
Linear-space algorithms for distance preserving
embedding

言語: eng

出版者:

公開日: 2021-07-05

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

https://doi.org/10.24517/00062794URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Linear-Space Algorithms for Distance Preserving Embedding∗

Tetsuo Asano1 Prosenjit Bose2 Paz Carmi2 Anil Maheshwari2 Chang Shu3 Michiel Smid2

Stefanie Wuhrer2,3

Abstract

The distance preserving graph embedding problem is to
embed vertices of a given weighted graph into points
in 2-dimensional Euclidean space so that for each edge
the distance between their corresponding endpoints is as
close to the weight of the edge as possible. If the given
graph is complete, that is, if distance constraints are
given as a full matrix, then principal coordinate analysis
can solve it in polynomial time. A serious disadvantage
is its quadratic space requirement. In this paper we
develop linear-space algorithms for this problem. A key
idea is to partition a set of n objects into disjoint subsets
(clusters) of size O(

√
n) such that the minimum inter

cluster distance is maximized among all possible such
partitions.

1 Introduction

Suppose a set S of n objects is given and for each pair
of objects (i, j) their dissimilarity, denoted by δi,j , can
be computed in constant time. Using the dissimilar-
ity information, we want to map objects into points in
a low dimensional space so that the dissimilarities are
preserved as the distances between the corresponding
points.

Converting distance information into coordinate in-
formation is helpful for human perception because we
can see how close two objects are. Problems where we
wish to embed dissimilarities as points in a low dimen-
sional space arise in many different settings including
stock market problems [5], computer graphics [6] and
computer vision [2].

Multi-Dimensional Scaling (MDS) [3] is a general and
powerful framework for constructing a configuration of
points in a low dimensional space using information on
δi,j . Given a set of n objects in high-dimensional space
as well as the pairwise dissimilarities δi,j , 1 ≤ i, j ≤ n
with δi,j = δj,i, the aim is to find a set P (S) of points

∗Research supported in part by the Ministry of Education, Sci-
ence, Sports and Culture, Grant-in-Aid for Scientific Research on
Priority Areas, Scientific Research (B), NSERC, NRC, MITACS,
and MRI. We thank attendees of the 9th Korean Workshop on
CG and Geometric Networks 2006. Work by T.A. was done in
2006 while visiting MPI, Carleton University, and NYU.

1Japan Advanced Institute of Science and Technology
2Carleton University, Ottawa, Canada
3National Research Council of Canada

p1, . . . , pn in d-dimensional space, such that the Eu-
clidean distance between pi and pj equals δi,j . Since
this aim can be shown to be too ambitious, we aim to
find a good approximation. Different related optimality
measures can be used to reach this goal.

Classical MDS, also called Principal Coordinate Anal-
ysis (PCO), assumes that the dissimilarities are Eu-
clidean distances in a high-dimensional space and aims
to minimize

EPCO =
∑
i,j

|d(pi, pj)2 − δ2
i,j | (1)

Equation 1 is optimized by computing the d largest
eigenvalues and corresponding eigenvectors of the dis-
tance matrix [3]. Thus, if we neglect some numerical
computational issues concerning eigenvalue computa-
tion, the PCO embedding for n objects can be com-
puted in polynomial time in n using quadratic space.
Note that PCO’s result can be poor when the (d+1)-st
largest eigenvalue is not negligible compared to the d-th
largest one for embedding into d-space.

Least-squares MDS (LSMDS) aims to minimize

ELSMDS =
∑
i,j

(δi,j − d(pi, pj))2 (2)

Equation 2 can be solved numerically by using scaling
by maximizing a convex function [3]. However, the al-
gorithm can get stuck in local minima ELSMDS . The
embedding can be computed in polynomial time in n
using quadratic space.

Although PCO and LSMDS are powerful techniques,
they have serious drawbacks for practical use, that is,
their high space complexity, since the input is an n× n
matrix specifying pairwise dissimilarities (or distances).
In this paper, we present a method for dimensionality
reduction that avoids this high space complexity if the
dissimilarity information is given by a function that can
be evaluated in constant time. A key idea is to use
clustering. We propose a simple algorithm for finding a
size-constrained clustering and show that our solution
achieves largest inter-cluster distance, or maximizes the
smallest distance between objects from different clus-
ters. That is, given a set of n objects, with a function
evaluating dissimilarities for pairs of objects, we parti-
tion the set into O(

√
n) disjoint subsets, called clusters,

where each cluster contains O(
√

n) objects. Since, each

19th Canadian Conference on Computational Geometry, 2007

cluster has a relatively small number of objects, and
thus performing MDS with a distance matrix for each
cluster separately requires only O(n) working space. Us-
ing this we devise linear space algorithms for embedding
all the objects in the plane.

2 Clustering

Let S be a set of n objects: S = {1, . . . , n}. We assume
we are given a function which computes the dissimilarity
between any pair (i, j) of objects as δij with δii = 0 and
δij = δji. A partition P of a set S into k disjoint clusters
C1, . . . , Ck is called a k-partition of S. A k-partition P
is characterized by two distances, inner-cluster distance
Dinn(P) and inter-cluster distance Dint(P), which are
defined by Dinn(P) = maxCi∈P maxp,q∈Ci

dpq, and
Dint(P) = minCi 6=Cj∈P minp∈Ci,q∈Cj dpq. When we de-
fine a complete graph G(S) with edge weights being dis-
similarities, edges are classified into inner-cluster edges
interconnecting vertices of the same cluster and inter-
cluster edges between different clusters. The inner-
cluster distance is the largest weight of inner-cluster
edges and the inter-cluster distance is the smallest
weight of inter-cluster edges.

A k-partition is called farthest (most compact, respec-
tively) if it is a k-partition with largest inter-cluster
distance (smallest inner-cluster distance, respectively)
among all k-partitions. Given a set S of n objects, we
want to find a k-partition of S which is farthest and
most compact. It is generally hard to achieve the two
goals simultaneously. In fact, the problem of finding
a most compact k-partition with the smallest inner-
cluster distance, even in the special case where the dis-
similarities come from a metric space, is NP-hard (cf.
[4]). There are, however, good cases where we can find
such a k-partition rather easily. That is the case of a
well-separated partition. A k-partition P of a set S is
called well-separated if Dinn(P) < Dint(P). For this we
can show the following:

Lemma 1 Let S be a set of n objects such that dissim-
ilarity is defined for every pair of objects. If S has a
well-separated k-partition, then it is unique under the
condition that no two pairs of objects have the same
dissimilarity. The unique well-separated k-partition is
farthest and also most compact.

Next, we assume that it is known that there is a well-
separated k-partition of S. If we sort all dissimilarities
in increasing order then the inter-cluster distance must
appear right next to the inner-cluster distance in the
order. So, it suffices to find some dissimilarity t∗ such
that there is a well-separated k-partition with the inner-
cluster distance being t∗. Because of a property of a
well-separated k-partition, if we define a graph Gt(S)
by edges of weights at most t then the resulting con-
nected components of the graph define a well-separated

partition of S with the inner-cluster distance t. So, if we
can find a dissimilarity t such that the graph Gt(S) con-
sists of k connected components, then it is a solution.
In the following we sketch an algorithm for counting the
number of connected components in the graph Gt(S) in
linear working space: We first scan every pair of objects
and if their weight is at most t, we merge the two clus-
ters containing those objects into one. Then we report
the number of remaining clusters. After that, we again
scan every pair of objects and report NO if we find a
pair with dissimilarity greater than t such that both of
them belong to the same cluster, and report YES if no
such pair is found.

If S has a well-separated k-partition, the algorithm
must return k and YES for dissimilarity δij for some
pair (i, j). A naive algorithm is to check all the dissim-
ilarities. Since there are O(n2) different dissimilarities,
O(n2) iterations of the algorithm are sufficient. This
will require O(n4) time in total but the total space re-
quired is O(n).

An idea for efficient implementation is to use binary
search on the sorted list of dissimilarities. Generally
speaking, as t value increases the number of subsets de-
creases. If the above algorithm outputs k and YES for
some t∗, then the resulting partition is well-separated.
Linear-space algorithm for well-separated par-
tition: One serious problem with the method
sketched above is that we cannot store a sorted list
of dissimilarities due to the linear space constraint.
We implement the binary search in two stages. At
the beginning our interval may contain a super linear
number of distances. So, we compute an approximate
median instead of the exact median. As the binary
search proceeds, our interval gets shorter and shorter.
Once the number of distances falling into the interval
is at most cn for some positive constant c, then we
can find an exact median. A more detailed description
follows:

We start our binary search from the initial interval
[1,

(
n
2

)
] which corresponds to a distance interval deter-

mined by the smallest and largest distances, denoted
by δ1 and δ(n

2), respectively. Generally, we maintain an
index interval [low, high] corresponding to the distance
interval [δlow, δhigh], where δi denotes the i-th smallest
distance. Imagine dividing the interval [low, high] into
4 equal parts, then an approximate median is contained
in the 2nd or 3rd quarters. Thus, half of the elements
in [low, high] are good for us. Equivalently, a random
element is good with probability 1/2. How can we find
one?

We pick a random integer k with 1 ≤ k ≤ high−low+
1. We can evaluate the dissimilarity function in the
order in which the dissimilarities are encountered when
scanning the (unknown) distance matrix row by row to

CCCG 2007, Ottawa, Ontario, August 20–22, 2007

simulate scanning the distance matrix. We refer to this
process, which takes only O(1) space, as scanning the
matrix. We scan the matrix row by row and pick the k-
th element X with δlow ≤ x ≤ δhigh that we encounter.
Given X, we scan the matrix and count the number of
values between δlow and X, and also count the number
of values between X and δhigh. In this way, we find out if
X is an approximate median. If it is not, then we repeat
the above. We know that the expected number of trials
is 2. Assume that X is a good approximate median.
While doing the above, we also find the index m such
that X = δm. Now we test if X is equal/larger/smaller
than Dinn. If they are equal, we are done. Assume X is
less than Dinn. Then, we set the right boundary high
of our current interval to m. If X is larger than Dinn,
then we set the left boundary low to m.

In this way, we spend O(n2) expected time for one
binary search step. Since the expected number of these
steps is O(log n), the overall expected time bound is
O(n2 log n). Once the current interval contains at most
cn distances, we can apply an exact median finding al-
gorithm although we have to scan the matrix in O(n2)
time.

Theorem 2 Given n objects, a function evaluating the
dissimilarity between any pair of objects in O(1) time,
and an integer k < n, we can decide whether there is a
well-separated k-partition or not in O(n2 log n) expected
time and O(n) working space using an approximate me-
dian finding. Moreover, if there is such a partition, we
can find it in the same time and space.

Size Constrained Farthest k-partition

Let e1, e2, . . . , en−1 be edges of a minimum spanning
tree MST (S), for a complete graph G(S) defined for a
set S of n objects, and assume that |e1| ≤ |e2| ≤ · · · ≤
|en−1|. Let MSTk(S) be the set of components resulting
after removing the k− 1 longest edges en−1, . . . , en−k−1

from MST (S). Then, MSTk(S) has exactly k compo-
nents, which defines a k-partition of S and it is shown
in [1] that this is a farthest k-partition of S. Moreover,
Dint(MSTk(S)) = |en−k−1|.

Recall that our aim is to embed the graph using O(n)
space only. In order to use MDS for the embedding,
clusters that are farthest are not sufficient. We also
need to ensure that the clusters are sufficiently small and
that there are not too many of them. Specifically, we
need to find O(

√
n) clusters of size O(

√
n) each. Define

farthest partition satisfying the size constraint on c as a
clustering where all clusters contain less than 2c vertices
and at most one cluster contains at most c vertices with
1 < c < n and Dint(P) is maximized. The method in
[1] does not provide such a partitioning.

To find the farthest partition of size O(c) given a set
S of n objects, consider the following algorithm. First,

each object i is placed into a separate cluster Ci of size
one to initialize the algorithm. The algorithm itera-
tively finds the minimum remaining dissimilarity δij . If
merging the cluster Cl containing object i and cluster
Cm containing object j does not violate the size con-
straint, that is, if it does not produce a new cluster of
size exceeding 2c, the algorithm merges Cl and Cm into
one cluster Cl. Dissimilarity δij is then removed from
consideration. These steps are iterated until all of the
dissimilarities are removed from consideration.

Lemma 3 Given c with 1 < c < n, the algorithm cre-
ates a partition such that all clusters contain less than
2c vertices and at most one cluster contains at most c
vertices. Furthermore, the partition is farthest among
all partitions satisfying the size constraint.

To find this partition, we need to find the minimum
edge that has not yet been considered iteratively until
all the edges were considered. The proposed algorithm
is summarized below. In the algorithm we use a data
structure for extracting edges in increasing order of their
weights.

Algorithm Size-constrained farthest partition(k, c)
{for each i = 1, . . . , n
{Ci := {i}. Find an index j > i such that
δi,j := min{δi,l, l = i + 1, . . . , n}.}

Build a list D to hold such minimum values along
with indices.

m := n. // The number of clusters of sizes at most c.
while(m > 1){
Take a record (i, j, δi,j) that gives the minimum
value δij out of D.

Scan the list δi,i+1, δi,i+2, . . . , δi,n to find a
minimum value greater than δi,j , that is,
δi,j′ = min{δi,l ≥ δi,j , l = i + 1, . . . , n, j 6= j′}.

if there is such an element δi,j′

Insert a record (i, j′, δi,j′) in D.
Find a cluster Cp that contains i by scanning
the clusters.

Find a cluster Cq that contains j similarly.
if(Cp 6= Cq and |Cp|+ |Cq| ≤ 2c)
Merge Cq into Cp.
if(|Cp + Cq| > c) Decrement m.}

Output remaining clusters.}

To analyze the running time of the algorithm, note that
the execution of the first for-loop takes O(n2) time. In
the while-loop, there are at most O(n2) iterations and
one execution of the while loop takes O(n) time. Hence,
the total running time is O(n3).

Theorem 4 The algorithm runs in O(n3) time and
uses O(n) space.

19th Canadian Conference on Computational Geometry, 2007

3 Graph Embedding

A direct way of embedding a weighted graph into a low-
dimensional space is to apply LSMDS, which needs a
full matrix representing dissimilarities between all pairs
of objects. This takes O(n2) space for a set of n objects,
which is often a problem for implementation. To rem-
edy this, we partition the given set into O(

√
n) clusters

of size O(
√

n) each by applying the algorithm in the
previous section. Suppose we have k = O(

√
n) clusters

C1, C2, . . . , Ck with |Ci| = O(
√

n) for each i.
First, find a center object in each cluster. A center

object in a cluster Ci, denoted by center(Ci), is defined
as an object in Ci such that the largest distance to any
other object in that cluster is smallest. We denote the
i-th cluster by Ci = {pi = pi1 , pi2 , . . . , pini

} with the
first element pi = pi1 as its cluster center.

Second, we form a set C0 = {p1, p2, . . . , pk} consist-
ing of cluster centers. Since k = O(

√
n), we can apply

LSMDS to find an optimal embedding of elements in
C0 using a distance matrix of size O(n). We fix those
points.

Third, we embed clusters one by one. We ap-
ply LSMDS to the cluster Ci to have a set P (Ci)
of points reflecting dissimilarities among Ci. Note
that we still have the freedom to rotate and flip the
points in P (Ci) around the cluster center pi. We
compute an optimal angle θ for a rotation such that
the total error between distances and dissimilarities
of points in Ci and the cluster centers excluding pi

is minimized. More precisely, we want to minimize∑
pij

,pl(j=1,··· ,ni,l=1,··· ,k(l 6=i))[d(pij
(θ), pl) − δ(pij

, pl)]2,
where pij

(θ) is a point after rotating pij
= (xij

, yij
)

by θ around the cluster center pi of Ci in the clock-
wise direction. Note that this expression is similar
to ELSMDS (Equation 2). Once we find the opti-
mal angles for the original placement and the flipped
placement of points, we choose the configuration that
yields the minimum. Unfortunately, it seems hard
to find such an optimal angle θ. So, we relax the
condition as follows: f(θ) =

∑
pij

,pl
d(pij

(θ), pl)2 −

δ(pij
, pl)2 =

∑ni

j=1

∑k
l=1(xij

cos θ + yij
sin θ − xl)2 +

(yij cos θ − xij sin θ − yl)2 − δ2
ij ,l =

∑ni

j=1

∑k
l=1 x2

ij
+

y2
ij

+ x2
l + y2

l − 2xij xl cos θ− 2yij xl sin θ + 2xij yl sin θ−
2yij yl cos θ− δ2

ij ,l. Differentiating f(θ) by θ and setting

it to 0, we obtain tan θ =
∑

l

∑
j yij

xl−xij
yl∑

l

∑
j xij

xl+yij
yl

. Here, (xl, yl)

are the coordinates of the point pl and (xij , yij) are that
of pij

.

Theorem 5 There exists an algorithm to embed a data
set S in the plane while approximating pairwise dissimi-
larities between objects in S using O(n3) time and O(n)
space.

References

[1] T. Asano, B. Bhattacharya, M. Keil, and F. Yao:
Clustering algorithms based on minimum and max-
imum spanning trees. 4 SoCG :252 - 257, 1988.

[2] A. M. Bronstein, M. M. Bronstein, R. Kimmel:
Three-dimensional face recognition. Int. Jl. Comp.
Vision 64 (1):5–30, 2005.

[3] T. Cox, and M. Cox: Multidimensional Scaling.
Chapman & Hall CRC, 2001.

[4] T. Gonzalez: Clustering to minimize the maximum
intercluster distance. In Theoretical Comput. Sci.,
38, pp:293-306, 1985.

[5] P. Groenen and P.H. Franses: Visualizing time-
varying correlations across stock markets. In Jl.
Empirical Finance, 7, 155-172, 2000.

[6] G. Zigelman, R. Kimmel, N. Kiryati: Texture map-
ping using surface flattening via multi-dimensional
scaling. IEEE Trans. Vis. & Comp. Graphics
8 (2):198–207, 2002.

