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Abstract In parameter estimation, the maximum-likelihood method (ML) does not
work for some distributions. In such cases, the maximum product of spacings method
(MPS) is used as an alternative. However, the advantages and disadvantages of the
MPS, its variants, and the ML are still unclear. These methods are based on the
Kullback–Leibler divergence (KLD), and we consider applying the method of weighted
residuals (MWR) to it. We prove that, after transforming the KLD to the integral
over [0,1], the application of the collocation method yields the ML, and that of the
Galerkin method yields the MPS and Jiang’s modified MPS (JMMPS); and the appli-
cation of zero boundary conditions yields the ML and JMMPS, and that of non-zero
boundary conditions yields the MPS. Additionally, we establish formulas for the ap-
proximate difference among the ML, MPS, and JMMPS estimators. Our simulation
for seven distributions demonstrates that, for zero boundary condition parameters,
for the bias convergence rate, ML and JMMPS are better than the MPS; however,
regarding the MSE for small samples, the relative performance of the methods dif-
fers according to the distributions and parameters. For non-zero boundary condition
parameters, the MPS outperforms the other methods: the MPS yields an unbiased
estimator and the smallest MSE among the methods. We demonstrate that from the
viewpoint of the MWR, the counterpart of the ML is JMMPS not the MPS. Using
this KLD-MWR approach, we introduce a unified view for comparing estimators,
and provide a new tool for analyzing and selecting estimators.
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1 Introduction

The maximum-likelihood method (ML) is one of the most popular methods of param-
eter estimation in statistics. However, the ML does not work for some distributions.
For example, Smith (1985) showed that for the three-parameter Weibull distribution,
F(x) = 1−exp

[
−{(x−µ)/σ}γ

]
, if γ < 2, then the ML estimator (MLE) is not con-

sistent, and if γ < 1, then there is no MLE. An alternative to the MLE for such cases
is the maximum product of spacings method (MPS, Cheng and Amin, 1983), also
known as the maximum spacing method (Ranneby, 1984), in which we minimize the
product of spacings instead of the likelihood. The MPS can be applied to a wider
class of distributions than the ML, and it shares several good properties with the ML,
for example, the MPS estimators (MPSEs) are consistent and asymptotically normal.
For details of the MPS, refer to Ekström (2008).

Several variants of the MPS have been proposed. For example, Ranneby and Ek-
ström extended the MPS by replacing the logarithmic function with generic convex
functions (e.g., Ekström, 2001). Huang and Lin (2014) added a fitting parameter to
optimize the selection of the convex function. Jiang (2013) proposed another version
of the MPS in which the lowermost and uppermost spacings were square rooted to
obtain the product of n effective spacings; the original MPS has n+ 1. Jiang (2013)
showed that their method provided a more accurate estimation for the three-parameter
Weibull distribution than the MPS. However, little is known about the advantages and
disadvantages of the MPS, its variants, and the ML, and which method should be used
in which cases.

The ML, MPS, and their variants are derived from the Kullback–Leibler diver-
gence (KLD). If we change the variables and move the interval of integration to [0,1],
then minimizing the KLD can be considered as a boundary value problem. Then, we
can apply the method of weighted residuals (MWR) to it. The MWR is the name of
a family of methods for solving differential and integral equations (Finlayson, 1972).
The popular finite element method (FEM) is an MWR. In the MWR, we can choose
the various trial and weighting functions; thus, we have a variety of methods, such as
the point collocation method and Galerkin method. In this paper, we apply the MWR
to minimizing the KLD. The transformation of the KLD followed by the application
of the point collocation method leads to the ML, and the application of the Galerkin
method leads to Jiang’s modified version of the MPS (JMMPS). Additionally, we
prove that the original MPS is good for distributions that have non-zero boundary
values for the derivative of the distribution function with respect to the parameters.

In the following section, we explain the MPS and JMMPS, and provide necessary
definitions. In Section 3, we present the main results of the application of the MWR to
KLD. In Section 4, we demonstrate the approximate difference of score functions and
estimators among the ML, MPS, and JMMPS. In Section 5, we present the simulation
results for the relative performance of the ML, MPS, and JMMPS, and in Section 6,
we discuss the results.



Method of Weighted Residuals for ML and MPS 3

2 Maximum Product of Spacings and Jiang’s Modified Version

Let {Xi}n
i=1 be an independent and identically distributed (iid) sample from distri-

bution F and {X(i)} be its order statistics. For brevity, we use the notation Fi :=
F(X(i);θ). Additionally, we define the endpoints of x as follows:

∗x = inf{x : F(x)> 0} , x∗ = sup{x : F(x)< 1} .

The spacings of sample {Xi}n
i=1 are defined as

Di(θ) := Fi−Fi−1 (i = 1, . . . ,n+1),

where F0 and Fn+1 are

F0 := lim
x↓∗x

F(x;θ) = 0 and Fn+1 := lim
x↑x∗

F(x;θ) = 1,

respectively. Additionally, we express the partial derivatives as follows:

Fθ ,i :=
∂F(Xi;θ)

∂θ
,

Dθ ,i := Fθ ,i−Fθ ,i−1.

Then Fθ ,0 and Fθ ,n+1 are defined as

Fθ ,0 := lim
x↓∗x

Fθ (x;θ) and Fθ ,n+1 := lim
x↑x∗

Fθ (x;θ),

respectively.
In the MPS, we calculate the maximizer of the following product of spacings:

PMPS(θ) =
n+1

∏
i=1

Di.

By contrast, in JMMPS, we maximize the following:

PJMMPS(θ) = D1/2
1

(
n

∏
i=2

Di

)
D1/2

n+1.

The log product of spacings, which is the counterpart of the log likelihood, is
defined as follows:

logPMPS(θ) =
n+1

∑
i=1

logDi, (1)

logPJMPPS(θ) =
1
2

logD1 +
n

∑
i=2

logDi +
1
2

logDn+1 (2)

for the MPS and JMMPS, respectively.



4 Takuya Kawanishi

When we apply the ML to estimation, in many cases, we solve the likelihood
equation (LE). The MPS and JMMPS equivalents of the LE are as follows; we call
them the product of spacings equations (PSEs) of the MPS:

n+1

∑
i=1

Dθ ,i

Di
= 0, (3)

and JMMPS:
1
2

Dθ ,1

D1
+

n

∑
i=2

Dθ ,i

Di
+

1
2

Dθ ,n+1

Dn+1
= 0. (4)

3 Application of the Method of Weighted Residuals to the Kullback–Leibler
Divergence

3.1 Kullback–Leibler Divergence over [0,1]

The KLD is defined as follows:

DKL =
∫ x∗

∗x
log
(

f (x;θ0)

f (x;θ)

)
f (x;θ0)dx.

To apply the MWR to the KLD, we move the interval of integration of the KLD from
(∗x,x∗) to [0,1], where the latter is the range of the distribution function and is a
closed interval. We introduce the following notation:

Q(p,θ) := F−1(p,θ),

Q0(p) := Q(p,θ0),

F̃(p,θ) := F(Q0(p),θ).

Then, by applying the change of variables, for the negative KLD, we have

−DKL =
∫ 1

0

[
log

∂ F̃
∂ p

(p,θ)− log
∂ F̃
∂ p

(p,θ0)

]
d p.

We assume that there exists the global maximum of −DKL, and that the maximizer is
the solution of the following equation:

−∂DKL

∂θ
=
∫ 1

0

∂ p
∂ F̃

∂ F̃θ

∂ p
(p,θ)d p = 0. (5)

3.2 Method of Weighted Residuals

The MWR, including the FEM, is a popular method for solving differential equations.
The procedure is as follows: (i) approximate the equation to be solved using trial
functions, (ii) define residual R as the difference between the approximate and exact
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equations, (iii) define appropriate weighting function w, and (iv) force the weighted
residual, that is, the inner product of the residual and weight, to be zero:

(R,w) :=
∫ 1

0
R(p)w(p)d p = 0. (6)

In our setting, we determine the estimator θ̂ that approximately satisfies (5) given
sample {Xi}1≤i≤n by introducing the empirical quantile function:

QE : [0,1]→ R.

We require QE to be continuous and to satisfy

QE(pi) = X(i).

Additionally, we define the empirical version of F̃ :

F̃E(p,θ) := F(QE(p),θ).

Then our problem is to solve the following under QE of the sample:∫ 1

0

∂ p
∂ F̃E

∂ F̃E
θ
(p,θ)

∂ p
d p = 0. (7)

To solve this, let R be

R(p,θ) :=
∂ p

∂ F̃E

∂ F̃E
θ

∂ p
(p,θ),

and choose an appropriate weighting function w and make (R,w) = 0. When solving
differential equations, the unknown values are the values of the function at nodes pi
(or xi); however, our unknown values are the parameters θ . The weighted residual (6)
results in the same number of equations as the dimensions of the parameters, and we
solve them to obtain the estimators.

3.3 Point Collocation Method Leads to Maximum Likelihood

In the point collocation method, the weighting function is chosen to be Dirac’s delta
functions at selected points; in our case, a natural choice is n equally spaced points in
[0,1], i/(n+1) (i = 1, . . . ,n):

w(p) =
n

∑
i=1

δ

(
p− i

n+1

)
. (8)

Then the weighted residual of the integral equation (7) is

(R,w) =
∫ 1

0

[
∂Fθ

∂F
(QE(p),θ)

] n

∑
i=1

δ

(
p− i

n+1

)
d p

=
n

∑
i=1

fθ (xi,θ)

f (xi,θ)
.

Setting (R,w) to zero yields the LE.
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3.4 Galerkin Method Leads to Jiang’s Modified Maximum Product of Spacings

The Galerkin method makes the residual orthogonal to the basis of the trial function.
To achieve this, the typical approach is to make the weighting function have the same
form as the trial function. We use the piecewise linear function for the trial function,
which is the simplest function applicable to our case, with grid points pi = i/(n+1),
(i = 1, . . . ,n). For trial function φ , we have

φi =


y− pi−1

pi− pi−1
pi−1 ≤ y≤ pi,

pi+1− y
pi+1− pi

pi ≤ y≤ pi+1,

(
dφ

d p

)
i
=


1

pi− pi−1
pi−1 ≤ y≤ pi,

−1
pi+1− pi

pi ≤ y≤ pi+1.

Using these trial functions, we have the following approximations:

(
∂ F̃E

∂ p

)h

=
n

∑
i=1

F̃E
i

(
dφ

d p

)
i
,

(
∂ F̃E

θ

∂ p

)h

=
n

∑
i=1

F̃E
θ ,i

(
dφ

d p

)
i
,

where

F̃E
i = F(QE(pi),θ) = F(X(i),θ) = Fi,

F̃E
θ ,i =

∂

∂θ
F(QE(pi),θ) = Fθ (X(i),θ) = Fθ ,i.

Additionally, let the weighting function have the same form as the trial function:

w =
n

∑
i=1

φi. (9)

Our problem is then written as

((
∂ F̃E

θ

∂ p
∂ p

∂ F̃E

)h

,w

)
= 0. (10)
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For each interval [pi−1, pi], 2≤ i≤ n, the integral is

∫ pi

pi−1

(
∂ F̃E

θ

∂ p
∂ p

∂ F̃E

)h

wdξ

=
∫ pi

pi−1

F̃E
θ ,i− F̃E

θ ,i−1

pi− pi−1

pi− pi−1

F̃E
i − F̃E

i−1

{
ξ − pi−1

pi− pi−1
+

pi−ξ

pi− pi−1

}
dξ

= (pi− pi−1)
F̃E

θ ,i− F̃E
θ ,i−1

F̃E
i − F̃E

i−1
=

1
n+1

Dθ ,i

Di
.

For the lowermost and uppermost spacings,

∫ p1

0

(
∂ F̃E

θ

∂ p
∂ p

∂ F̃E

)h

wdξ =
∫ p1

0

F̃E
θ ,1

F̃E
1

(
ξ

p1

)
dξ =

1
2(n+1)

Dθ ,1

D1∫ 1

pn

(
∂ F̃E

θ

∂ p
∂ p

∂ F̃E

)h

wdξ =
∫ 1

pn

−F̃E
θ ,n

1− F̃E
n

1−ξ

1− pn
dξ =

1
2(n+1)

Dθ ,n+1

Dn+1
.

The summation yields

0 = (R,w) =
1

n+1

(
1
2

Dθ ,1

D1
+

n

∑
i=2

Dθ ,i

Di
+

1
2

Dθ ,n+1

Dn+1

)
,

which is the PSE of JMMPS (Eq. (4)).

3.5 Non-Zero Boundary Values and the Maximum Product of Spacings

Thus far, we have used the weighting function of (8) and (9). Hence, we implicitly
assume that the boundary values of F̃θ are

F̃θ (0) = F̃θ (1) = 0. (11)

However, we can adapt the above methods to distributions that have non-zero, and
possibly unknown boundary values of F̃θ (0) or F̃θ (1). To achieve this, we add the
boundary basis,

φ0 =
y
p1

φn+1 =
y− pn

1− pn
, (12)

and let the weighting function, for example, for the Galerkin method, be

w =
n+1

∑
i=0

φi,

and let the weighted residual Eq. (10) incorporate the boundary conditions

∫ 1

0

(
∂ F̃E

θ

∂ p
∂ p

∂ F̃E

)h

wd p+w(0)F̃θ (0)−w(1)F̃θ (1) = 0.
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We combine the terms for the lowermost spacing and lower boundary condition:

r0 :=
∫ p1

0

(
∂ F̃E

θ

∂ p
∂ p

∂ F̃E

)h

wd p+w(0)F̃E
θ (0)

=
1

n+1

F̃E
θ ,1− F̃E

θ
(0)

p1

p1

F̃E
1
+w(0)F̃E

θ (0).

At the boundary of p = 0, we have ∂ p/∂ F̃E = 1; thus, it is reasonable to set p1/F̃E
1 =

1. Additionally, we have w(0)= 1 and p1 = 1/(n+1). Hence, the F̃E
θ
(0) terms cancel,

and we have

r0 =
1

n+1

F̃E
θ ,1

F̃E
1

.

For the uppermost spacing, the same procedure applies and

rn+1 :=
∫ 1

pn

(
∂ F̃E

θ

∂ p
∂ p

∂ F̃E

)h

wd p−w(1)F̃E
θ (1)

=
1

n+1

−F̃E
θ ,n

1− F̃E
n
.

Then, for the Galerkin method, the weighted residual finally becomes

0 = (R,w) = r0 +
n

∑
i=2

Dθ ,i

Di
+ rn+1

=
n+1

∑
i=1

1
n+1

Dθ ,i

Di
,

which is the PSE of the MPS.
For convenience, we call the condition expressed in Eq. (11) the zero-BC, and the

parameter that satisfies the condition the zero-BC parameter. We call the parameter
that does not satisfy Eq. (11) the non-zero-BC parameter.

4 Difference among the methods

4.1 Difference of score functions

We start by transforming each term of the partial derivative of the log product of
spacings using the trapezoidal rule of integration. For 2≤ i≤ n,

Fθ ,i−Fθ ,i−1

Fi−Fi−1
=

1
Fi−Fi−1

∫ Fi

Fi

∂Fθ

∂F
dF =

1
Fi−Fi−1

∫ Fi

Fi

∂Fθ

∂x
∂x
∂F

dF

=
1

Fi−Fi−1

∫ Fi

Fi−1

fθ

f
dF =

1
2

(
fθ

f

∣∣∣∣
i
+

fθ

f

∣∣∣∣
i−1

)
+O((Fi−Fi−1)

2).
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With this relationship, noting that O((Fi − Fi−1)) = O(1/n), we can calculate the
approximate difference of score functions between the MPS and ML, and between
JMMPS and the ML:

εMPS/ML(θ) :=
∂

∂θ
lMPS(θ)−

∂

∂θ
lML(θ)

=
Fθ ,1

F1
− 1

2
fθ

f

∣∣∣∣
X(1)

+
−Fθ ,n

1−Fn
− 1

2
fθ

f

∣∣∣∣
X(n)

+O
(

1
n

)
; (13)

and

εJMMPS/ML(θ) :=
∂

∂θ
lJMMPS(θ)−

∂

∂θ
lML(θ)

=
Fθ ,1

2F1
− 1

2
fθ

f

∣∣∣∣
X(1)

+
−Fθ ,n

2(1−Fn)
− 1

2
fθ

f

∣∣∣∣
X(n)

+O
(

1
n

)
.

4.2 Difference of estimators

Substituting the MPSE θ̂MPS for θ in (13) and noting that ∂ lMPS(θ̂MPS)/∂θ = 0, we
have

εMPS/ML(θ̂MPS) =
∂ lMPS

∂θ
(θ̂MPS)−

∂ lML

∂θ
(θ̂MPS) =−

∂ lML

∂θ
(θ̂MPS).

From this and the fact that ∂ lML(θ̂ML)/∂θ = 0,

−εMPS/ML(θ̂MPS) =
∂ lML

∂θ
(θ̂MPS)−

∂ lML

∂θ
(θ̂ML)

≈ ∂ 2lML(θ̂ML)

∂θ 2 (θ̂MPS− θ̂ML),

where the last approximation is from Taylor’s theorem. By multiplying both sides by
the inverse of information, we finally obtain

θ̂MPS− θ̂ML ≈−

{
∂ 2lML(θ̂ML)

∂θ 2

}−1

εMPS/ML(θ̂MPS).

We apply the same procedure to JMMPS, which yields

θ̂JMMPS− θ̂ML ≈−

{
∂ 2lML(θ̂ML)

∂θ 2

}−1

εJMMPS/ML(θ̂JMMPS).
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4.3 Examples

Exponential distribution

The cumulative distribution function (cdf) of the exponential distribution with the
rate parameter λ is

F(x;λ ) = 1− e−λx.

Note that we have F̃λ (0) = F̃λ (1) = 0, that is, the rate parameter is zero-BC. With
some calculus, for the MPS we have

εMPS/ML(λ ) =−
X(1)

2
−

X(n)

2
+O

(
1
n

)
.

On the right-hand side, the term X(n)/2 dominates, and from the quantile function
x = Q(F) = (1/λ ) log(1−F) and the fact that 1−Fn ≈ 1/n, we have

X(n) =
1
λ

log(1−Fn)≈
1
λ

log(1/n) =− 1
λ

logn;

hence,
εMPS/ML(λ ) = O(logn).

For JMMPS,

εJMMPS/ML(λ ) =−
1

2λ
+O

(
1
n

)
.

The information is ∂ 2lML(θ̂ML)/∂θ 2 = n/λ̂ 2
ML; thus,

λ̂MPS− λ̂ML =
λ̂ML

n
O(logn) = O

(
logn

n

)
(14)

λ̂JMMPS− λ̂ML = O
(

1
n

)
. (15)

The bias of λ̂ML is λ0/n, which is of O(1/n). From this, and from (14) and (15),
we prove that, for the rate parameter of the exponential distribution, the bias of the
MLE and JMMPS estimator (JMMPSE) are of O(1/n), and by contrast, the bias of
the MPSE is of O((logn)/n).

Uniform distribution

For the uniform distribution, the LE is not relevant. However, its counterparts for
the MPS and JMMPS, PSEs (Eqs. (3), (4)), have valid solutions. We consider the
simplest example. Suppose that

F(x;b) = x/b.

Then its log product of spacings of the MPS is

lMPS(θ) =
n

∑
i=1

log(X(i)−X(i−1))−n logb+ log
(

1−
X(n)

b

)
,
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where we interpret X(0) = 0. Then the PSE for the MPS is

0 =
∂

∂b
lMPS(θ) =−

n
b̂
+

1(
1− xn/b̂

) xn

b̂2

=−n
b̂
+

X(n)

b̂(b̂−X(n))
.

The solution of the PSE is

b̂MPS =
n+1

n
X(n).

We apply the same method to JMMPS, which yields

b̂JMMPS =
2n

2n−1
X(n).

From this and from the fact that b̂ML = X(n) and EX(n) = bn/(n+ 1), we conclude
that for the uniform distribution, the MPS yields an unbiased estimator, whereas the
MLE and JMMPSE have biases of O(1/n).

5 Simulation

5.1 Methods

We numerically generated N = 10000 iid samples of size n from various probability
distributions. Then, the MLE, MPSE, and JMMPSE were calculated for the same
set of samples. Then the bias and MSE were evaluated from N estimators. All the
estimators were calculated by directly minimizing the log likelihood or log product of
spacings (Eqs. (1), (2)) rather than solving the LE or PSEs. The list of the investigated
distributions is presented in Table 1.

In the implementation of the MPS and JMMPS, we need to manage tied values.
The MPS with the simple implementation of minimizing Eq. (1) or (2) breaks down
when there are ties (Cheng and Amin, 1983). For a discussion of ties, see Ekström
(2008). Suppose we have ρ distinct values in a sample of size n. Let {x(i)}

ρ

i=1 be the
order statistics of these distinct values and let λi be the occurrences of x(i), and let Fi
represent F(x(i)). The original definition of the modified product of spacings by Jiang
(2013) is

PJMMPS =
ρ

∏
i=1

[{Fi−Fi−1}{Fi+1−Fi}]λi/2 .

Note that this formulation is applicable to cases in which there are ties. An equivalent
formulation can be obtained by introducing weights wi as follows:

lPS(θ |X) =
ρ+1

∑
i=1

wi logDi(θ |X).
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Weights wi for JMMPS are

wJMMPS,i =


1
2 λ1 i = 1,
λi−1 +λi

2
i = 2, . . . ,ρ,

1
2 λρ i = ρ +1,

and those for the MPS are

wMPS,i =

{
λi i = 1, . . . ,n,
1 i = ρ +1.

For the calculation of the cdf and probability density function, generation of ran-
dom samples, and minimization of the log likelihood and log product of spacings,
we used the Scipy library for Python, particularly the packages scipy.stats and
scipy.optimize. The Python snippets used in this paper are available at Github
https://github.com/takuyakawanishi/kldmwr.

5.2 Results

Exponential distribution: Figure 1 shows the bias and MSE of the estimators of the
exponential distribution using two different parameterizations: one using the rate pa-
rameter λ (left panels) and the other using the scale parameter η (right panels). The
lower panels show the relationship between n and nbias. For both parameterizations,
nbias of the MPSE increases or decreases linearly with respect to logn, which means
that the absolute value of the bias of the MPSE decreases at the rate of O((logn)/n).
By contrast, nbias of the MLE and JMMPSE remains constant throughout the range
of n investigated, which means that the biases of the MLE and JMMPSE decrease
at the rate of O(1/n). The results for the rate parameter agree well with the exam-
ple in the previous section. The upper panels show the nMSEs, in which we observe
that the MSEs of the MLE, JMMPSE, and MPSE all converge to the same value
as n increases. The difference among the methods can be observed only when the
sample size is small. For rate parameter λ , (A) the MSE for small samples is largest
for the ML, followed by JMMPS and the MPS. For scale parameter η , however, (B)
the MSE for small samples is largest in the MPS. By contrast, the MSE in the ML
and JMMPS have practically no small sample effects. These two tendencies will be
repeatedly observed in what follows, and we call (A) ‘pattern A’ and (B) ‘pattern B.’

Normal distribution: Figure 2 shows the results for the normal distribution. We
compared the two cases in which (a) location parameter µ0 is known and variance
σ2

0 is unknown, and (b) both location parameter µ0 and variance σ2
0 are unknown.

Similar to the exponential distribution, we observe that the bias of the MPSE is of
O((logn)/n), whereas those of the MLE and JMMPSE are of O(1/n). For both cases
(a) and (b), the MSE exhibits pattern B, that is, we expect a larger MSE for the MPSE
than the MLE or JMMPSE in small samples. Another interesting difference between
the MLE and JMMPSE is that in case (a), the MLE is unbiased and the JMMPSE
is biased; however, in case (b), the MLE is biased and the JMMPSE is unbiased. It
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would be worth investigating the reason for this to understand the difference between
the ML and JMMPS, but we do not examine this point further in this paper.

Pareto distribution: The results for the Pareto distribution are shown in Figure
3. For the scale parameter η (Figure 3(a)), we have F̃η(0) = −η , that is, the scale
parameter η is of non-zero-BC. We observe that the bias and MSE of η̂ exhibit dif-
ferent patterns from the exponential or normal distributions. Regarding the bias, in
the lower panel, the MPSE is unbiased, whereas the MLE and JMMPSE are biased,
although the biases of the MLE and JMMPSE remain of O(1/n). The results for the
MSE are shown in the upper panel. Note that we plotted n2 MSE rather than nMSE.
For all the ML, MPS, and JMMPS, n2 MSE remains constant, which means that the
MSE decreases as O(1/n2), and the n2 MSEs of the three methods do not converge to
the same value. Additionally, we observe that the n2 MSEs are highest in the ML and
lowest in the MPS. We call this ‘pattern C.’ Figure 3(b) shows the shape parameter
α , which is zero-BC. Both the bias and MSE behave similarly to the results for the
rate parameter of the exponential distribution; that is, the rate of bias convergence of
the MPSE is of O((logn)/n) and the MSE exhibits pattern A.

Gamma distribution: Figure 4 shows the results for the Gamma distribution. Fig-
ure 4(a) shows the scale parameter η , and Figure 4(b) shows the shape parameter α .
For both parameters, the biases of the MLE and JMMPSE are of O(1/n), and that of
the MPSE is of O((logn)/n). The MSE of η̂ exhibits pattern B and that of α̂ exhibits
pattern A. Additionally, we observe that the JMMPSE of η is unbiased.

Beta distribution: For the beta distribution, the results for (α0,β0) = (0.5,1) are
shown in Figure 5. Figure 5(a) shows α̂ and Figure 5(b) shows β̂ . The bias, in addition
to the MSE, exhibits the same tendencies for both parameters: the biases of the MLE
and JMMPSE are of O(1/n), and the bias of the MPSE is of O((logn)/n); the MSE
exhibits pattern A. Although we do not present the results here, we verified that these
tendencies are observed with other combinations of parameters (e.g., (0.5, 0.5), (0.5,
2), (1, 2), (2, 2)).

Uniform distribution: The results for the uniform distribution are shown in Figure
6. For this distribution, the lower a and upper b parameters are both non-zero-BC.
The results exhibit the same tendency as those of the scale parameter of the Pareto
distribution. For both a and b, the MPSE are unbiased, the MLE and JMMPSE are
biased, and the magnitude of the bias is JMMPSE < MLE. Regarding the MSE, it
converges as O(1/n2), the MPSE is the smallest, and the MLE is the largest (pattern
C). These simulation results are consistent with the analytical results in the previous
section.

Cauchy distribution: We investigated the case in which both location µ and scale
η parameters are unknown, and the results are shown in Figure 7. We only show the
results for the scale parameter α because there is no difference among the methods
for the location parameter. The MLE and JMMPSE are unbiased, whereas the MPSE
is biased, the bias is of O(1/n), and the MSE exhibits pattern B.

We summarize the results in Table 1. In the table, we include the results that we
do not show in the figures; all of them exhibit no difference among the methods. We
call this pattern (for MSE) ‘pattern O.’ As expected from the results in Sections 3 and
4, whether the parameter is zero-BC (Eq. (11)) significantly affects the asymptotic
behavior of the bias and the small sample behavior of the MSE of the estimators.
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Regarding the choice of method, we should note that zero-BC and non-zero-BC
are characteristics not only of the distribution but also of the parameter. For example,
the Pareto distribution has both types of parameters: the scale parameter is non-zero-
BC and the shape parameter is zero-BC. In such cases, the choice of method is based
on which parameter we consider is most important.

6 Discussion

We applied the MWR to minimize the KLD to demonstrate that the point collocation
method leads to the ML and the Galerkin method leads to JMMPS. Moreover, the
traditional MPS was shown to be good for cases in which the boundary values of F̃θ

are non-zero; that is, from the viewpoint of the MWR, the counterpart of the ML is
JMMPS and not the MPS. This proximity of JMMPS to the ML was verified by the
results in Sections 4 and 5: the results for the MLE and JMMPSE are qualitatively
the same if we ignore the difference between unbiasedness and bias of O(1/n); the
bias and the MSE of JMMPSE always lie between those of the MLE and MPSE.

We demonstrated that the behaviors of the bias and MSE are strongly affected by
whether the parameter satisfies zero-BC. For zero-BC parameters, the bias conver-
gence rate is always better for the ML and JMMPS than the MPS; however, the small
sample MSE sometimes exhibits pattern A, in which the MPSE outperforms the MLE
and JMMPSE, and sometimes pattern B, in which the MLE and JMMPSE are better
than the MPSE. For non-zero-BC parameters, we always observed that the MPS is
the best among the three methods: the MPSE is always unbiased, and the MSE of the
MPSE is always smaller than the others for any size n.

Regarding the MPS, we observed that (a) the performance of the MPS for non-
zero-BC parameters is significantly better than that of the ML and JMMPS, and (b)
for the uniform distribution, the MPS, together with the JMMPS, has a PSE whose
solution is relevant, whereas for the ML, we have no LE. (a) and (b) should be added
to the list of advantages of MPS that has been established by researchers (e.g., Ek-
ström, 2008).

In this paper, we only investigated distributions for which the ML works. This
is one of the major limitations of this paper because the MPS and JMMPS are most
likely to be used for distributions for which the ML does not work. The relative
performance of the MPS and JMMPS for those distributions is of theoretical and
practical importance.

With this KLD-MWR approach, we can consider the ML, MPS, and JMMPS
from a unified point of view. This approach provides us with a new tool for investigat-
ing the difference among estimators and helping us in the choice of estimators. Thus
far, we have examined only the point collocation and Galerkin methods. However,
the MWR allows more methods, including the subdomain and least square; hence,
applying these methods of the MWR to KLD may also yield insights.
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Fig. 1: Exponential distribution: simulated nbias and nMSE. Comparison of param-
eterization with (a) the rate parameter λ and (b) the scale parameter η ; symbols are
squares: ML, circles: JMMPS, triangles: MPS
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Fig. 2: Normal distribution: simulated nbias and nMSE of the variance σ2. Compari-
son of the cases (a) when µ0 is known and σ2

0 unknown, and (b) when µ0 and σ2
0 are

unknown; symbols are squares: ML, circles: JMMPS, triangles: MPS
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Fig. 3: Pareto distribution: (a) nbias and n2MSE of scale parameter η , and (b) nbias
and nMSE of shape parameter α; symbols are squares: ML, circles: JMMPS, trian-
gles: MPS
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Fig. 4: Gamma distribution: nbias, and nMSE of (a) scale parameter η , and (b) shape
parameter α; symbols are squares: ML, circles: JMMPS, triangles: MPS
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Fig. 5: Beta distribution: nbias and nMSE of the shape parameters (a) α and (b) β ;
symbols are squares: ML, circles: JMMPS, triangles: MPS
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Fig. 6: Uniform distribution: nbias and n2MSE of (a) lower a and (b) upper b param-
eters; symbols are squares: ML, circles: JMMPS, triangles: MPS



Method of Weighted Residuals for ML and MPS 23

0

2

4

10
1

10
2

0

1

2

n

nM
SE

nb
ia
s

Fig. 7: Cauchy distribution: nbias, and nMSE of the scale parameter η η̂ for
(µ0,η0) = (1,1); symbols are squares: ML, circles: JMMPS, triangles: MPS


