Partial construction of an arrangement of lines
and its application to optimal partitioning of
bichromatic point set

S eng

HhRE

~EH: 2022-07-22

F—7—NK (Ja):

F—7— K (En):

YER

A—=ILT7 KL R:

Firi&:
https://doi.org/10.24517/00063365

This work is licensed under a Creative Commons

Attribution-NonCommercial-ShareAlike 3.0

@IES

International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

1IEICE TRANS. FUNDAMENTALS, YOL. E77-A, NO. 4 APRIL 1994

595

[PAPER Special Section on Discrete Mathematics and its Applications |

Partial Construction of an Arrangement of Lines and Its
Application to Optimal Partitioning of Bichromatic Point

Set

Tetsuo ASANO! and Takeshi TOKUYAMATM, Members

SUMMARY This paper presents an efficient algorithm for
constructing at-most-k levels of an arrangement of n lines in
the plane in time O(nk + nlogn), which is optimal since 22(nk)
line segments are included there. The algorithm can sweep the
at-most-k levels of the arrangement using O(r) space. Although
Everett et al.[7] recently gave an algorithm for constructing the
at-most-k levels with the same time complexity independently,
our algorithm is superior with respect to the space complexity
as a sweep algorithm. Then, we apply the algerithm to a bipar-
titioning problem of a bichromatic point set: For r red points
and b blue points in the plane and a directed line L, the figure
of demerit f;(L} associated with L is defined to be the sum of
the number of blue points below L and that of red ones above L.
The problem we are going to consider is to find an optimal par-
titioning line to minimize the figure of demerit. Given a number
k, our algorithm first determines whether there is a line whose
figure of demerit is at most &k, and further finds an optimal bi-
partitioning line if there is one. It runs in O(kn + nlogn)) time
(n = r + b), which is subgquadratic if & is sublinear.

key words: arrangement of lines, clustering, computational geom-
etry, duality transform, topological walk

1. Introduction

The use of duality transform and arrangement of lines
is a powerful approach to a number of geometric prob-
lems. However, once we decide to construct the en-
tire arrangement of lines the running time must be at
least quadratic in the problem size, that is often too
expensive. In some cases, however, only partial con-
struction or partial sweeping of the arrangement is suf-
ficient instead of the whole construction. In such cases,
if the partial arrangement has subquadratic size and is
constructed efficiently, we may overcome the quadratic
bound. If the part of the arrangement is the interior
of a given convex polygon, several efficient algorithms
for the partial construction are known: among all, the
topological walk algorithm[2] is optimal with respect
to both processing time and working space (i.e. the
space complexity except that for storing the cutput).
This paper presents an algorithm for constructing
and sweeping a more complicated part of arrangement

Manuscript received July 5, 1993. X
TThe author is with the Faculty of Engineering, O-
saka Electro-Communication University, Neyagawa-shi, 572
Japan.
1 The author is with the YBM Research, IBM Tokyo Re-
search Laboratory, Yamato-shi, 242 Japan.

in time roughly proportional to its combinatorial com-
plexity, that is, the number of intersections in the por-
tion. More formally, we are interested in construct-
ing the at-most-k levels (see Sect.2 for the definition)
of an arrangement of n lines. Our algorithm runs in
O(nk+mnlogn) time, which is optimal since it is known
that the at-most-k levels contain Q2(nk) line segments
and Q{nlogn) lower bound is induced from the reduc-
tion to the convex hull construction problem. The algo-
rithm is based on the topological walk algorithm, and
use O(n) working space.

Then, we apply the algorithm to a bipartitioning
problem of a bichromatic point set: For r red points
and b blue points in the plane and a directed line {, the
figure of demerit fy(I} associated with ! is defined to
be the sum of the number of blue points below ! and
that of red ones above I. Given a number &k, we want to
find a line [which minimizes the figure of demerit fq(i)
if the associated value of fg(I) is not greater than k.
We present an algorithm which solves the above prob-
lem in O(kn +nlogn) time (n = r + b), which is sub-
quadratic if k is sublinear. This problem is related to
the weak separation problem that finds the parallel belt
separating blue and red points completely (i.e. all red
points are above the belt and all blue points are below
the belt) which minimizes the number of points in the
belt. Alithough Houle[10] gave an optimal O(nlogn)
time algorithm for the weak separation problem, no
subguadratic algorithm is known for the bipartitioning
problem.

Very recently, Everett, Robert and van Kreveld[9]
independently studied the same problems as ours, al-
though the algorithms are very difterent from ours.
Their algorithm constructs the at-most-k levels of an ar-
rangement in time O{nk+nlogn) based on the optimal
intersection reporting algorithm of Chazelle and Edels-
brunner[3]. Our algorithm uses less working space.
Both of our algerithm and the algorithm of Everett et
al. include sophisticated data structures or algorithms
as their subroutines. However, we have a simpler ver-
sion of the algorithm running in O(nk + na(n)logn)
time, where a(n} is the inverse Ackerman function. Ev-
erett et al. also present an algorithm for the bipartition-
ing problem which runs in time O(nklogk + nlogn),
which is inferior to ours.

596

—~—

/

Fig. 1 2-level of an arrangement of 4 lines.

2. Preliminaries

Let £ be a set of » lines in the plane and A(L} be its
arrangement. A k-level of A(L) consists of a sequence
of line segments of LA{L) such that at most k—1 lines lie
strictly below it and at most »n — k lines strictly above
it. See Fig. 1 for an example of a k-level in which the
2-level is shown by bold lines.

All i-levels of A(L) for 1 £ 7 £ k are referred
to as at-most-k levels, which is the portion of A(L)
bounded by the 1-level (often called the lower envelope)
and the k-level [6]. Similarly, at-least-k levels is the por-
tion bounded by the k-level and the n-level. Several
complexity results are known [5],[6],[14].

Lemma 1[5],[13]: For an arrangement of » lines in the
plane, the complexity of its k-level is O(vkn/log" k),
and it is constructed in O(nlogn+nvknlog? k/ log” k)
time.

Lemma 2[14]: For an arrangement of n lines in the
plane, the total complexity of the ar-most-k levels is
O(kn).

Now, the problem is whether the at-most-k lev-
els can be constructed in time roughly proportional
to its complexity, O(kn). This paper presents such an
algorithm, which runs in O(kn + nlogn) time, based
on Topological Walk Algorithm proposed by the au-
thors [2].

3. Algorithm for Constructing az-most-k Levels

This section describes an algorithm for constructing an
ar-most-k levels of an arrangement of n lines. Given a
set of n lines in the plane, we first construct its k-level
by the algorithm of Cole, Sharir and Yap[5]. The re-
sulting k-level is a sequence of line segments monotone
in the z-direction. Let it be (eg,e1, - ,€m—1). We di-
rect those line segments from left to right (we assume as
usual that there is no vertical line). Then, we add an
additional vertical line at x = +o0. Obviously the line
intersects e,,_,. Removing the portion of the vertical
line above the intersection with e, _1 and the portion
of e;,..1 to the right of the intersection results in another

[EICE TRANS. FUNDAMENTALS, YOL, E77-A, NO, 4 APRIL 1994

£
e /\/r
ep i [

r(ed m--1

T(Bl) Ern

Y

Fig. 2 Definition of rays and lower horizon tree T

sequence of line segments which ends in the downward
vertical half line. Let @ = (eg, €1, -, €m—1:Cm) be the
resulting sequence.

We construct a tree T incrementally {Fig.2). Ini-
tially, T consists of one edge en. Starting with ey,
we traverse the sequence @ to the left in the reverse or-
der €, €m-1," ', €1,€0. At each corner between e; and
eiy1 during the traverse, if ¢, — e;41 is a right turn,
we do nothing. Otherwise, we emanate a ray 7(e;) as
an extension of e; to the right starting at a point, just
beyond the intersection {e;,e;,1) until it encounters 7',
Then, we add the ray r(e;) to T'. Note that the ray r(e;)
never intersects segments in ¢ before hitting T, other-
wise the intersection is a left turn on the right of e; but
not contained in T', which is a contradiction.

This operation results in a directed tree T' rooted
at negative infinity on the half line e, (see Fig.2). In
the above operation, if a ray r{e;) first hits another ray
7(e;) which has been added to T so far, the starting
point of e; lies to the left of e; due to the monotonicity
of the sequence {eg,e1,---). By the construction of T,
the ray r(e;) does not hit any ey, k > i before hitting
7{e;). Therefore, the slope of #(e;) is larger than that of
r{e;). This means that the resulting tree is equivalent to
a lower horizon tree [7] used in the topological sweep.

It is easily seen that the lower horizon tree T' par-
titions the portion of the arrangement below the k-level
into convex regions. Furthermore, as is verified in the
literature [2], the depth-first search of the lower horizon
tree gives a sequence of regions to visit, which has the
following properties.

(1) Every region is visited.

(2) The length of the sequence is at most twice larger
than the number of regions.

{3) For each edge (directed from left to right) of the
lower horizon tree, the region lying to its right is vis-
ited before the one lying to its left (see Fig. 3).

This implies an ordering of the regions to be pro-
cessed. Actually we construct an arrangement of lines
according to the ordering, using Topological Walk al-
gorithm of Asano-Guibas-Tokuyama [2].

ASANO and TOKUYAMA: PARTIAL CONSTRUCTION OF ARRANGEMENT 597

il

4

Fig. 3 Partition of the arrangement by the lower horizon tree
and the order of visiting regions.

Topological Walk works as follows (we refer to
Ref.[2] for details): Let P be a convex polygon and £
be a set of lines in the plane. For each linel of £, we
compute its left and right intersections py,(I) and pg(l),
respectively, with P. The boundary of the convex poly-
gon P can be decomposed into upper and lower chains.
Starting with the rightmost vertex of the upper chain,
we traverse the boundary of P in the clockwise man-
ner. Each time we encounter a left endpoint pz (), we
emanate the ray from pz(I) along the line ! toward the
interior of P until it hits its boundary or the rays added
so far., Once we encounter a right endpoint of some
line, we let the lines whose left endpoints appear there-
after wait at the boundary. The above operations result

in a tree, which coincides with the upper horizon tree -

used in Topological Sweep[7]. Then, we implement the
depth-first search on the tree while updating the tree at
twigs (a branch which has two leaf nodes as neighbors).
When the portion of the boundary at which some line is
waiting is traversed in the depth-first search, the waiting
edge is incorporated in the upper horizon tree.

In our case we visit convex regions defined by the
lower horizon tree associated with the k-level in the or-
der induced by depth-first search on the lower horizon
tree. Since each such region is convex, we can apply
Topological Walk to enumerate all intersections in the
region. Two versions of Topological Walks are given
in Asano-Guibas-Tekuyama[2]: One (we call it Simple
Topolegical Walk) needs no sophisticated data struc-
ture, and processes an arrangement interior of a poly-
gon in Q(N + mlogm) where N is the complexity of
the partial arrangement and m is the number of inter-
sections between the boundary of the polygen and the
arrangement. The other (we call it Topelogical Walk
with finger search trees) needs to equip finger search
tree(12] to the initial lower horizon tree[2], and pro-
cesses the arrangement in O(N) time provided the in-
tersections between the boundary of the polygon and the
arrangement are sorted. We use the Topological Walk
with finger search tree in our algorithm, although we

remark later that we can replace it with Simple Topo-
logical Walk with very small increase of the complexity.

As a preprocessing, after constructing the k-level in
O(nlogn -+ nvklog” k) time, we sort all the endpoints
on the k-level in O(+v/kn) additional time.

To implement Topological Walk with finger search
tree in a region R, we need to sort the left intersections
of lines with the bounded boundary of K. The key ob-
servation here is that the left endpoint of a line with R is
located on the lower convex chain of R if R is a region
in the decomposition induced by the lower horizon tree.
If there is a left endpoint of a line on the upper chain
of R, the slope of the line is smaller than the slope of
the intersecting edge of R, thus, R should be cut by the
line in the lower horizon tree decomposition. In fact,
there is no “waiting edge” mentioned above.

Thus, we only need to enumerate and sort the end-
points on the lower convex chain. The endpoints on the
lower convex chain is given from the topological walk
in the previous stages (we only need linear time merge
operation to obtain the sorted list).

Summarizing the above discussion, we have the fol-
lowing algorithm.

Constructing az-most-k Levels:

(Step 1) Construct the k-level using the algorithm by
Cole, Sharir and Yap[5].

(Step 2) Build the lower horizon tree T associated
with the k-level.

(Step 3) Decompose the region below the k-level into
small convex regions by the lower horizon tree T'.

(Step 4) Sort all the endpoints on the k-level.

(Step 5) Perform a depth-first search on T to deter-
mine the order to visit those convex regions.

(Step 6) According to the order we construct an ar-
rangement of each convex region based on Topological
Walk Algorithm. .

The steps (1) through (5) are done in O{nlogn -+
nvklog? k) time. In the last step the portion of the ar-
rangement within each convex region is constructed in
time linear in its complexity if we apply Topological
Walk with finger search trees. Thus the step is com-
pleted in time O(nk + nlogn). The overall time com-
plexity is O(nlog n+nvklog? k+nk) = O(nk-tnlogn).

Theorem: Given a set of n lines in the plane and an
integer k < n, the at-most-k levels of the arrangement
of the lines can be constructed in O(nk +nlogn) time.

It should be noted that although the above algo-
rithm describes only how to enumerate all the intersec-
tions it is not so hard to modify it so as to build graph
structure to represent the arrangement. Also, we can

598

label each edge its level during the walk in O(1) ad-
ditional time. This leads to the decomposition of the
arrangement into levels,

The aigorithm only needs O(nvk) working space
(i.e. neglecting the space to store the output), that is
better than that of O(nk + nlogn) in Evelett et al.’s al-
gorithm[9]. It is important to reduce the working space
in practical implementation of an algorithm, since we
sometimes use systems with both small local memory
and large main memory such that the access to the main
memory is much expensive than that to the local mem-
ory.

Moreover, we can reduce the working space com-
plexity to O(n) as follows: We tun the Cole-Sharir-
Yap’s algorithm, which computes the k-th level from
left to right. If the algorithm find n vertices of the k-th
level, we cut the arrangement by a vertical line through
the n-th vertex., Then, we run our algorithm for the
part that is to the left of this vertical line. When the
part has been swept, we resume the Cole-Sharir-Yap’s
algorithm until the next n vertices of the k-th level is
found. We continue until all the vertices of the partial
arrangement are swept. This methods create O(kv/k)
new intersections between the vertical lines and the par-
tial arrangement, but the total time complexity remains
O(nk 4 nlogn). The space complexity becomes O(n).

Finally, (as we promised) we remark that we can
use Simple Topological Walk instead of Topological
Walk with finger search tree if we may increase the time
complexity to O(nk + na{n)logn) (a(n) is the inverse
- Ackerman function) by using a lemma given by Evelett
et al. (Lemma 1 in Ref.[9]). Let left,(!) and right,(l)
be the leftmost intersection and rightmost intersection
of aline! in an arrangement A with the at-most-& level
of the arrangement. Let segy(!) be the segment between
lefty(l) and righty(l) (it may be a half line or a line).
Evelett et al. proved that the part of the arrangement
Ay below the upper envelope of {segi(!) :{ € A} has
complexity G{kn). Since at-most-k level of A is a subset
of Ay, it suffices to walk in A, The upper envelope of
a set of n segments have O(na(n)) vertices on it. The
Simple Topological Walk needs O(kn+f(n)log n) time,
where f(n) is the complexity of the initial lower horizon
tree. Thus, we can walk in Ay in O{kn + na(n}logn)
time by using Simple Topological Walk. It is also easy
to reduce the working space complexity to O(n} for this
version, too.

4. Finding Optimal Partitioning of Bichromatic
Point Set

Let R and B be point set of in a plane. We call a point
in R a red point and that of B a blue point. The num-
ber of red points is », and that of blue points is 6. Let
n=r+b,

For a directed line { in the plane, It (resp. (™)
denotes the half plane above (resp. below) of {. Let

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 4 APRIL 1994

Fig. 4 Partitioning bichromatic point sets. Filled and empty
circles represent blue and red points, respectively. r{{t) =
[R(IT) = 2,b(I7) = |B(I7)| = 2, and we have fy({) = r(i*) +
b(I=) = 4.

R(I*) be the set of red points in I*, and r(IT) be the
cardinality of it. Similarly, we define B(I~) and b(17).
An example is shown in Fig. 4,

It is well known that we can determine in linear
time whether there is a line completely separating point
sets. The problem is formulated as a 2-dimensional
linear programming problem and thus can be solved
by the Megiddo’s linear-time algorithm[[1]. We define
fa(l) = r(I7) + b(17), and call it the figure of demerit.
In that case f(l), the figure of demerit of the separat-
ing line I, is zero. Here we are interested in the case in
which there is no such separating line, that is, the two
convex hulls have non-empty intersection.

The problems we focus on is the following;

P(1): Optimal separating line finding Find a line !
which minimizes fa(l) = »(I") 4 b(17).

In many practical cases the figure of demerit is ex-
pected to be small compared with the total number of
points. So, the following problem is also meaningful.

P(2): Optimal separating line finding for constraint
case Given a number k, find a line ! which minimizes
fafl) if the associated value of f4(I) is not greater than
k.

These problems resembles to the weak separation
problem, which finds a pair of parallel lines I and I
which maximize b{{*) (I’ —) under the condition that
r(IT) = b(I'") = 0. Houle[9] gave an O{nlogn) time
algorithm for solving weak separation problem. Al-
though the weak separation can be found efficiently, it
is sometimes needed to find a separating line instead of
a pair of separating lines.

Moreover, the problem P(2) is related to the two di-
mensional linear programming problem without a fea-
sible solution. Finding a solution which violates least
number of constraints of a non-feasible LP is very im-
portant in practical applications. Given a red point,
(a,b), we consider the half plane y > az 4+ b of the dual
plane. Similarly, a blue point {c, d) is corresponding to
the half plane y < cxz+d. Then, the dual of the problem
P(2} is as follows:

P(3): Find the best solution in a non-feasible LP Con-

ASANO and TOKUYAMA: PARTIAL CONSTRUCTION OF ARRANGEMENT 599

sider a set of n linear tnequalities on two variables. Sup-
pose that there exists no feasible solution of this system
of inequalities. Find a point which violates the least
number of inequalities if there exists a point violating
at most k inequalities.

The problem P(3) can be solved in the same time
complexity as P(2). We show below an algorithm for
solving P(2) in O(kn + nlogn) time, which is sub-
quadratic if & is sublinear.

We dualize the problem, and consider the arrange-
ment of lines. We assume we have computed the red
i-levels for ¢ = 1,2,...k and blue j-level for 7 =
b—k,b—k+1,..,b. Wedenote red(i) for the red i-level,
and blue(j) for the blue j-level.

The algorithm consists of two steps. First one is the
initial setting, and the second one is the main routine,

At the initial step, we find the lowest (i.e. the small-
est indexed) red level intersecting the blue(b — k). If
red(1) is above blue(b — k), we set the level to red(1).
If red(k) is below blue(b — k), then we return false and
exit the algorithm. This level is found in O(nk) time.
Without loss of generality, we can assume that the red
level is red(1).

Now we start the main routine.

Algorithm:

l.p=k+1.
2. Fori=1tok;

3. Find the highest blue level blue(b — j) intersecting
red(i) such thati+j < p

4, If there is such j as above, set p =1 4 j

5. endfor

The number p above is called the target number.
For finding the lowest blue level blue(b — ;), we apply
the plane sweep method. Notice that, as the output of
topological walk, the vertices on each level are sorted
with respect to the z coordinate value,

We first locate the left endpoint {at T = —oc) of the
red level red(?) in the blue arrangement. Suppose it is
just between blue(b--s) and blue(b—s—1). Ifs < p—i—1,
we set L = s, otherwise we set Lt =p— 17— 1, We sweep
on red{i) and blue(b —t) from the [eft until we find an
intersection between them. Once we find it, we update ¢
to t —1. Then, while keeping the current position in the
red level, we sweep the new blue(b—t) from its left end
until it goes beyond the current position. Note that the
new blue(b—t) never intersects red(z) before the current
position since it lies above the old blue(h —-) to the
lefi of the current position. Then, we perform the plane
sweep again for red(i) and blue(b —t). We report t as
the sweep end.

It is clear that the algorithm correctly finds an opti-
mal partitioning line. The sweep operation concerning

red(i) needs the time proportional to the complexity of
red(i} and those of blue(b—t) fort=p—i—1,p—1i—
2..,t' =p —1, where ¢’ is the output of the subroutine,
and p’ is the target number for the next step (where ¢ is
replaced by 14 1.). Notice that a blue level is used only
once in the main routine.

Thus, the complexity of the main routine is O(kn)
time. We assumed we have computed at-most-k levels
of the arrangement of red lines and at-least-(b — k) lev-
els of the arrangement of blue lines. The at-least-(b— k)
levels is converted to the at-most-k levels i we reflect the
arrangement with respect to the z axis. Hence, from the
result of Sect. 3, the total time complexity for solving
P(2) is O(kn + nlogn).

We remark that although both the arrangement of
at-most-k levels of the red lines and that of at-least-
(b — k) levels of blue lines have complexity O(kn), the
union of these partial arrangements can intersects at
many points. Thus, the simple plane sweep cannot solve
the problem in O(knlogn) time easily. We can design
a simpler O(kn + nlogn) time algorithm which ounly
decide whether there exists a partitioning line whose
demerit is at most k. Based on that idea, Everett et al.
independently gave an O(knlogk + nlogn) time algo-
rithm using the binary search on k.

5. Conclusions

In this paper we have presented an optimal algorithm
for constructing the at-most-k levels of an arrangement
of n lines in the plane in time roughly proportional to
the complexity of the portion. Then, the algorithm was
extended to solve a bipartitioning problem of a bichro-
matic point set. Given n points in total, the algorithm
obtained can answer the question whether there is a line
separating the bichromatic point set into two so that the
number of points lying in the wrong sides is at most k
in time O(nk + nlogn) time and if the answer is “yes”
then it outputs an optimal separating line minimizing
the number of points lying in the wrong sides in time
O(nk). If k is sublinear then this algorithm finds an
optimal separating line in subquadratic time. This is
important from a theoretical point of view, since once
the whole arrangement is constructed quadratic time is
needed.

Finally, it is a challenging and practically impor-
tant problem to design an efficient algorithm for the
higher dimensional version of the problem P(3). Even
an approximation algorithm should be very useful in
many applications.

Acknowledgement
This work was partially supported by Grant in Aid for

Scientific Research of the Ministry of Education, Sci-
ence and Cultures of Japan.

References

[1] Aggarwal. A. and Chandra, A K., “Virual Memory Algo-
rithms," Proc. 20th ACM Symp. on Theory of Compuiing.
pp.173-185, 1988

[2] Asano, Te., Guibas, L.J. and Tokuyama, T., "Walking on
an Arrangement Topologically,” Proc. 7th ACM Symip. on
Computational Geomelry, pp.297-306, 199].

[3] Chazelle, BM. and Edelsbrunner, H., “An Optimal Al-
gorithm for Intersecting Line Segments in the Plane” L
ACM, vol.39, pp.1-54, 1992,

[4] Chazelle, B.M., Guibas, L). and Lee, D.T., "The Power of
Geometric Duality,” BIT, vol.25, pp.76-90, 1985,

[5] Cole, R., Sharir, M. and Yap, C.K., “On k-hulls and re-
lated problems,” SFAM L Compui., vol 16, pp.61-T77, 1987,

[6] Edelsbrunner, H., Algorithms in Combinatorial Geometry,
Springer-Yerlag, 1986

[7] Edelsbrunner, H. and Guibas, L.J., “Topologically Sweep-
ing an Arrangement,” J. Comput. Sps Sei, vol 38, pp.163-
194, 1989,

[8] Edelsbrunner, H,, O'Rourke, 1. and Seidel, R., "Construct-
ing Arrangement of Lines and Hyperplanes with Applica-
tions,” SIAM L Compur, vol. 15, pp.341-363, 1986.

[9] Ewverett, H., Roben, J.-M. and van Kreveld, M., “An Opti-
mal Algorithm for Computing (= k)-Levels, with Appli-
cations to Separation and Transversal Prablems,” Proe. Ot
ACM Symp. on Computational Geomelry, pp. 3846, 1993,

[10] Houle, M., “Algorithms for weak and wide separation of
sets,” Discrete Applied Math., vol 45, no2, pp 139-159,
1993,

[11] Megiddo, M., “Linear-time Algorithms for Linear Pro-
gramming in B* and Relmed Problems,” SIAM J. Com-
put, vol.12, pp.759-776, 1983,

[12] Mehlhorn, K. Data Structures and Algorithms I: Soriing
and Searching, Springer-Verlag, 1984,

[13] Pach,)., Steiger, W. and Szemerédi, E., “An Upper Bound
on the Number of Planar k-sets” Discrete and Comput. Ge-
ometry, vol.7, pp.109-123, 1992,

[14] Welzl, E., “More on k-sets of finite sets in the plane,” Lis-
crete and Comput. Geometry, vol.l. pp.95—100, 1936,

Tetsuo Asano received the B.S., M.S,
and Ph.[D. degrees in Engineering from
Crsaka University in 1972, 1974, and 1977,
respectively. He is currently a professor
of Osaka Electro-Communication Uni-
versity,. His research interest includes
Computational Geometry, Discrete Algo-
rithms, Combinatorial Oplimization and
their applications. Dr. Asano is a mem-
ber of IEEE, ACM, SIAM, EATCS, IPS),
and ORS. He is a member of the editorial
boards of Int. J. of Computational Geometry and Applications,
and Discrete and Computational Geometry.

IEICE TRAMNS, FUNDAMENTALS, YOL. E77-A, NO. 4 APRIL 1994

Takeshi Tokuyama received the B.S,,
M.S., and Ph.D. degrees in Mathematics
from University of Tokyo in 1979, 1931,
and 1985, respectively. Since 1986, he has
been a researcher of 1BM Tokye Rescarch
Laboratory, and currently an advisory re-
searcher. He was assigned 1o IBM T, 1.
Watson Research Center from April 1992
to March 1993, His research interests in-
clude computational geometry, algorithm
theory, combinatorial oplimization, dis-
crete mathematics, and their applications. He received a research
award from Information Processing Society of Japan in 1992,
Dr. Tokuyama is a member of Information Processing Society of
Japan, ACM, Mathematical Society of Japan, and Japan SIAM.

