
HPV-16 impairs the subcellular distribution and
levels of expression of protein phosphatase 1γ in
cervical malignancy

言語: eng

出版者: 

公開日: 2021-06-28

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24517/00062680URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Seiki et al. BMC Cancer  (2015) 15:230 
DOI 10.1186/s12885-015-1141-0
RESEARCH ARTICLE Open Access
HPV-16 impairs the subcellular distribution and
levels of expression of protein phosphatase 1γ in
cervical malignancy
Takayuki Seiki1, Kazunori Nagasaka1*, Christian Kranjec2, Kei Kawana1, Daichi Maeda3, Hiroe Nakamura1,
Ayumi Taguchi1, Yoko Matsumoto1, Takahide Arimoto1, Osamu Wada-Hiraike1, Katsutoshi Oda1,
Shunsuke Nakagawa4, Tetsu Yano5, Masashi Fukayama3, Lawrence Banks2, Yutaka Osuga1 and Tomoyuki Fujii1
Abstract

Background: The high risk Human Papillomavirus (HPV) E6 oncoproteins play an essential role in the development
of cervical malignancy. Important cellular targets of E6 include p53 and the PDZ domain containing substrates such
as hScrib and Dlg. We recently showed that hScrib activity was mediated in part through recruitment of protein
phosphatase 1γ (PP1γ).
Methods: Expression patterns of hScrib and PP1γ were assessed by immunohistochemistry of HPV-16 positive
cervical intraepithelial neoplasm (CIN), classified as CIN1 (n = 4), CIN2 (n = 8), CIN3 (n = 8), cervical carcinoma tissues
(n = 11), and HPV-negative cervical tissues (n = 8), as well as by subfractionation assay of the HPV-16 positive cervical
cancer cell lines, CaSki and SiHa. To explore the effects of the HPV-16 oncoproteins, we have performed siRNA
knockdown of E6/E7 expression, and monitored the effects on the expression patterns of hScrib and PP1γ.
Results: We show that PP1γ levels in HPV-16 positive tumour cells are reduced in an E6/E7 dependent manner.
Residual PP1γ in these cells is found mostly in the cytoplasm as opposed to the nucleus where it is predominantly
found in normal cells. We have found a striking concordance with redistribution in the pattern of expression (9/11;
81.8%) and loss of PP1γ expression in HPV-16 positive cervical tumours (2/11; 18.2%). Furthermore, this loss of PP1γ
expression and redistribution in the pattern of expression occurs progressively as the lesions develop (8/8; 100%).

Conclusion: Together, these results suggest that PP1γ may be a novel target of the HPV-16 oncoproteins and
indicate that it might be a potential novel biomarker for HPV-16 induced malignancy.

Keywords: Cervical cancer, Immunohistochemistry, hScrib, Protein phosphatase 1, Proteasome degradation, Human
papillomavirus 16
Background
Human Papillomaviruses (HPVs) are the aetiological
agents of cervical cancer [1]. This is caused by infection
with the high risk subset of HPV types, of which HPV-
16 is the most important, being responsible for over 60%
of global cervical cancer cases [2]. Cancer-causing HPVs
encode two oncoproteins, E6 and E7, whose continued ex-
pression and activity is essential for maintaining the malig-
nant phenotype, many years after the initial immortalising
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events [3,4]. Both viral oncoproteins function by perturb-
ing the normal activity of a variety of different cellular
control mechanisms. HPV E7 promotes cell cycle progres-
sion, in part through its association with members of the
pocket protein family of tumour suppressors [5], whilst
HPV E6 counteracts the pro-apoptotic effects of E7
through targeting the p53 tumour suppressor [6]. In both
cases, the viral oncoproteins make efficient use of the cel-
lular ubiquitin-proteasome machinery, with E7 targeting
pRb through the cullin 2 ubiquitin ligase complex [7],
whilst E6 uses the E6AP ubiquitin ligase to target p53 [8].
The effects of E6 and E7 are therefore cooperative, and
this is reflected both in tissue culture systems, where they
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cooperate in the immortalisation of primary keratinocytes
[9-11], and in animal models of tumourigenesis, where
they cooperate in the induction of tumours in the skin
and cervix [12,13].
Whilst targeting the pRb and p53 pathways is obvi-

ously very important for cervical tumourigenesis, it is
also clear that E6 and E7 have a large number of other
activities, many of which are also important for tumour
development. In the case of high risk HPV E6 oncopro-
teins, an intriguing class of targets that appear to be im-
portant for HPV E6 induced malignancy are the PDZ
(PSD/Dlg/ZO) domain containing substrates [14,15].
These are bound by E6 via a short stretch of amino acids
within the extreme carboxy terminal region of the E6
oncoprotein. Most importantly, this PDZ binding motif
(PBM) is only found in the high risk HPV E6 oncopro-
teins and is absent from the benign HPV E6 proteins
[16,17]. Through this PBM, E6 can interact with a large
number of cellular PDZ domain containing proteins,
many of which are subject to E6-induced proteasomal
degradation and E6-induced redistribution [16,18-21].
One of the most important of these targets is the cellular
tumour suppressor hScrib. In Drosophila Scrib was ori-
ginally identified as a potential tumour suppressor [22],
and more recent studies in mammalian tissues also indi-
cate tumour suppressive potential for hScrib. Loss of
Scrib cooperates with c-Myc in the development of
mammary carcinogenesis and Scrib also downregulates
ERK signaling, with hScrib deregulation correlating with
poor cancer prognosis [23-27]. In cervical tumourigen-
esis, hScrib patterns of expression are also perturbed as
lesions develop, with hScrib being completely absent in
many late stage tumours [28]. We recently found that
hScrib could interact with PP1γ [29] a protein phosphat-
ase that plays a critical role in controlling chromatin
organization and also has an important role in the DNA
damage response pathway [30,31] This suggested that
PP1γ expression patterns in cervical tumourigenesis
might likewise be perturbed. Therefore we initiated a
series of studies to investigate the pattern of PP1γ ex-
pression in HPV16 positive cervical tumours and derived
cell lines. We show that PP1γ is indeed subject to a
striking alteration in both its levels of expression and lo-
calisation, both as lesions develop, and in the tumour
derived cell lines. However this altered pattern of ex-
pression is independent of hScrib, is due directly to E6/
E7 expression, and highlights PP1γ as potential novel
biomarker of HPV induced neoplasia.

Methods
Cell lines and culture
HPV positive cervical cancer cell lines, CaSki, SiHa and
HeLa plus HPV negative C33A (cervical cancer derived)
and HaCaT (human keratinocytes) cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum at 37°C in a hu-
midified incubator with 5% CO2 [32]. The effect of
proteasome inhibitor was determined 24 hours post-
transfection after 3 hours of treatment with 10 μM
MG132 (Calbiochem).
For plasmid transfection, 293 cells were transfected

using TransIT-293 transfection reagent (Mirus Bio) and
HaCaT cells were transfected using Lipofectamine 2000
(Invitrogen), according to the manufacturer’s instruc-
tions, with pcDNA-HPV-16 E6. A plasmid expressing β-
galactosidase was included in each transfection and
pcDNA was used to equalize the input DNA.
Antibodies
The following commercial antibodies were used at the
dilution indicated: anti-hScrib goat polyclonal antibody
(Santa Cruz WB 1:1000, IHC 1:100), anti-PP1γ goat
polyclonal antibody (Santa Cruz WB 1:1000), anti-PP1
Gamma/PPP1CC Antibody LS-B4960 IHC-plus (tm)
rabbit polyclonal antibody (Lifespan bioscience, Inc. IHC
1:200), anti-PP1γ sheep polyclonal antibody (Abcam,
WB 1:1000), anti-actin monoclonal antibody (Sigma,
WB 1:5000), mouse monoclonal anti-p53 (DO-1) (Santa
Cruz WB 1:500), anti-p84 mouse monoclonal antibody
(Abcam, WB 1:1000), anti-E-Cadherin rabbit polyclonal
antibody (Santa Cruz WB 1:500), anti-α-tubulin mouse
monoclonal antibody (Abcam, WB 1:1000), mouse mono-
clonal anti-vimentin antibody (Santa Cruz WB 1:500).
siRNA transfection
The HPV-positive cervical cancer cells were seeded on
6 cm dishes and transfected using Lipofectamine 2000
(Invitrogen) with control siRNA against Luciferase (siLuc),
or siRNA against HPV-16 and 18 E6 sequences (Dharma-
con) described previously by Kranjec C et al., 2011.
72 hours post-transfection cells were harvested and total
cell extracts or cell fractionated extracts were then ana-
lysed by western blotting. Alexa 568 labeled negative con-
trol siRNA (Qiagen) was used to measure transfection
efficiency. The transfection efficiency was determined to
be over 70% for each cell line.
Subcellular fractionation assays
Differential extraction of the cells to obtain cytoplasmic,
membrane, cytoskeleton, and nuclear fractions was per-
formed using the Calbiochem Proteo Extract Fraction-
ation Kit according to the manufacturer’s instructions.
To inhibit phosphatase activity during the preparation of
cell lysates, phosphatase inhibitors (1 mM Na3VO4,
1 mM β-Glycerophosphate, 2.5 mM Sodium Pyrophos-
phate, 1 mM Sodium Fluoride) were also included.
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Western blotting
Total cellular extracts were prepared by directly lysing
cells from dishes in SDS lysis buffer. Alternatively cells
were lysed in either E1A buffer (25 mM HEPES pH 7.0,
0.1% NP-40, 150 mM NaCl, plus protease inhibitor
cocktail; Calbiochem) or RIPA buffer (50 mM Tris HCl
pH 7.4, 1% NP-40, 150 mM NaCl, 1 mM EDTA, plus
protease inhibitor cocktail; Calbiochem). For western
blotting, 0.45 μm nitrocellulose membrane (Schleicher
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Figure 1 Immunohistochemical analysis of the expression and localisat
(A) Paraffin embedded excised tissues were immunostained with anti-hScrib
antibodies, immunostaining was performed according to standard technique
Tucson, AZ, USA). Representative experiments for a section of cervical epitheli
(×200 original magnification). (B) High resolution microscopic images (scale b
HPV-16 positive advanced squamous cervical carcinomas.
and Schuell) was used and membranes were blocked
for 1 hour at 37°C in 10% milk/PBS followed by incuba-
tion with the appropriate primary antibody diluted in
10% milk/0.5% Tween 20 for 1 hour. After several
washings with PBS 0.5% Tween 20, HRP-conjugated
secondary antibodies (DAKO) in 10% milk/0.5% Tween
20 were incubated for 1 hour. Blots were developed using
Amersham ECL reagents according to the manufacturer's
instructions.
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ion of hScrib and PP1γ in advanced squamous cervical carcinomas.
or anti-PP1γ as indicated, and counterstained with haematoxylin. For the
s using an autostainer (BenchMark XT; Ventana Medical Systems, Inc.,
ums from normal cervix and advanced squamous cervical carcinomas
ars: 20 μm) for a section of cervical epitheliums from normal cervix and



Table 1 Immunostaining patterns for hScrib and PP1γ in
clinical samples of human uterine cervix

hScrib

Normal 16-positive

Membrane 8 0

Cytoplasm 0 5

Nuclear 0 0

No expression 0 6

Total 8 11

PP1y

HPV negative 16-positive

Membrane 0 0

Cytoplasm 0 9

Nuclear 8 0

No expression 0 2

Total 8 11
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Immunohistochemistry
All tissue samples were fixed in formalin and embedded
in paraffin (obtained from patients under Institutional
Review Board approval through the University of Tokyo
Hospital). For all antibodies, immunostaining was per-
formed according to standard techniques using an auto-
stainer (BenchMark XT; Ventana Medical Systems, Inc.,
Tucson, AZ, USA). Immunoreactivity was interpreted
based on the negative control, which was incubated
without the primary antibody. Detection of hScrib ex-
pression was evaluated based on the existence of baso-
lateral membrane staining as described previously [28].
For PP1γ, the expression was evaluated by nuclear stain-
ing. The immunostaining patterns of each sample were
evaluated independently and blindly by pathologists spe-
cializing in gynaecological pathology, and cytology.

PCR-based HPV DNA testing
DNA was extracted from cervical smear samples by using
the QIAGEN® DNeasy® Blood & Tissue Kits. PCR-based
HPV DNA testing was performed using the PGMY-
CHUV assay. Briefly, standard PCR was conducted using
the PGMY09/11 L1 consensus primer sets and HLA-dQ
primer sets. Reverse blotting hybridization was subse-
quently performed as described previously [33].

Results
Distribution patterns of hScrib and PP1γ in HPV-16
positive cervical intraepithelial neoplasm (CIN) and
cervical carcinoma tissues
Previous studies had highlighted hScrib as a potential
biomarker for HPV-16 induced malignancy [19,28,34].
We reasoned that if PP1γ was also regulated directly by
hScrib, this should be similarly affected in HPV-16 in-
duced malignancy. In order to investigate this we per-
formed IHC analysis of hScrib and PP1γ expression in
HPV-16 positive cervical tumours and control cervix.
The results obtained are shown in Figure 1 and Table 1.
In normal tissue hScrib is found primarily at cell-cell
junctions, with high levels of expression as the cells
begin to differentiate. However, hScrib distribution is al-
tered significantly in all the HPV-16 positive tumours,
with significant redistribution in the pattern of expres-
sion in 5/11 tumours and a complete loss of expression
in 6/11 tumours. These results are largely in agreement
with previous studies [28,35]. In the case of PP1γ, this
displays a largely nuclear pattern of expression and this
is present throughout the differentiating epithelium in
the normal cervical tissue. In contrast, in the cervical tu-
mours there is a complete loss of expression of PP1γ in
2/11 cases, with a striking redistribution in the pattern
of expression in the remaining 9 samples, where there
was a shift from a nuclear localisation to a cytoplasmic
pattern of expression.
We were then interested in investigating whether per-
turbation in the pattern of PP1γ expression was an early
or late event during HPV-induced neoplastic progres-
sion. To do this we repeated the PP1γ IHC analysis on
lesions exhibiting different grades of CIN. The lesions
were classified as CIN1 (n = 4), CIN2 (n = 8), CIN3 (n = 8).
As shown in Figure 2, there is a marked loss in nuclear
PP1γ expression, which is already apparent in CIN2, and
this is more evident in the CIN3 lesion, where there are
also much lower levels of PP1γ expression. Interestingly,
PP1γ positive cells were distributed only in the lower third
of the epithelial layer in CIN1 cases (4/4) and 8/8 of pa-
tients with CIN3 had PP1γ positive cells distributed in
the lower, middle, and upper third of the epithelium
(Figure 2B). In the case of hScrib, there is a similar per-
turbation in the pattern of expression as the lesions de-
velop, but similar to what has been reported previously,
there is a tendency in some lower grade lesions to find
highly overexpressed hScrib in regions of the epithelium.
These results indicate that hScrib and PP1γ, whilst

both being perturbed during the progression to malig-
nancy, are altered in a manner that is not interdepend-
ent, suggesting that PP1γ might be an independent
marker for cervical tumour development. Indeed, the
pattern and expression levels of PP1γ declined with an
almost linear relationship from normal tissue, through
increasing grades of CIN lesion, to invasive cancer.

Analysis of PP1γ expression in HPV-16-positive cells
In order to determine whether perturbation of PP1γ ex-
pression was a direct result of HPV-16 oncoprotein
function, we proceeded to examine the pattern of PP1γ
expression in cell lines derived from HPV-16 positive
cervical tumours. To do this we analysed the pattern of
PP1γ expression in HPV-16 positive CaSki and SiHa
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Figure 2 Immunohistochemical analysis of the expression and localisation of hScrib and PP1γ in various stages of cervical intraepithelial
neoplasms. (A) Paraffin embedded excised tissues were immunostained with anti-hScrib or anti-PP1γ as indicated, and counterstained with
haematoxylin. For the antibodies, immunostaining was performed according to standard techniques using an autostainer (BenchMark XT; Ventana
Medical Systems, Inc., Tucson, AZ, USA). Representative experiments for a section of cervical epitheliums from normal cervix (left) and cervical
intraepithelial neoplasms (CIN) grade 2 and 3 (right) (×200 original magnification). (B) High resolution microscopic images (scale bars: 20 μm) for a
section of cervical epithelia from CIN grade 1 and 3.
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cells, and compared this with HPV negative HaCaT cells.
To determine whether any alterations might be HPV-
specific, we also transfected the cells with siRNA E6/E7
and siLuc as a control. After 72 hours the cells were har-
vested and cells fractionated into cytosolic, membrane,
nuclear and cytoskeletal pools, such that the pattern of
PP1γ subcellular distribution could be monitored. The
pattern of PP1γ expression was then ascertained by
western blotting and the results obtained are shown in
Figure 3. PP1γ is found predominantly within the nu-
cleus in HaCaT cells (Figure 3A), whilst in the HPV-16
positive cells it is found weakly re-localised both in nu-
clear and cytoplasmic locations. However when E6/E7
expression is ablated there is a dramatic redistribution
in the pattern of PP1γ expression, with much higher
levels being found within the nuclear fraction of the cells
(Figure 3B). In contrast, we found no difference in PP1γ
transcript levels after siRNA E6/E7 treatment in HPV-16
positive cells (data not shown).
These results suggest that loss of nuclear PP1γ expres-

sion in HPV positive tumour cells is a direct result of
the expression of the HPV E6/E7 oncoproteins.
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Figure 3 PP1γ is mislocalised in HPV-16 positive tumour cells. (A) HaCaT cells, and (B) siE6/E7or siluciferase control transfected CaSki and
SiHa cells were fractioned into cytoplasmic (F1), membrane (F2), nuclear (F3), and cytoskeleton (F4) pools and hScrib and PP1γ were detected by
western blotting. α-tubulin was a loading control for the cytoplasmic fraction, E-Cadherin was a loading control for the membrane fraction, p84
was a loading control for the nuclear fraction, and Vimentin was a loading control for the cytoskeleton fraction.
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PP1γ is subject to degradation in HPV-16 positive cells
Interestingly, the fractionation studies indicate that
whilst there is a significant increase in nuclear PP1γ in
the absence of E6/E7, there is not a significant loss of
cytoplasmic PP1γ, suggesting that some of the loss of
nuclear expression may be due to proteasome mediated
degradation. Therefore we were first interested in deter-
mining whether E6/E7 expression could affect the total
levels of PP1γ expression. To do this we analysed the
levels of PP1γ expression in total cell extracts from
CaSki and SiHa cells previously transfected with siRNA
E6/E7 or siLuc as a control. After 72 hours the cells
were extracted and the levels of PP1γ expression moni-
tored by western blotting. The results in Figure 4A show
that loss of E6/E7 expression induces a marked increase
in the total levels of PP1γ expression in HPV-16 positive
cells, in a manner similar to that seen for restoration of
p53 levels, which served as a positive control for efficient
ablation of E6/E7 expression. We also monitored the ef-
ficiency of E6/E7 knockdown by RT-PCR and found that
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Figure 4 PP1γ levels are downregulated in HPV16 positive cells by HPV E6/E7 oncogenes. (A) HPV-16 positive CaSki and SiHa cells were
transfected with siRNAE6/E7 or siLuc as control. Total cell extracts were then made after 72 hours, and hScrib, PP1γ, p53 and Actin were detected
by western blotting. (B) 293 cells were transfected with 4, 8, 10 μg of HPV-16 E6 expression plasmid, and hScrib and PP1γ were analysed by
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C33A and HaCaT cells were incubated in the presence of either 10 μM MG132 or solvent before harvesting and analysed by western blotting.
Actin was used as a loading control.
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E6/E7 transcripts were reduced by around 60% following
siRNA transfection (data not shown). In contrast to the
change in PP1γ protein levels, we found no difference in
PP1γ transcript levels after siRNA E6/E7 treatment in
HPV-16 positive cells. Furthermore, to determine whether
the cell type or E6 expression contributed to the alter-
ations in PP1γ expression levels, we compared the ability
of E6 to direct the degradation of PP1γ in 293 and HaCaT
cells. First 293 cells were transfected with increasing
amounts of HPV-16 E6, as indicated in Figure 4B.
Then, we performed the same analysis using HaCaT
cells (Figure 4C). The results demonstrated that overex-
pression of HPV-16 E6 results in a decrease in the level
of PP1γ expression. In order to determine whether the
loss of PP1γ expression was proteasome-mediated HPV-
positive SiHa, CaSki and HeLa cells, and HPV-negative
C33A and HaCaT cells were grown in the presence of the
proteasome inhibitor, MG132 for 3 hours, after which the
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cells were harvested and the levels of PP1γ expression
ascertained by western blotting. As can be seen from
Figure 4D, there are minimal changes in the levels of PP1γ
expression following proteasome inhibition, regardless of
the presence or absence of HPV DNA sequences, whilst
there is efficient rescue of p53 following proteasome in-
hibition in HPV positive cells. These results indicate that
the effects of E6 upon PP1γ patterns of expression are
most likely proteasome independent.

Discussion
PP1 is a major serine/threonine protein phosphatase,
normally regulating the phosphorylation status of a large
number of important cellular regulatory proteins [36-39].
Important activities include the regulation of chromosome
structure during mitosis and also following DNA damage,
through de-phosphorylation of histones [30,40], and the
control of centrosome disjunction through antagonism of
Nek2A kinase activity [41].
In this study we have identified PP1γ as a potential new

biomarker of HPV-16 induced malignancy. Using HPV-16
positive cervical tumour derived cell lines, IHC analysis of
HPV-16 positive cervical tumours and CIN lesions, we
present compelling evidence that PP1γ expression pat-
terns are perturbed as a result of infection with HPV-16.
We originally considered that the PP1γ/hScrib com-

plex might be a general target for HPV-16 E6, based on
our previous studies showing complex formation be-
tween hScrib and PP1γ. However, analysis of the expres-
sion patterns of PP1γ and hScrib in cervical tissues
indicate that this is not the case. Most importantly how-
ever, this highlights PP1γ as an independent target of
the HPV-16 oncoproteins. In the normal cervix, PP1γ is
expressed throughout the differentiating cervical epithe-
lium, with a predominantly nuclear pattern of expres-
sion, which is consistent with previous studies [42]. To
our surprise, we found that in all the HPV-16 positive
cervical tumours analysed, this nuclear localisation of
PP1γ was undetectable. Low levels of PP1γ can still be
found within the cytoplasm of many cells within the ma-
jority of the cervical tumours that we analysed, although
in 2/11 cases all PP1γ expression appeared to be lost.
Similarly, perturbation in the pattern of PP1γ expression
is apparent in CIN2 lesions, and this becomes more
marked as the lesions progress to CIN3, suggesting that
perturbation in the pattern of PP1γ expression is an
early event in the development of cervical malignancy.
In order to understand whether these effects on PP1γ

expression patterns were a direct consequence of E6/E7
activity, we then focused our attention on cells derived
from HPV-16 positive cervical tumours. Again we found
striking parallels with the IHC data, with very little PP1γ
expression in the nucleus of HPV-16 positive CaSki or
SiHa cells. In contrast, readily detectable nuclear PP1γ
was observed in HaCaT cells. Most strikingly, siRNA ab-
lation of E6/E7 expression resulted in a dramatic rescue
of PP1γ expression within the nucleus of the HPV-16
positive cells, which appeared very similar to the effects
seen upon the pattern of p53 expression. In contrast to
p53 however, the alteration in the levels and pattern of
PP1γ expression by E6 does not appear to involve the
proteasome in cells derived from cervical tumours. Ob-
viously further studies will be required to elucidate the
precise mechanisms by which HPV-16 targets PP1γ.

Conclusions
Currently we have no information as to whether the
HPV-16 E6/E7 oncoproteins can modulate any of these
phosphorylation events in a PP1γ dependent manner, it
is nonetheless intriguing that all of these pathways are
perturbed to some extent in cells containing the HPV-16
oncoproteins. Future studies will investigate these as-
pects further, but it is tempting to speculate that target-
ing of the nuclear forms of PP1γ might contribute
directly towards the generation of genome instability,
chromatin remodeling and tumour progression. The cel-
lular redistribution of PP1γ seems to have an important
role in the development of centrosome abnormalities
and chromosomal instability at early stages of cervical
carcinogenesis. Taken together this study highlights the
potential value of PP1γ as a novel biomarker for HPV-
induced cervical neoplasia.
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