Profiling of endothelial cell derived stem cell factors associating with the regulation of hematopoietic stem calls

メタデータ 言語: jpn 出版者: 公開日: 2021-11-12 キーワード (Ja): キーワード (En): 作成者: Takakura, Nobuyuki メールアドレス: 所属: URL https://doi.org/10.24517/00063250

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Search Research Projects How to Use

2007 Fiscal Year Final Research Report Summary

Profiling of endothelial cell derived stem cell factors associating with the regulation of hematopoietic stem calls

Research Project
Project/Area Number
16390275
Research Category
Grant-in-Aid for Scientific Research (B)
Allocation Type
Single-year Grants
Section
一般
Research Field
Hematology
Research Institution
Osaka University (2006-2007) Kanazawa University (2004-2005)
Principal Investigator
TAKAKURA Nobuyuki Osaka University, Research Institute for Microbial Diseases, Professor (80291954)
Co-Investigator(Kenkyū-buntansha)
UENO Masaya Osaka University, Research Institute for Microbial Diseases, Assistant Professor (20334766)
Project Period (FY)
2004 – 2007
Keywords
hematopoietic stem cell / self-renewal / self-renewal / galectin-3 / PSF1

Research Abstract

Quiescence is thought to be one of important feature of hematopoietic stem cells (HSCs) for the prevention of exhaustion in bone marrow (BM) adult hematopoiesis. Recently, it has suggested that HSCs change their cell cycle status from cycling population to quiescent one between 3 and 4 weeks after birth. However, the precise molecular mechanism of induction in quiescence of HSCs is not fully understood. Although Tie2, a receptor tyrosine kinase expressed on HSCs has been suggested to regulate quiescence of HSCs, its role is not clearly known. Therefore, we isolated molecules affected by Tie2 activation and analyzed the function of those molecules. We isolated a novel evolutionarily conserved DNA replication factor, PSFI (Partner of SLD5-1) in HSCs. In one-year-old PSF1(+/-) mice, the pool size of stem cells and

progenitors is decreased. While young PSF1(+/-) mutant mice develop normally, are fertile, and have no obvious differences in hematopoiesis in the steady state compared with wild-type mice, intravenous injection of 5-fluorouracil (5-FU) is lethal in PSF1(+/-) mice due to a delay in induction of HSC proliferation during ablated BM reconstitution. Our data indicated that PSF1 is required for acute proliferation of HSCs in the BM of mice. Moreover, we found that galactose binding lectin-3 (galectin-3; Gal-3) upregulated by Tie2 activation plays a role in quiescence of HSCs. HSCs from mice harboring conditionally overexpressed Gal-3 under the control of the Tie2 promoter progressed slowly through the cell cycle because of induction of p21. By contrast, cell cycle of Tie2+HSC population from Gal-3-deficient mice was accelerated resulted in exhaustion of HSCs possessing long-term repopulating ability in adult BM. These indicated that Gal-3 is negative regulator of HSC cycling and has a crucial role in inhibition of exhaustion for adult hematopoiesis.

Research Products (39 results)

	A	II 2008	2007	2006	2005	Other
	All	Journal	Article	Presen	itation	Book
[Journal Article] Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels durinh angiogenesis	ŝ				200	8 ×
[Journal Article] Involvement of MDR1 Function In Proliferation of Tumor Cells					200	8 ×
[Journal Article] Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis	5				200	8 ×
[Journal Article] EphB4 overexpression on B16 melanoma cells affects arterial-venous patterning in tumor angiogenesis					200	7 ×
[Journal Article] Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow non-hematonoietic cells to differ	rentia	ate into c	ardiomy	ocytes	200	7 ~
[Journal Article] A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adiport	se tis	ssue			200	7 ~
[Journal Article] Expression of angiogenic and neurotrophic factors in the progenitor cell niche of adult monkey subventricular zone					200	7 ~
[Journal Article] Inhibition of Axonal Outgrowth in the Tumor Environment: Involvement of Class 3 Semaphorins					200	7 ~
[Journal Article] EphB4 overexpression on B16 melanoma cells affects arterial-venous patterning in tumor angiogenesis					200	7 ~
[Journal Article] Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow non-hematopoietic cells to differ	rentia	ate into c	ardiomy	ocytes	200	7 ~
[Journal Article] A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adiport	se tis	ssue			200	7 ~
[Journal Article] Expression of angiogenic and neurotrophic factors in the progenitor cell niche of adult monkey subventricular zone					200	7 ×
[Journal Article] Inhibition of Axonal Outgrowth in the Tumor Environment : Involvement of Class 3 Semaphorins					200	7 ~
[Journal Article] Physiological pathway of differentiation of hematopoietic stem cell population into mural cells					200	6 ×
[Journal Article] Negative Regulation of VEGF-Induced Vascular Leakage by Blockade of Angiotensin II Type 1 Receptor					200	6 ×
[Journal Article] Role of hematopoietic lineage cells as accessory components in blood vessel formation					200	6 ×
[Journal Article] Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium					200	6 ×
[Journal Article] Identification and characterization of mouse PSF1-binding protein, SLD5					200	6 ×
[Journal Article] Platelet derived growth factor receptor alpha is essential for establishing a microe nvironment that supports definitive	⁄e erv	throuoie	sis		200	6 ×
[Journal Article] Physiological pathway of differentiation of hematopoietic stem cell population into mural cells					200	6 ×
[Journal Article] Negative Regulation of VEGF-Induced Vascular Leakage by Blockade of Angiotensin II Type 1 Receptor					200	6 ×
[Journal Article] Role of hematopoietic lineage cells as accessory components in blood vessel formation					200	6 ×
[Journal Article] Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium					200	6 ×

[Journal Article] Identification and characterization of mouse PSFI-binding protein, SLD5	2006 ~
[Journal Article] Platelet derived growth factor receptor alpha is essential for establishing a microenvironment that supports definitive erythropoiesis	2006 ~
[Journal Article] Hematopoietic cells regulate the angiogenic switch during tumorigenesis	2005 ~
[Journal Article] PSF1 is essential for Early Embryogenesis in mice	2005 ~
[Journal Article] Hematopoietic cells regulate the angiogenic switch during tumorigenesis	2005 ~
[Journal Article] PSF1 is essential for Early Embryogenesis in mice	2005 ~
[Presentation] Molecular analysis of stemness and blood vessel formation regulated by Tie2	2007 ×
[Presentation] Molecular analysis of sternness and blood vessel formation regulated by Tie2	2007 ×
[Presentation] Involvement of hematopoietic stem cell population in angiogenesis	2007 ×
[Presentation] Galectin-3 induces quiescence of hematopoietic stem cells in the bone marrow niche	2007 ×
[Presentation] Galectin-3 induces quiescence of hematopoietic stem cells in the bone marrow niche	2007 ~
[Presentation] Analysis of molecules regulated by Tie2 on stemness and blood vessel formation	2006 ×
[Presentation] Analysis of molecules regulated by Tie2 on stemness and blood vessel formation	2006 ×
[Presentation] Analysis of molecules regulated by Tie2 on stemness and blood vessel formation	2005 ×
[Presentation] Analysis of molecules regulated by Tie2 on stemness and blood vessel formation	2005 ×
[Book] Involvement of MDRI Function In Proliferation of Tumor Cells	~

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-16390275/163902752007kenkyu_seika_hokoku_

Published: 2010-02-03