Dividing a simple polygon into two territories

552 English

HhRE

~EH: 2022-09-15

*F—7— K (Ja):

*—7— K (En):

YERE : Asano, Tetsuo, REF, ik
A—=ILT7 KL R:

FlE:
https://doi.org/10.24517/00062803

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

THE TRANSACTIONS OF THE IECE OF JAPAN, VOL.E 69, NO.4 APRIL 1986

LETTER

521

Dividing a Simple Polygon into Two Territories

Tetsuo ASANOT, Member

SUMMARY This paper considers the problem: Given two
points # and » in a simple polygon P, divide P into three parts,
locus of points closer to , that closer to », and that equidistant
from u and z. An O{#n?)-time algorithm is presented where » is
the number of vertices of the simple polygon.

Consider a problem of dividing a state into two
parts based on the distance from two big cities in the
state. A formal description of the problem is as follows :

Given two points % and » in the interior of a simple

polygon P, divide the polygon P into three parts N {u,

v), F{u,v), and ED{u,v), where

N(u,v)={x € Pldist(x, #)<dist(x,v)},

Flu,v)={z € P|dist(x,v)<dist{z, %)}, and

ED{u,v)={x € P|dist(x,2)=dist(z,v),
and dist(x,y) is the geodesic distance between two
points x and , in other words, the length of the shortest
path connecting x to » within the simple polygon P. An
example is shown in Fig, 1. As is seen in the figure, the
boundary lines consist of straight line segments and
hyperbolic curve segments.

The key idea of the algorithm to be presented in this
paper is to decompose a simple polygon P into disjoint
regions so that for an arbitrary query point g the
geodesic between ¢ and # and between ¢ and v can
easily be computed. The decomposition algorithm is as
follows,

[Algorithm Decomposition]
finput] A simple polygon P and a peint x in its inte-
rior,
[output] Decomposition of P into disjoint regions P,
Py, =+, Pn. For each region P, »___point(P;} and gdist
(x,P:) are computed :
7__point(P;): A representative point of P; that is
nearest to the given point x within
P:.
gdist(z,P;): The geodesic distance between x and
the representative point of P:.
Thus, for any point w in P, the geodesic distance dist(x,
w) from z to w is given by the sum of gdist(x,P;) and
the length of the straight line segment between w and
r__ point{P;).

Manuscript received January 16, 1986.
Manuscript revised February 24, 1986.
TThe author is with the Faculty of Engineering, Osaka
Electro-Communication University, Neyagawa - shi, 572
Japan.

begin
vis__decom(r, 0, P)
end
procedure vis __ decom(s, distance, S)
begin

(1) Find the visibility polygon Vis(w,S) of the
polygon S from the point w ;

(2) Enumerate all the reflexive vertices p, 2, -,
p» of S on the boundary of Vis(w,S) such
that each p: is adjacent to both a visible edge
and an invisible edge in S ;

{(3) Remove the region Vis{w,S) from S and
then let P, Pz, ***, Pn be the resulting regions
such that each P: contains the vertex p:;

{(4) Let P be Vis(w,S) and let

r__ point(Py)=uw
gdist(x, Py)=distance ;

(5) For each vertex p; and the polygon P, call
vis___decom (p., distance+dist(w,5:), P:);
where dist(w,p:) is given by the straight line
distance between w and p: since p. is visible
from w in S

end
It is easy to see that the above procedure decom-
poses the given simple polygon P with respect to the
point x into disjoint regions such that for each region P;
{1) there exists one representative point denoted

ﬁf

- |

f

. -
~

Fig. 1 Decomposition of a simple polygon into three parts N,
), Flu,0), and ED{a,v), where N (,2) (F(z,), resp.) is
the locus of points closer to #(w, resp.) than to o (2,
resp.) and ED(z,») is that of points equidistant from 2
and », which is the dotted region in the figure.

522

Fig. 2 Decomposition of a simple polygon based on the visibility
from a point x using the procedure vis__decom.

by #__point(P;} which is either a vertex of P or the
point x,

(2) any point in P: is visible from its representa-
tive point,

(3) the shortest path from x to any point » in 2
passes through the representative point of P; and does
not pass through any other vertex of P on the way from
r__point(P;) to v, and thus

(4) the geodesic distance between x and any
point ¢ in P; is given by the sum of the straight line
distance between » and #__ point(P:) and the geodesic
distance between 7__point(P;) and x.

It is also easy to see that the above decomposition
is done in O(#?) time by using at most # times a linear
time algorithm™® for computing the visibity polygon
from a point in a simple polygon.

Figure 2 shows a decomposition of a simple polygon
by the above procedure.

Based on the decomposition described above, we
decompose a simple polygon P into three parts with
respect to two specified points # and », the locus of
points closer to # than to v, that closer to » than to u,
and that equidistant from % and u. First of all, we
decompose a given simple polygon P with respect to the
point # and then with respect to ». Let P, P, -, P
and Q, @, -+, @x be resulting polygons with respect to
u and v, respectively, where P, and @y are the visibility
polygons from u and o, respectively. At the same time
for each vertex »; we find the region P; and Q. which
contains v;. Next, we compute the intersection of P,
Py, -, Py and Qe, @1, ', @n. This results in a finer
decomposition of P, Let R., R1, ---, Rx be the resulting
regions, where R, is the intersection of P and @, if it is
not empty,

Next, we find the boundary of the region ED{x,v).
We propose a brute-force algorithm as follows. The
first step is to compute the distance to the two points #
and » from each vertex : of each region defined above.
In constant time we can find regions P; and @» which
contain the vertex »;. Thus, constant time is enough to
compute the distances from »; to % and ». Since there

THE TRANSACTIONS OF THE IECE OF JAPAN, VOL.E €9, NO.4

are at most O(#?) such vertices, the above computation
is done in O(»?) time.

Let (s,t) be an edge of some region R:. Then, the
necessary and sufficient condition that the boundary of
ED(u,v) crosses the edge, is that one endpoint is closer
to # than to » and the other closer to v than to «. Inthis
way we can enumerate all the edges intersecting the
boundary of ED{u,»). Let R: be a region which con-
tains more than one such edge. Assume that R, is the
intersection of P; and @« Then, for any point g in R
we have

dist(g, u)=dist(g,7;,)+dist{zs, %),
and
dist(g,v)=dist(g, us)+dist(ws,v),

where »;=7__ point(P;) and u.=7r__point(Qs). The
boundary of the region ED(#,v) is characterized by a
set of those points ¢ which satisfy the equation

dist{g, 2z)=dist(q,2), that is,
dist{q,7y)+dist(7;, 2)
=dist{q, 2a)+dist(e v).

Since dist(7;,%) and dist(u.v) may be regarded as
constants, the boundary in R; is a straight line segment
{more precisely, the bisecting line between the two
points 7; and us) if dist(7s, u)=dist(uv), and a hyper-
bolic curve segment(s) otherwise. Especially, if r__
point(P;) coincides with »__ point(Q.) and gdist(x,P;}
is also equal to gdist(x,@+), then the whole region of E;
is included in ED(u,v).

In this way we can compute the region ED(u,») for
any pair of points # and v in the given simple polygon
in O(#?) time. Each internal boundary of ED(u,v}
consists of at most O(#?) (staright line or curve) seg-
ments. The two parts N{(#,») and F(,v) are obtained
by removing the region ED(w%,v) from the simple poly-
gon P.

As an application of the cecomposition algorithm
described in this letter, we can devise an efficient algor-
ithm for the following problem :

We are given a simple polygon P and a point x in
its interior. Given a query point ¢ in the interior of P,
compute the geodesic distance between x and 4.

Given a simple polygon P and a point x, we decom-
pose P with respect to x using the decomposition algor-
ithm. Then we have a planar subdivision with at most
O(n) edges where # is the number of vertices of P.
Therefore, given a query point ¢ in the interior of P, we
can find the region P; that contains ¢ in its interior in
O(log »n) time with O(# log #)-time preprocessing, using
a point-location algorithm™®®. Then, we find the repre-
sentative point #__ point(P:) together with geodesic
distance between »__point(P:) and x. Since the shor-
test internal path from x to g passes through the point
7__point(P;) and ¢ is visible from »__point(P;). The

LETTER

geodesic distance dist(g,x) between g and x is given by
the sum of the geodesic disatnce between x and »
point{P:), which is already obtained as dist(#:), and the
straight line distance between r_ point(P;) and g¢.
[Lemma)] We are given a simple polygon P with # edges
and point x In its interior. Given a query peoint ¢ in the
interior of P, we can compute the geodesic distance
from g to x in O{log =) time with O(#»*)-time preproces-
sing and O(#) space.

It follows from the lemma that we can solve the

following problem in O(m log %) query time with
O(mn®)-time preprocessing.
(Problem) We are given a simple polygon P with #
edges and m points #., -, #m in the interior of P. Given
a query point ¢ in the interior of P, find a point among
m given points that is closest to g.

523

References

(1) H.ElGindy and D. Avis: “A Linear Algorithm for Comput-
ing the Visibility Polygon from a Point”, J. Algorithms, 2, 2,
pp. 186-197 (1981).

{2) D.T. Lee: “Visibility of a Simple Polygon”, Computer
Vision, Graphics and Image Processing, 22, pp.207-221
{1983).

(3) D.G. Kirkpatrick: “Optimal Search in Planar Sub-
bivisions”, SIAM J. Comput., 12, pp. 28-35 (1983).

(4) R.]. Lipton and R.E, Tarjan: “Applications of Planar
Separator Theorem”, Proc. 18th IEEE Symp. on Founda-
tions of Computer Science, Providence, pp. 162-170, Rhode
Island, (1977).

