The explanatory
198	variables were the group (PD or control), MU groups (MU10, MU20, and MU30), limb (more-
199	affected side or less-affected side, dominant or non-dominant side), and their interaction terms,
200	and the %MVC was included as a continuous variables. Significance was accepted for values
201	of <i>p</i> < 0.05.

203 **Results**

204	The general characteristics of the subjects are shown in Table 1. Significant
205	differences in age, height, and weight were not observed between patients with PD and control
206	subjects ($p = 0.3166$, $p = 0.5215$, and $p = 0.8009$, respectively). The multiple regression analysis
207	revealed that laterality of the knee extensor torque was associated with PD ($p < 0.0001$; Figure
208	2A). A significant difference in the MMSE score was not observed between patients with PD
209	and control subjects ($p = 0.0760$). The scores for subcomponents of UPDRS part III (e.g., Finger
210	tapping, Hand movements, Pronation-supination movements of hands, Toe tapping and Leg
211	agility) were significantly higher on the more-affected side than on the less-affected side of
212	patients with PD ($p < 0.0001$, respectively, Table 2).
213	Three hundred seventy MUs for the patients with PD (less-affected side = 109 and
214	more-affected side = 105) and control subjects (left side = 77 and right side = 79) were accepted
215	for data processing (Table 3). The multiple regression analysis revealed that laterality of the
216	number of MU10, MU20, and MU30 was not associated with PD ($p = 0.901$, $p = 0.200$, and p
217	= 0.723, respectively).

218 Submaximal isometric contraction at 30% MVC

219 The multiple regression analysis revealed that laterality of the CV of force, the mean

220	MU firing rate, and the cross-correlation function was associated with PD ($p = 0.013$, $p = 0.005$,
221	and $p < 0.0001$, respectively; Figure 2B–D, Figure 3). Moderate to strong correlations were
222	observed between the CV of force and mean MU firing rate on the more-affected and less-
223	affected sides (r = 0.7527, $p = 0.0120$ and r = 0.6619, $p = 0.0371$, respectively). On the other
224	hand, no correlations were observed between the CV of force and mean MU firing rate on the
225	left and right sides of the control subjects (r = -0.5022, $p = 0.1683$ and r = -0.5164, $p = 0.1547$).
226	Furthermore, strong correlations were observed between the UPDRS part III score and mean
227	MU firing rate on the more-affected side (r = 0.7233, $p = 0.0119$; Figure 4B). On the other
228	hand, the less-affected side did not show a correlation between the UPDRS part III score and
229	mean MU firing rate (r = 0.2082 , $p = 0.5390$; Figure 4A).
230	Relationship between the mean MU firing rate and MU threshold
231	When performing submaximal contractions on the less-affected side for patients with
232	PD and the left and right sides for control subjects, significant negative correlations were
233	observed between the MU threshold and mean MU firing rate (r = -0.3540, $p < 0.0001$, r = -
234	0.4954, $p < 0.0001$, and $r = -0.6871$, $p < 0.0001$, respectively; Figure 4C and D). On the other
235	hand, no significant correlations were observed between the MU threshold and mean MU firing
236	rate on the more-affected side (r = -0.07806, $p = 0.4242$; Figure 4C). The slope of the mean

MU firing rate and MU threshold revealed a significant difference between the bilateral limbs of patients with PD (F = 39.664, p < 0.0001). On the other hand, no significant difference in the slope of mean MU firing rate and MU threshold between limb was observed in control subjects (F = 2.644, p = 0.106).

241 *Ramp-up contraction at 0–30% MVC*

242 The mean firing rate of each MU was plotted against contraction torque (y-axis: firing rates (pps) and x-axis: force (%MVC)) and smoothed with a Hanning window of length of 2.0 243 seconds for a patient with PD and a control subject (Figure 5). While the firing rates of 244 individual MUs increased with the force levels on both sides of patients with PD and control 245 subjects, the MU firing rate of MU20 and MU30 was higher on the more-affected side than on 246 the less-affected side of patients with PD and on both sides of control subject (e.g., blue and 247 green lines). For MU20, the more-affected side of patients with PD did not show a significant 248 249 difference in the mean MU firing rate compared with MU10 (p = 0.43). On the other hand, the 250 comparison of other adjacent MU groups (e.g., MU10 vs MU20 for control subjects, MU20 vs, MU30 for PD and control subjects) was significant (p < 0.001; Figure 6). The multiple 251 regression analysis revealed that laterality of the MU firing rate with matched recruitment 252 253 threshold (21.5 \pm 0.5 %MVC) was associated with PD (p = 0.018). The MU firing rate was

254	higher on the more-affected side than on the less-affected side of patients with PD (9.63 ± 2.23)
255	pps vs. 8.36 ± 1.96 pps, Figure 7).
256	Discussion
257	The present study compared the MU behavior between the less-affected side and the
258	more-affected side of individual patients with PD and bilateral sides of control subjects. The
259	primary novel results are described below. Compared to the control subjects, the patients with
260	PD exhibited (1) laterality of the MU firing rate; (2) an abnormal relationship between the
261	mean MU firing rate and MU threshold on the more-affected side; (3) the MU firing rate
262	reflected the degree of disease severity; and (4) a higher MU firing rate on the more-affected
263	side than on the less-affected side. These findings support our hypothesis that the more-
264	affected side of patients with PD showed abnormal MU activity compared with the less-
265	affected side of patients with PD and both sides of control subjects during the submaximal
266	voluntary contraction task.
267	The CV of force and mean MU firing rate were higher on the more-affected side of
268	patients with PD than on the less-affected side of patients with PD and both sides of control
269	subjects. Previous studies reported that PD patients exhibited more force fluctuations during
270	force production, more variable and intermittent MU firing rates and a greater number of

271	MUs recruited compared with age-matched healthy subjects (Glendinning & Enoka, 1994;
272	Nishikawa et al., 2017b). Based on these findings, force control is more difficult on the more-
273	affected side of patients with PD than on the less-affected side of patients with PD and both
274	sides of control subjects. Our results agreed with these previous studies. Importantly, we
275	clarified that there is a laterality of MU behavior in PD patients. Previous studies reported that
276	abnormal and irregular MU activation in PD patients occurred by disinhibition of
277	reticulospinal pathways induced by degeneration of the substantia nigra pars compacta
278	(SNPc) (Chronister et al., 1988; Delwaide et al., 1991). The main pathological changes are
279	observed in the dopaminergic neurons of the SNPc (Fearnley & Lees, 1991), which show
280	greater damage on the side contralateral to the side of the body exhibiting more severe
281	symptoms (Tang et al., 2010; Kwon et al., 2012). Previous studies have investigated potential
282	neural asymmetries in the neocortex of patients with PD (Pollok et al., 2012; Hall et al.,
283	2014). Heinrichs-Graham et al. reported that PD patients exhibited a relationship between
284	symptom asymmetry and neural activity laterality during movement (Heinrichs-Graham et
285	al., 2017). Compared with control subjects, the patients with PD exhibited significant
286	laterality of the MU firing rate, suggesting that the asymmetrical MU activity patterns in
287	patients with PD are influenced by an asymmetrical change in dopaminergic neurons of the

288	SNPc (Kempster et al., 1989). Furthermore, we found a correlation between the UPDRS part
289	III score and mean MU firing rate of the more-affected side in patients with PD (Figure 4B).
290	The degeneration of dopaminergic neurons progresses annually in patients with PD (Fearnley
291	& Lees, 1991). Thus, the increase in MU firing rates reflects the degree of neurodegeneration.
292	In the present study, clinical symptoms of PD reflected events of the MU behavior, and MU
293	firing rates may infer the overall symptoms and laterality of PD.
294	Based on the results of the present study, the mean MU firing rate and MU
295	threshold on the less-affected side and both sides of control subjects were inversely related
296	(Figure 4C and D). The mean MU firing rate and MU thresholds show an "operating point" of
297	the motor neuron pool that shifts in response to excitation, and the correlations between the
298	MU firing rates and the MU threshold are achieved at a particular force that maintains a fixed
299	relationship defined by the slope of the regression equations (De Luca & Hostage, 2010). Our
300	results are consistent with a neural control scheme proposed in the literature known as the
301	"onion skin" control scheme, which states that MUs that are recruited early achieve a mean
302	MU firing rate that is greater than MUs recruited later, and earlier-recruited MUs maintain
303	higher MU firing rates than later-recruited MUs (De Luca & Erim, 1994; De Luca & Hostage,
304	2010; de Souza et al., 2018). On the other hand, the more-affected side of patients with PD

305	did not show correlations between the MU firing rates and MU thresholds and a lower cross-
306	correlation function than the less-affected side of patients with PD (Figure 3). A reasonable
307	explanation for this phenomenon is the abnormal discharge pattern and MU thresholds of the
308	more-affected side of patients with PD. Furthermore, higher MU firing rates with a matched
309	recruitment threshold were observed on the more-affected side compared with the less-
310	affected side in patients with PD. The MU firing rates during contraction are mainly
311	determined by synaptic excitatory input from the corticospinal tract to a motor neuron pool
312	(Sun et al., 2000). Another previous study showed that reticulospinal pathways originating in
313	the reticularis gigantocellularis nucleus were disinhibited in PD as a result of abnormal
314	descending influences on spinal cord interneurons (Delwaide et al., 1991). Furthermore,
315	patients with PD exhibited more variable and intermittent MU discharge rates than healthy
316	subjects in a submaximal voluntary contraction task (Glendinning & Enoka, 1994). Patients
317	with PD exhibit damage in the basal ganglia cells in the substantia nigra and the degeneration
318	of cells in the locus coeruleus, thalamus, brain stem, autonomic nuclei, and spinal cord
319	(Paulus & Jellinger, 1991). The spinal cord also receives dopaminergic projections from the
320	thalamus and hypothalamus (Lindvall et al., 1983). Because motor neurons receive numerous
321	inputs from descending brain stem and cortical pathways, as well as from propriospinal and

322	sensory afferents, damage to many of these areas in patients with PD might disturb the normal
323	balance of excitatory and inhibitory synapses onto motor neurons. The results of such an
324	imbalance would be a change in the function of motor neurons. Grimby et al. reported that
325	recruitment order of MUs upon voluntary contraction changes according to proprioceptive
326	afferent activity (Grimby & Hannerz, 1968). Furthermore, patients with PD exhibit decreased
327	of Ib interneuron activity (Delwaide et al., 1991) and increased Ia inhibitory activity (Nichols
328	& Koffler-Smulevitz, 1991). These findings suggest that spinal cord circuits behave
329	abnormally in PD patients and could alter motor neuron behavior. In addition to changes in
330	the central nervous system, a previous study reported that fast-twitch muscle fibers appear to
331	atrophy selectively in PD patients (Edstrom, 1970). The authors explained that this
332	phenomenon is the effect of selective disuse of high-threshold phasic MUs and increased
333	usage of low threshold MUs owing to rigidity. These previous findings are consistent with the
334	results of the present study showing that compared with the less-affected side of patients with
335	PD and both sides of control subjects, the more-affected side of patients with PD exhibits
336	lower muscle strength, higher MU firing rates, and an absence of a relationship between the
337	mean MU firing rate and MU threshold. Thus, the cause of the greater reduction in the mean
338	MU firing rate in patients with PD may be a change in central nervous system control that

Page 24 of 47

results in neurophysiological adaptations related to changes in the contractile properties of themuscle fibers.

341	In the present study, we applied HD-SEMG to clarify disease-specific MU
342	activation in PD patients. Many previous studies have performed analyses of MU behavior in
343	healthy conditions and in several diseases (e.g., stroke and diabetes mellitus) (Watanabe et al.,
344	2013; Hyngstrom et al., 2018; Martinez-Valdes et al., 2018). HD-SEMG can be used to
345	noninvasively investigate MU behavior in a large area of muscles during force production and
346	can thus be employed as a tool to test disease-specific MU behavior in several diseases.
347	The present study has several limitations. First, the small sample size of 11 patients
348	with PD is a study limitation, but the results of our study clearly show that the more-affected
349	side of patients with PD exhibited different MU behaviors compared with the less-affected
350	side. Second, the subjects in the present study only performed a low-intensity MVC task (e.g.,
351	30% MVC). Third, only patients with PD presenting mild to moderate motor symptoms, and
352	almost no non-motor symptoms (e, g, cognitive impairment and sleep disturbance) were
353	recruited for this study. Finally, we only recruited female patients with PD, and thus the
354	results of this study cannot be applied to male patients with PD. Therefore, future studies
355	(e.g., a large-sample study, studies testing different MVC tasks, studies recruiting patients

356	with PD presenting severe symptoms, and studies examining the effect of sex on MU
357	behavior and laterality) are needed to clearly understand MU behavior in patients with PD.
358	In conclusion, we investigated disease-specific MU behavior in PD patients using
359	HD-SEMG. Compared to the control subjects, the patients with PD exhibited laterality of MU
360	recruitment behavior. Importantly, PD patients exhibited laterality of MU behavior and MU
361	behavior abnormalities even when exhibiting only mild symptoms. These findings suggest the
362	importance of considering the detection of abnormal muscle properties in PD patients
363	beginning in the early phase of the disease.
364	
365	Acknowledgements
366	We gratefully thank Dr. Tadashi Toyama and Dr. Sakae Miyagi, who helped perform the
367	statistical analyses. This study was supported by research grants from JSPS KAKENHI for
368	Young Scientists (17K17908 and 20K19448 to YN). This study was also partially supported
369	by Bilateral Joint Research Projects of JSPS (1082626 to KW and AH) and the Slovenian
370	Research Agency (Projects J2-1731 and L7-9421 and Program funding P2-0041 to AH).
371	

372 Competing Interests

373	The authors d	eclare no o	conflicts of	of interest	and that no	companies or	manufacturers v	will
						r r		

- benefit from the results of this study.
- 375

376	Authors'	Contributions

- 377 YN and KW conceived and designed the study; YN performed experiments; YN and KW
- analyzed data; YN, KW, AH, HM and ST interpreted the results of experiments; YN, KW and
- 379 AH prepared figures; YN, KW, and AH drafted the manuscript; and YN, KW, AH, NM, HM
- and ST edited and revised the manuscript. YM, KW, AH, NM, HM, and ST approved the
- 381 final version of the manuscript.
- 382

383 Data Accessibility

384 Data are available via request from the corresponding author.

385

386 Abbreviations

387 CV, coefficient of variation; EMG, electromyography; HD-SEMG, high-density surface
388 electromyography; MU, motor unit; MVC, maximal voluntary contraction; PD, Parkinson's
389 disease; pps, pulses per second; SD, standard deviation; SNPc, substantia nigra pars compacta;

390 UPDRS, Unified Parkinson's Disease Rating Scale; VL, Vastus lateralis

391 **References**

392	Baumann, C.R., Held, U., Valko, P.O., Wienecke, M. & Waldvogel, D. (2014) Body side and
393	predominant motor features at the onset of Parkinson's disease are linked to motor and
394	nonmotor progression. Mov Disord, 29, 207-213.
395	
396	Chronister, R.B., Walding, J.S., Aldes, L.D. & Marco, L.A. (1988) Interconnections between
397	substantia nigra reticulata and medullary reticular formation. Brain Res Bull, 21, 313-
398	317.
399	
400	Cubo, E., Martin, P.M., Martin-Gonzalez, J.A., Rodriguez-Blazquez, C. & Kulisevsky, J.
401	(2010) Motor laterality asymmetry and nonmotor symptoms in Parkinson's disease.
402	Mov Disord, 25, 70-75.
403	
404	De Luca, C.J. & Erim, Z. (1994) Common drive of motor units in regulation of muscle force.
405	Trends Neurosci, 17, 299-305.
406	
407	De Luca, C.J. & Hostage, E.C. (2010) Relationship between firing rate and recruitment
408	threshold of motoneurons in voluntary isometric contractions. J Neurophysiol, 104,
409	1034-1046.
410	
411	De Luca, C.J., LeFever, R.S., McCue, M.P. & Xenakis, A.P. (1982) Behaviour of human
412	motor units in different muscles during linearly varying contractions. J Physiol, 329,
413	113-128.
414	
415	de Souza, L.M.L., Cabral, H.V., de Oliveira, L.F. & Vieira, T.M. (2018) Motor units in vastus
416	lateralis and in different vastus medialis regions show different firing properties
417	during low-level, isometric knee extension contraction. Hum Mov Sci, 58, 307-314.
418	
419	Delwaide, P.J., Pepin, J.L. & Maertens de Noordhout, A. (1991) Short-latency autogenic
420	inhibition in patients with Parkinsonian rigidity. Ann Neurol, 30, 83-89.
421	
422	Dengler, R., Wolf, W., Schubert, M. & Struppler, A. (1986) Discharge pattern of single motor
423	units in basal ganglia disorders. Neurology, 36, 1061-1066.

424	
425	Djaldetti, R., Ziv, I. & Melamed, E. (2006) The mystery of motor asymmetry in Parkinson's
426	disease. Lancet Neurol, 5, 796-802.
427	
428	Edstrom, L. (1970) Selective changes in the sizes of red and white muscle fibres in upper
429	motor lesions and Parkinsonism. J Neurol Sci, 11, 537-550.
430	
431	Farina, D., Holobar, A., Merletti, R. & Enoka, R.M. (2010) Decoding the neural drive to
432	muscles from the surface electromyogram. Clin Neurophysiol, 121, 1616-1623.
433	
434	Fearnley, J.M. & Lees, A.J. (1991) Ageing and Parkinson's disease: substantia nigra regional
435	selectivity. Brain, 114 (Pt 5), 2283-2301.
436	
437	Fuglevand, A.J., Winter, D.A. & Patla, A.E. (1993) Models of recruitment and rate coding
438	organization in motor-unit pools. J Neurophysiol, 70, 2470-2488.
439	
440	Gallego, J.A., Dideriksen, J.L., Holobar, A., Ibáñez, J., Glaser, V., Romero, J.P., Benito-
441	León, J., Pons, J.L., Rocon, E. & Farina, D. (2015a) The phase difference between
442	neural drives to antagonist muscles in essential tremor is associated with the relative
443	strength of supraspinal and afferent input. J Neurosci, 35, 8925-8937.
444	
445	Gallego, J.A., Dideriksen, J.L., Holobar, A., Ibáñez, J., Pons, J.L., Louis, E.D., Rocon, E. &
446	Farina, D. (2015b) Influence of common synaptic input to motor neurons on the neural
447	drive to muscle in essential tremor. J Neurophysiol, 113, 182-191.
448	
449	Glendinning, D.S. & Enoka, R.M. (1994) Motor unit behavior in Parkinson's disease. Phys
450	<i>Ther</i> , 74 , 61-70.
451	
452	Grimby, L. & Hannerz, J. (1968) Recruitment order of motor units on voluntary contraction:
453	changes induced by proprioceptive afferent activity. J Neurol Neurosurg Psychiatry,
454	31 , 565-573.
455	
456	Haaxma, C.A., Bloem, B.R., Borm, G.F., Oyen, W.J., Leenders, K.L., Eshuis, S., Booij, J.,
457	Dluzen, D.E. & Horstink, M.W. (2007) Gender differences in Parkinson's disease. J

458	Neurol Neurosurg Psychiatry, 78, 819-824.
459	
460	Hall, S.D., Prokic, E.J., McAllister, C.J., Ronnqvist, K.C., Williams, A.C., Yamawaki, N.,
461	Witton, C., Woodhall, G.L. & Stanford, I.M. (2014) GABA-mediated changes in
462	inter-hemispheric beta frequency activity in early-stage Parkinson's disease.
463	<i>Neuroscience</i> , 281 , 68-76.
464	
465	Heinrichs-Graham, E., Santamaria, P.M., Gendelman, H.E. & Wilson, T.W. (2017) The
466	cortical signature of symptom laterality in Parkinson's disease. Neuroimage Clin, 14,
467	433-440.
468	
469	Holobar, A., Farina, D., Gazzoni, M., Merletti, R. & Zazula, D. (2009) Estimating motor unit
470	discharge patterns from high-density surface electromyogram. Clin Neurophysiol, 120,
471	551-562.
472	
473	Holobar, A., Gallego, J.A., Kranjec, J., Rocon, E., Romero, J.P., Benito-León, J., Pons, J.L. &
474	Glaser, V. (2018) Motor Unit-Driven Identification of Pathological Tremor in
475	Electroencephalograms. Front Neurol, 9, 879.
476	
477	Holobar, A., Minetto, M.A. & Farina, D. (2014) Accurate identification of motor unit
478	discharge patterns from high-density surface EMG and validation with a novel signal-
479	based performance metric. J Neural Eng, 11, 016008.
480	
481	Holobar, A. & Zazula, D. (2004) Correlation-based decomposition of surface
482	electromyograms at low contraction forces. Med Biol Eng Comput, 42, 487-495.
483	
484	Hyngstrom, A.S., Murphy, S.A., Nguyen, J., Schmit, B.D., Negro, F., Gutterman, D.D. &
485	Durand, M.J. (2018) Ischemic conditioning increases strength and volitional activation
486	of paretic muscle in chronic stroke: a pilot study. J Appl Physiol (1985), 124, 1140-
487	1147.
488	
489	Kalia, L.V. & Lang, A.E. (2015) Parkinson's disease. Lancet, 386, 896-912.
490	
491	Kempster, P.A., Gibb, W.R., Stern, G.M. & Lees, A.J. (1989) Asymmetry of substantia nigra

492	neuronal loss in Parkinson's disease and its relevance to the mechanism of levodopa
493	related motor fluctuations. J Neurol Neurosurg Psychiatry, 52, 72-76.
494	
495	Kwon, D.H., Kim, J.M., Oh, S.H., Jeong, H.J., Park, S.Y., Oh, E.S., Chi, J.G., Kim, Y.B.,
496	Jeon, B.S. & Cho, Z.H. (2012) Seven-Tesla magnetic resonance images of the
497	substantia nigra in Parkinson disease. Ann Neurol, 71, 267-277.
498	
499	Lindvall, O., Björklund, A. & Skagerberg, G. (1983) Dopamine-containing neurons in the
500	spinal cord: anatomy and some functional aspects. Ann Neurol, 14, 255-260.
501	
502	Martinez-Valdes, E., Negro, F., Falla, D., De Nunzio, A.M. & Farina, D. (2018) Surface
503	electromyographic amplitude does not identify differences in neural drive to
504	synergistic muscles. J Appl Physiol (1985), 124, 1071-1079.
505	
506	Merletti, R., Holobar, A. & Farina, D. (2008) Analysis of motor units with high-density
507	surface electromyography. J Electromyogr Kinesiol, 18, 879-890.
508	
509	Milner-Brown, H.S., Fisher, M.A. & Weiner, W.J. (1979) Electrical properties of motor units
510	in Parkinsonism and a possible relationship with bradykinesia. J Neurol Neurosurg
511	<i>Psychiatry</i> , 42 , 35-41.
512	
513	Nichols, T.R. & Koffler-Smulevitz, D. (1991) Mechanical analysis of heterogenic inhibition
514	between soleus muscle and the pretibial flexors in the cat. J Neurophysiol, 66, 1139-
515	1155.
516	
517	Nishikawa, Y., Watanabe, K., Kawade, S., Takahashi, T., Kimura, H., Maruyama, H. &
518	Hyngstrom, A. (2019) The effect of a portable electrical muscle stimulation device at
519	home on muscle strength and activation patterns in locomotive syndrome patients: A
520	randomized control trial. J Electromyogr Kinesiol, 45, 46-52.
521	
522	Nishikawa, Y., Watanabe, K., Takahashi, T., Hosomi, N., Orita, N., Mikami, Y., Maruyama,
523	H., Kimura, H. & Matsumoto, M. (2017a) Sex differences in variances of multi-
524	channel surface electromyography distribution of the vastus lateralis muscle during
525	isometric knee extension in young adults. Eur J Appl Physiol, 117, 583-589.

526	
527	Nishikawa, Y., Watanabe, K., Takahashi, T., Orita, N., Kimura, H., Matsumoto, M. &
528	Maruyama, H. (2017b) Spatial electromyography distribution pattern of the vastus
529	lateralis muscle during ramp up contractions in Parkinson's disease patients. J
530	Electromyogr Kinesiol, 37 , 125-131.
531	
532	Paulus, W. & Jellinger, K. (1991) The neuropathologic basis of different clinical subgroups of
533	Parkinson's disease. J Neuropathol Exp Neurol, 50, 743-755.
534	
535	Pollok, B., Krause, V., Martsch, W., Wach, C., Schnitzler, A. & Südmeyer, M. (2012) Motor-
536	cortical oscillations in early stages of Parkinson's disease. J Physiol, 590 , 3203-3212.
537	
538	Povalej Bržan, P., Gallego, J.A., Romero, J.P., Glaser, V., Rocon, E., Benito-León, J.,
539	Bermejo-Pareja, F., Posada, I.J. & Holobar, A. (2017) New Perspectives for
540	Computer-Aided Discrimination of Parkinson's Disease and Essential Tremor.
541	<i>Complexity</i> , 2017 , 4327175.
542	
543	Solla, P., Cannas, A., Ibba, F.C., Loi, F., Corona, M., Orofino, G., Marrosu, M.G. & Marrosu,
544	F. (2012) Gender differences in motor and non-motor symptoms among Sardinian
545	patients with Parkinson's disease. J Neurol Sci, 323, 33-39.
546	
547	Stevens-Lapsley, J., Kluger, B.M. & Schenkman, M. (2012) Quadriceps muscle weakness,
548	activation deficits, and fatigue with Parkinson disease. Neurorehabil Neural Repair,
549	26 , 533-541.
550	
551	Sun, T.Y., Chen, J.J. & Lin, T.S. (2000) Analysis of motor unit firing patterns in patients with
552	central or peripheral lesions using singular-value decomposition. <i>Muscle Nerve</i> , 23,
553	1057-1068.
554	
555	Szewczyk-Krolikowski, K., Tomlinson, P., Nithi, K., Wade-Martins, R., Talbot, K., Ben-
556	Shlomo, Y. & Hu, M.T. (2014) The influence of age and gender on motor and non-
557	motor features of early Parkinson's disease: initial findings from the Oxford Parkinson
558	Disease Center (OPDC) discovery cohort. Parkinsonism Relat Disord, 20, 99-105.
559	

560	Tang, C.C., Poston, K.L., Dhawan, V. & Eidelberg, D. (2010) Abnormalities in metabolic	
561	network activity precede the onset of motor symptoms in Parkinson's disease. J	
562	Neurosci, 30 , 1049-1056.	
563		
564	Watanabe, K., Gazzoni, M., Holobar, A., Miyamoto, T., Fukuda, K., Merletti, R. & Moritani,	
565	T. (2013) Motor unit firing pattern of vastus lateralis muscle in type 2 diabetes	
566	mellitus patients. Muscle Nerve, 48, 806-813.	
567		
568	Watanabe, K., Holobar, A., Kouzaki, M., Ogawa, M., Akima, H. & Moritani, T. (2016) Age-	
569	related changes in motor unit firing pattern of vastus lateralis muscle during low-	
570	moderate contraction. Age (Dordr), 38, 48.	
571		
572	Watanabe, K., Holobar, A., Mita, Y., Kouzaki, M., Ogawa, M., Akima, H. & Moritani, T.	
573	(2018) Effect of Resistance Training and Fish Protein Intake on Motor Unit Firing	
574	Pattern and Motor Function of Elderly. Front Physiol, 9, 1733.	
575		
576	Watanabe, K., Miyamoto, T., Tanaka, Y., Fukuda, K. & Moritani, T. (2012) Type 2 diabetes	
577	mellitus patients manifest characteristic spatial EMG potential distribution pattern	
578	during sustained isometric contraction. Diabetes Res Clin Pract, 97, 468-473.	
579		
580	Yavuz, U., Negro, F., Sebik, O., Holobar, A., Frömmel, C., Türker, K.S. & Farina, D. (2015)	
581	Estimating reflex responses in large populations of motor units by decomposition of	
582	the high-density surface electromyogram. J Physiol, 593, 4305-4318.	

583	Figure and Table Legends
584	Table 1. Characteristics of patients with PD and control subjects.
585	
586	Table 2. Subcomponents of UPDRS Part III.
587	
588	Table 3. Number of MUs in each MU group.
589	
590	Figure 1. Representative image of the high-density surface electromyogram (SEMG)
591	decomposition of the less-affected side of a patient with PD (72 years old) during the
592	submaximal isometric contraction task. A: Motor unit action potential templates of 11 motor
593	units, identified by the Convolution Kernel Compensation technique from a high-density
594	surface electromyogram. B: Discharge pattern of the detected individual motor units and
595	performed force. MU action potential templates on discarded SEMG channels are left blank.
596	
597	Figure 2. Comparison of laterality for the knee extensor torque (A), CV of force (B), cross-
598	correlation function, and (D) mean MU firing rate on both sides of patients with PD and

599 control subjects.

600	Figure 3. Cross-correlation functions computed between the MU firing rates of the less-
601	affected side (A) and more-affected side (B) for patients with PD and the left side (C) and
602	right side (D) of a control subject during submaximal isometric contraction.
603	
604	Figure 4. Correlations between the mean MU firing rate and UPDRS part III score for the
605	less-affected side (A) and more-affected side (B) of patients with PD, and the MU threshold
606	for both sides of patients with PD (C) and control subjects (D). Strong correlations were
607	observed between the mean MU firing rate and UPDRS part III score on the more-affected
608	side (B). Moderate correlations were observed between the mean MU firing rate and threshold
609	on the less-affected side of patients with PD and both sides of control subjects (C and D).
610	
611	Figure 5. Representative MU firing rates for the less-affected side (A) and more-affected side
612	(B) of a patient with PD (67 years old) and left side (C) and right side (D) of a control subject
613	(66 years old) during ramp-up contraction to 0–30% MVC. The red lines, blue lines, and
614	green lines indicate motor units recruited at < 10; MU10, 10–20; MU20, 20–30% MVC;
615	MU30.

617	Figure 6. Comparison of the mean MU firing rate for individual MU groups of control
618	subjects (A) and patients with PD (B) during submaximal ramp contraction to 30% MVC. * p
619	< 0.05.
620	

- 621 Figure 7. Comparison of laterality for the MU firing rate with matched recruitment threshold
- 622 (21.5 $\% \pm 0.5 \%$ MVC) on both sides of patients with PD and control subjects.

	Parkinson's disease patients,	Control subjects,
	n = 11	n = 9
	More-affected side/Less-	Left side/Right side
	affected side	
Age, year	69.2 ± 6.2	66.8 ± 3.5
Height, cm	152.9 ± 4.0	151.8 ± 3.3
Weight, kg	51.2 ± 7.2	51.9 ± 4.9
Disease duration, year	2.7 ± 0.9	N/A
UPDRS part III	13 (9–16)	N/A
Knee extension torque, Nm	58.5 ± 11.1/70.0 ± 15.2	$72.6 \pm 13.1/73.9 \pm 11.7$
L-dopa, mg	200 (100–200)	N/A
Mini-Mental State	28.8 ± 1.1	29.8 ± 0.4
Examination		

Table 1. Characteristics of PD patients and control subjects

UPDRS, Unified Parkinson's Disease Rating Scale

	More-affected side	Less-affected side
Speech	1 (0–1)	
Facial expression	1 (1-	-2)
Rigidity	0 (0–0)	0 (0–0)
Finger tapping	1 (1-1)	0 (0–0)*
Hand movements	1 (1–2)	0 (0–1)*
Pronation-supination movements of hands	1 (1–2)	0 (0–1)*
Toe tapping	1 (1–2)	0 (0–0)*
Leg agility	0 (0–1)	0 (0–0)*
Arising from chair	1 (0-	-2)
Gait	1 (0-	-1)
Freezing of gait	0 (0-	-0)
Postural stability	1 (0-	-2)
Posture	1 (0-	-1)
Global spontaneity of movement	1 (0-	-2)
Postural tremor of the hands	0 (0–0)	0 (0–0)
Kinetic tremor of the hands	0 (0–0)	0 (0–0)

 Table 2.
 Subcomponents of the Unified Parkinson's Disease Rating Scale Part III

Rest tremor amplitude	0 (0–0)
Constancy of rest tremor	0 (0–0)

Data shown as the median (min-max).

* p < 0.05, compared with the more-affected side.

	Less-affected	More-affected	Left side	Right side
	side	side		
Total	10.82 ± 3.06	11.82 ± 2.99	8.56 ± 2.74	8.78 ± 3.11
MU10	2.82 ± 1.94	2.64 ± 2.01	2.00 ± 1.66	2.11 ± 1.36
MU20	5.36 ± 2.06	6.45 ± 2.16	3.67 ± 1.80	3.56 ± 1.81
MU30	2.64 ± 2.01	2.73 ± 1.79	2.89 ± 1.27	3.11 ± 0.93

Table 3. Number of motor units in each MU group.

Representative of the high-density surface electromyogram (SEMG) decomposition in a less-affected side Parkinson's disease patient (72 years old) during submaximal isometric contraction task. A: Motor unit action potential templates of 11 motor units, identified by the Convolution Kernel Compensation technique from a high-density surface electromyogram. B: Discharge pattern of the detected individual motor units and performed force. Motor unit action potential templates on discarded SEMG channels are left blank.

209x72mm (600 x 600 DPI)

Figure 2. Comparison of laterality for the knee extensor torque (A), CV of force (B), cross-correlation function, and (D) mean MU firing rate on both sides of patients with PD and control subjects.

195x179mm (600 x 600 DPI)

Figure 3. Cross-correlation functions computed between the MU firing rates of the less-affected side (A) and more-affected side (B) for patients with PD and the left side (C) and right side (D) of a control subject during submaximal isometric contraction.

196x182mm (600 x 600 DPI)

Figure 4. Correlations between the mean MU firing rate and UPDRS part III score for the less-affected side (A) and more-affected side (B) of patients with PD, and the MU threshold for both sides of patients with PD (C) and control subjects (D). Strong correlations were observed between the mean MU firing rate and UPDRS part III score on the more-affected side (B). Moderate correlations were observed between the mean MU firing rate and threshold on the less-affected side of patients with PD and both sides of control subjects (C and D).

198x165mm (600 x 600 DPI)

Figure 5. Representative MU firing rates for the less-affected side (A) and more-affected side (B) of a patient with PD (67 years old) and left side (C) and right side (D) of a control subject (66 years old) during ramp-up contraction to 0–30% MVC. The red lines, blue lines, and green lines indicate motor units recruited at < 10; MU10, 10-20; MU20, 20-30% MVC; MU30.

201x153mm (600 x 600 DPI)

Figure 6. Comparison of the mean MU firing rate for individual MU groups of control subjects (A) and patients with PD (B) during submaximal ramp contraction to 30% MVC. * p < 0.05.

200x83mm (600 x 600 DPI)

Figure 7. Comparison of laterality for the MU firing rate with matched recruitment threshold (21.5 $\% \pm 0.5$ %MVC) on both sides of patients with PD and control subjects.

97x92mm (600 x 600 DPI)