
Reporting all segment intersections using an
arbitrary sized work space

言語: eng

出版者:

公開日: 2021-07-16

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

https://doi.org/10.24517/00063385URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Discrete Mathematics and Its Applications

Reporting All Segment Intersections Using an Arbitrary Sized
Work Space

Matsuo KONAGAYA†a), Student Member and Tetsuo ASANO†b), Member

SUMMARY This paper presents an efficient algorithm for reporting all
intersections among n given segments in the plane using work space of
arbitrarily given size. More exactly, given a parameter s which is between
O(1) and O(n) specifying the size of work space, the algorithm reports all
the segment intersections in roughly O(n2/

√
s + K) time using O(s) words

of O(log n) bits, where K is the total number of intersecting pairs. The time
complexity can be improved to O((n2/s) log s + K) when input segments
have only some number of different slopes.
key words: computational geometry, adjustable work space algorithm,
segment intersection detection and reporting, isothetic segment, read-only
input model

1. Introduction

There are increasing demands for highly functional con-
sumer electronics such as printers, scanners, and digital
cameras. To achieve this functionality they need sophisti-
cated embedded software. One fundamental difference from
software used in conventional computers is that there is lit-
tle allowance of working space which can be used by the
software. Programs have been developed under the assump-
tion that sufficient memory space is available. The situation
above, however, asks us to design algorithms which work
in small work space. One extreme is to use only constant
number of words. Algorithms using only constant number
of words of O(log n) bits have been called log-space algo-
rithms where n is input size. We assume that input data is
stored in a read-only array. If a variable of O(log n) bits is
available we can read any input data. Algorithms under this
constraint have been extensively studied in complexity the-
ory under the name of log-space algorithms. However, the
constraint to the constant work space seems too severe for
practical applications. It is quite reasonable to use O(

√
n)

work space for an image of size O(
√

n) × O(
√

n). We call
such algorithms using o(n) work space for an input set of
size n as small work space algorithms.

More interesting is to design an algorithm which runs
fast using work space which is available when it is to be ex-
ecuted. We call such an algorithm as an adjustable work
space algorithm since the size of work space is adjustable
at any time preserving basic property that the more work
space is available the faster the algorithm is. The size of
work space is measured in this paper any the number of
words of O(log n) bits used to in an algorithm. Tradeoffs
between time and space are also important for this class of

†Graduate School of Information Sciences, JAIST
a) E-mail: matsu.cona@jaist.ac.jp
b) E-mail: t-asano@jaist.ac.jp

DOI: 10.1587/transfun.E0.A.1

algorithms.
One such good example is the sorting algorithm [6] by

Chan and Chen. Given n input data on a read-only array,
their algorithm outputs those input data in the increasing or-
der in O((n/s)(n + s log s)) time with O(s) work space.

In this paper we propose several adjustable work space
algorithms designed for a problem of reporting all intersec-
tions among given segments in the plane, which is one of
the most fundamental problems in computational geometry.

The problem has been well studied. Given n segments
in the plane, we can report all K intersections in O(n log n +
K) time if we can use O(n) work space. SinceΩ(n log n+K)
time is required in the worst case, the algorithm given by
Balaban [2] achieving O(n log n+K) time and O(n) space is
optimal.

This paper is organized as follows. In Section 2 we be-
gin with a simple adjustable work space algorithm for mutu-
ally intersecting detection pairs of segments, which runs in
O((n2/s) log s) time using work space of O(s) for a set of n
segments stored in a read-only array. Section 3 extends the
result to the problem of reporting all K intersections among
n given segments using O(s) work space. We present three
different adjustable work space algorithms all of which run
in O((n2/s) log s + K) time for a set of n isothetic segments
(e.g. each of given segments is either horizontal or vertical
segment). We need some special treatment if input segments
may overlap each other, that is, if their intersection (in the
mathematical sense) is a line segment, not a line. We show
this problem can be resolved using techniques called filter-
ing search. We also present an adjustable work space al-
gorithm for a general set of segments with arbitrary slopes.
The algorithm runs in roughly O(n2/

√
s + K) time. Section

4 gives conclusions and some future works.

2. Segment Intersection Detection

Segment intersection detection is a problem of determining
whether there is any pair of mutually intersecting segments
in an input set of segments in the plane. A simple and ef-
ficient algorithm [15] is known for the problem. The algo-
rithm sweeps the plane while visiting each endpoint of input
segments in the sorted order and detects an intersection if
any. It runs in Θ(n log n) time for any set of n segments in
the plane.

We design an efficient adjustable work space algorithm
using O(s) space for segment intersection detection a given
set of segments stored in a read-only array. A variable s

Copyright c⃝ 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

is between O(1) and O(n). This algorithm becomes basis
of our algorithm for reporting segment intersections. See
sections 3.1 and 3.2.

The algorithm first partitions an input set S into m =
n/s disjoint subsets S 1, S 2, . . . , S m. Whenever s does not
divide n we add extra dummy segments. So we assume that
each subset has exactly s segments. We do nothing in prac-
tice except computing the size m of the partition. Since the
input segments are stored in a read-only array, this partition
is done in the index order, that is, S 1 contains the first s
segments in the array, S 2 consists of the next s segments,
and so on. Then, for each pair (S i, S j) with i < j we per-
form a plane sweep to detect any intersection among given
segments in the set S i ∪ S j. It is done in O(s log s) time us-
ing O(s) work space by a standard plane sweep algorithm.
Since we have O((n/s)2) different pairs, the algorithm runs
in O((n2/s) log s) time. The algorithm is referred to as Algo-
rithm 1, where a function BentleyOttmanPlaneSweep() is a
function which implement a standard plane sweep algorithm
by Bentley and Ottman [3].

Algorithm 1: Segment intersection detection.
Partition the set S into m = n/s disjoint subsets
S 1, S 2, . . . , S m using Index Partition.
for each pair of subsets (S i, S j) ,i, j = 1 . . .m do

apply BentleyOttmanPlaneSweep(S i ∪ S j).
if any intersection is found then

stop after reporting the intersection.
end

end
stop after reporting ”No intersection.”

Theorem 1: Given n segments in the plane in a read-only
array and a parameter value s between O(1) and O(n), Al-
gorithm 1 correctly determines whether there is any inter-
section among input segments in O((n2/s) log s) time using
O(s) work space.

More generally, we propose two different ways of par-
titioning a given set S of n segments. Since these methods
are simple, it may apply the other problems using limited
work space.

Index Partition: A given set S of n elements is partitioned
into m = n/s disjoint subsets S 1, . . . , S m by the indices,
that is, S 1 consists of the first s elements in the array
storing S , S 2 of the next s elements, and so on. If s
does not divide n, then we add extra dummy segments.

Property Partition: We are given a set S of n elements and
c properties for the elements. Then, S is partitioned
into m ≤ n/s+c disjoint subsets S 1,1, S 1,2, . . . , S c,r with
cr ≤ m where S p,q denotes the q-th subset of at most s
elements of the p-th property.

The index partition is simple since only index calculation is
needed. To have a property partition we scan the input array
while checking properties of the elements. Thus, it takes
O(cn) time to enumerate all the subsets. In this paper we

take slopes of segments as properties.

3. Segment Intersection Reporting

In this section we consider the segment intersection report-
ing problem. It is to report, given a set of segments in the
plane, all intersecting pairs among them. This reporting
problem is more difficult than the segment intersection de-
tection problem because we want to design an algorithm for
reporting all intersecting pairs in an output sensitive man-
ner while the algorithm for the detection problem can stop
as soon as it finds any intersecting pair. It is not so easy
to design an algorithm so that it runs in an output sensitive
manner. More exactly, if we denote by K the total num-
ber of intersecting pairs, the computation time should be
T (n, s) + O(K), where T (n, s) only depends on the number
n of segments and the size s of work space. The number of
segment intersections could be O(n2) in the worst case. If
we have Ω(n2) intersections, then a brute-force algorithm of
examining all pairs of segments suffices since it reports all
the intersections in O(n2) time and it needs Ω(n2) time to re-
port all of them. Of course, the brute-force algorithm is not
optimal unless K = Ω(n2).

The segment intersection reporting problem has been
well studied. The first algorithm by Bentley and Ottman [3]
based on plane sweep runs in O((n + K) log n) time using
O(n + K) work space. It is not so hard to reduce the space
to O(n) while keeping the time complexity. The first output-
sensitive algorithm for the problem was given by Mairson
and Stolfi [12] under the name of red-blue intersection. In
the problem we are given two sets of segments colored red
or blue. Assuming there is no intersection among segments
of the same color, they gave an optimal algorithm which re-
ports all the intersections in O(n log n + K) time using O(n)
space. The result was strengthened by Chazelle and Edels-
brunner [8] and further by Balaban [2]. Although the algo-
rithm by Chazelle and Edelsbrunner needs O(n + K) space,
Balaban’s algorithm uses only O(n) work space and thus it
is theoretically optimal.

Very little has been studied so far when work space is
limited to o(n). A space-efficient algorithm is presented by
Chen and Chan [10] , which runs in O((n + K) log2 n) time
using only O(log2 n) extra work space assuming that input
segments are stored in a regular read/write array and thus
the array can be used as a work space. Especially, a tech-
nique referred to as an implicit data structure proposed by
Munro [14] can be used. In our paper, however, such a tech-
nique cannot be used since input data is stored in a read-only
array.

KONAGAYA and ASANO: REPORTING ALL SEGMENT INTERSECTIONS USING AN ARBITRARY SIZED WORK SPACE
3

Algorithm 2: Segment Intersection Reporting for a
set of isothetic segments.

/* Preprocessing stage: */

Partition the set S into m = n/s disjoint subsets
S 1, S 2, . . . , S m using Index Partition.
/* 1st stage: Reporting all

intersections within each subset */

for each subset S i, i = 1 . . .m do
report all segments intersecting by
BentleyOttmanPlaneSweep(S i).

end
/* 2nd stage: Reporting all

intersections between two subsets */

for each pair (S i, S j) of subsets , i, j = 1 . . .m do
U ← all horizontal segments in S i and all
vertical segments in S j.
report all segments intersecting by
BentleyOttmanPlaneSweep(U).
U′ ← all vertical segments in S i and all
horizontal segments in S j.
report all segments intersecting by
BentleyOttmanPlaneSweep(U′).

end

3.1 Isothetic Segments

We begin with a simple situation where input segments are
either horizontal or vertical. For the time being we assume
that no two of them overlap. More exactly, we assume that
for any two segments ℓi and ℓ j of the same direction (hor-
izontal or vertical) no endpoint of ℓi lies on ℓ j. Under this
assumption it is rather easy to design an algorithm for re-
porting all segment intersections using only O(s) space in
addition to a read-only array storing n input segments.

We can design an efficient algorithm by slightly modi-
fying Algorithm 1 for segment intersection reporting.

Theorem 2: Given n horizontal or vertical segments with-
out any overlap in the plane stored in a read-only array and a
parameter value s between O(1) and O(n), Algorithm 2 cor-
rectly reports all K intersections between input segments in
O((n2/s) log s + K) time using O(s) work space.

Proof. Due to the assumption that no two segments overlap
each other, no two horizontal (resp., vertical) segments inter-
sect. Thus, after reporting all intersections within each sub-
set, all the remaining intersections are made by two isothetic
segments from different subsets. Thus, all the intersections
are correctly reported. Since every intersection is reported
exactly once, the algorithm runs in O((n2/s) log s+K) time.

2

3.2 Algorithm Using Property Partition

Here is an algorithm based on a different idea. In the algo-
rithms above we have partitioned a given set of n isothetic

segments into n/s subsets so that each subset has exactly s
segments. Then, each subset was further decomposed into a
set of horizontal segments and one of vertical segments. In
the second stage we take a pair (S i, S j) and perform a stan-
dard plane sweep for the two sets U1 = H(S i) ∪ V(S j) and
U2 = V(S i)∪H(S j). Here, H(S i) (resp. V(S i)) denotes a set
of all horizontal (resp. vertical) segments in S i. Since the
partition into subsets is done only by indices, it may hap-
pens that U1 = ∅ and U2 = S i ∪ S j or U1 = S i ∪ S j and
U2 = ∅. It means that we may have a set of segment of so
different sizes for plane sweep in the second stage.

Here is a simple way of keeping the set size. When an
input set S of n isothetic segments is given, we use the prop-
erty partition described before. The property we use is the
slope of segment, horizontal or vertical. Using the property
we partition a given set S into mh subsets H1,H2, . . . ,Hmh

and mv subsets V1,V2, . . . ,Vmv . Each Hi contains only hor-
izontal segments and each V j contains only vertical seg-
ments. Every Hi, 1 ≤ i ≤ mh consists of exactly s horizontal
segments in the index order. Just the same for V1, . . . ,Vv.
Due to the definition mh + mv = n/s.

At the second stage we take two subsets Hi and V j.
In the previous algorithms the subsets were obtained just
by computing indices. In this case, however, we maintain
two pointers (indices), one for Hi and the other for V j. The
pointer for Hi keeps the last horizontal segment of Hi. If the
last segment for Hi−1 is ℓp, then the pointer starts from p+ 1
and then we examine segments ℓp+1, ℓp+2, . . . by increment-
ing the pointer until we get s horizontal segments. The func-
tion ChooseNextHorizontalSegment() scans the segment ar-
ray from the current position until the next horizontal seg-
ment is found. ChooseNextVerticalSegment() is similar. all
intersections is described as follows.

Theorem 3: Given n isothetic segments without any over-
lap in the plane stored in a read-only array and a pa-
rameter value s between O(1) and o(n), Algorithm 3 cor-
rectly reports all K intersections between input segments in
O((n2/s) log s + K) time using O(s) work space.

Proof. We partition a set S of n segments into mh subsets
H1, . . . ,Hmh and mv subsets of V1, . . . ,Vmv as above. Now
it is obvious that the algorithm reports all K intersections in
O(mhmvs log s + K) time. Since mhmv ≤ (n/(2s))2, its worst
running time is still O((n2/s) log s + K). 2

4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Algorithm 3: Segment Intersection Reporting for a
set of isothetic segments using mono-color partition.

/* Let l1, l2, . . . , ln be n given line
segments. */

repeat
H = ∅
repeat

li = ChooseNextHorizontalSegment()
Insert li into H

until |H| = s or all horizontal segments are
exhausted
V = ∅.
repeat

l j = ChooseNextVerticalSegment()
Insert l j into V
/* now we have two subsets H and

V */

Report all segment intersections by
BentleyOttmanPlaneSweep(H ∪ V)

until |V | = s or all vertical segments are
exhausted

until H = ∅ or V = ∅

3.3 Algorithm Using Filtering Search

There is yet another way of achieving the running time
O((n2/s) log s + K). We use the partition by index
(S 1, S 2, . . . , S m), m = n/s. For each subset S i, we take all
horizontal segments in S i and put them into a data structure
so that for any query vertical segment ℓq all k intersections
of ℓq with those horizontal segments in S i can be reported in
O(k+ log s) time. The data structure we use is a trapezoidal
decomposition and filtering search [7].

Given a set H(S i) of at most s horizontal segments, we
first compute a sufficiently large rectangle enclosing all the
given segments and then extend rays from each endpoint of
those segments until they hit an input segment or the bound-
ary (see Figure 1). The resulting planar subdivision into
rectangles is called the trapezoidal decomposition. If we
incorporate a data structure for point location and a graph
representing vertical adjacency of those rectangles, then we
can report intersections on an arbitrarily given query verti-
cal segment ℓq by first locating one of its endpoint and then
follow the adjacency graph. Unfortunately, this algorithm is
not good enough to achieve our target running time. Sup-
pose we have located the lower endpoint of ℓq. Then, we
want to find a rectangle just above the current rectangle. If
a rectangle is vertically adjacent to many rectangles then it
takes time to find the rectangle intersecting the query seg-
ment. In the data structure defined by Chazelle [7] we add
chords (vertical sides) so that none of top and bottom sides
of rectangles is incident to more than two vertical sides. The
trapezoidal decomposition shown in Figure 1 is modified us-
ing arrowed chords in Figure 2.

This problem has been extensively studied. From a
theoretical point of view, Chazelle [8] presented an algo-

Fig. 1 Trapezoidal decomposition associated with a set of horizontal
segments.

Fig. 2 Trapezoidal decomposition for filtering search in which none of
top and bottom sides of rectangles is incident to more than two vertical
edges.

rithm with O(s log s) preprocessing time, O(s) space, and
O(k + log s) search time. It is theoretically optimal with re-
spect to the worst case.

In this paper we use the Chazelle’s data structure out-
lined above. In addition we use his filtering search tech-
nique to achieve the target search time with the linear size
of the data structure. We have also the other data structure
by Edahiro el al. [11] in mind for practical applications.

KONAGAYA and ASANO: REPORTING ALL SEGMENT INTERSECTIONS USING AN ARBITRARY SIZED WORK SPACE
5

Algorithm 4: Segment Intersection Reporting for a
set of isothetic segments using trapezoidal decompo-
sition with filtering search.

/* Preprocessing stage: */

Partition the set S into m = n/s disjoint subsets
S 1, S 2, . . . , S m using Index Partition.
for each subset S i, i = 1 . . .m do

Let H(S i) be a set of all horizontal segments in
S i.
Build a data structure TDi by trapezoidal
decomposition and filtering search for H(S i).
for each segment ℓq in S do

if ℓq is vertical then
Report all intersections of ℓq with H(S i)
using the data structure TDi.

end
end

end

Theorem 4: Given n segments in the plane stored in a
read-only array and a parameter value s between O(1) and
O(n), Algorithm 4 correctly reports all K intersections be-
tween input segments in O((n2/s) log s+K) time using O(s)
work space.

Proof. Each subset S i contains at most s horizontal seg-
ments. We can build the trapezoidal decomposition with
filtering search in O(s log s) time using O(s) work space.
Then, for each vertical segment ℓq we can report all k in-
tersections of ℓq with those in the data structure in O(log s)
time, thus in total O(Ki + n log s) time, where Ki is the num-
ber of intersection reported for S i. Hence, the total running
time is given by

∑
i

O(Ki + n log s) = O(K + (n2/s) log s).

2

3.4 Segments of at Most c Different Slopes without Over-
lap

The algorithm for horizontal and vertical segments can be
extended to a more general case where given segments have
at most c different slopes and we can assume that no two
segments of the same slope overlap each other, where c is
o(
√

n). In Algorithm 2 above, for each pair (S i, S j) of sub-
sets we have considered two sets, one consisting of hori-
zontal segments from S i and vertical segments from S j, and
the other defined by replacing the roles of S i and S j. Then,
we never see intersections between segments in one subset
(those have been reported in the first stage). If there are
at most c different slopes instead of just two, we can choose
O(c2) combinations of distinct slopes. For each combination
(αp, αq) of distinct slopes, we create a set of all segments of
slope αp from the subset S i and a set of all those of slope

αq from the other subset S j and then apply the plane sweep
algorithm for the union of the two sets to report all intersec-
tions. This is also an example of the property partition of a
given set. Since no two segments of the same slope intersect
or overlap, we can apply the red-blue intersection reporting
algorithm by Mairson and Stolfi [12] (or Balaban’s optimal
algorithm [2]).

Algorithm 5: Segment intersection reporting for a
set of segments of at most c different slopes.

/* Preprocessing stage: */

Partition the set S into m = n/s disjoint subsets
S 1, S 2, . . . , S m using Index Partition.
/* 1st stage: Reporting all

intersections within each subset */

for each subset S i, i = 1 . . .m do
Report all segment intersections by
BentleyOttmanPlaneSweep(S i)

end
/* 2nd stage: Reporting all

intersections between two subsets */

for each pair (S i, S j) of subsets i, j = 1 . . .m do
for each pair of slopes (αp, αq) do

Let U be the set consisting of all segments
of slope αp in S i and all those of slope αq in
S j.
Report all segment intersections by
BentleyOttmanPlaneSweep(U)

end
end

αp

αq

Fig. 3 Trapezoidal decomposition defined by two distinct slopes αp and
αq, where all the segments have the slope αp and a query segment has the
slope αq.

Theorem 5: Given n segments of at most c different slopes
in the plane stored in a read-only array and a parameter value
s between O(1) and o(n), Algorithm 6 correctly reports all K
intersections between input segments in O((c2n2/s) log s +
K) time using O(s) work space.

It is not so hard to adapt Algorithm 6 so as to report
segment overlaps as well. We can use the same mechanism
as before. For each pair of slopes we define a similar trape-
zoidal decomposition as shown in Figure 3. If we rotate
segments of those slopes so that they are isothetic each other

6
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

then the same mechanism works.

3.5 General Case

We have efficient algorithms when given segments do not
have many different slopes. Unfortunately, none of our al-
gorithms works efficiently without the condition. So, we
need a completely different idea for a general case.

A key data structure is one proposed by Agarwal and
Sharir [1] based on a so-called CSW data structure [9] by
Chazelle, Sharir, and Welzl. We use the following result by
Agarwal and Sharir [1].

Theorem 6 (Agarwal and Sharir [1]): Given a collection S
of n segments in the plane, a constant ε > 0, and a param-
eter s with n1+ε ≤ s ≤ n2, we can preprocess S into a data
structure of size s, in time O(s1+ε), so that, given any query
segment ℓq, we can report all K segments of S intersecting
ℓq in time O(n1+ε/

√
s+K), or can count the number of such

segments in time O(n1+ε/
√

s).

We assume that there is no overlap among given seg-
ments. A basic framework of our algorithm is just the same
as before. After partitioning a given set S into at most
m = n/s disjoint subsets S 1, . . . , S m, in the first stage we
report all intersections within each subset, and then in the
second stage we report all intersections between segments
from distinct subsets. For the second stage, we build a data
structureDi for each subset S i given by Agarwal and Sharir
mentioned above and then report intersections for each seg-
ment in the remaining subset.

Algorithm 6: Segment intersection reporting for a
general set of segments.

/* Preprocessing stage: */

t = s1/(1+ε).
Partition the set S into m = ⌈n/t⌉ disjoint subsets
S 1, S 2, . . . , S m using Index Partition.
/* 1st stage: Reporting intersections

within each subset. */

for each subset S i, i = 1 . . .m do
Report all segment intersections by
BentleyOttmanPlaneSweep(S i)

end
/* 2nd stage: Reporting intersections

between two subsets. */

for each subset S i, i = 1 . . .m do
Build a data structureDi for S i.
for each segment ℓr ∈ S i+1 ∪ · · · ∪ S m do

Report all intersections of ℓr with those
segments in S i using the data structureDi.

end
end

Theorem 7: Given n segments without overlap in the plane
stored in a read-only array and a parameter value s between
O(1) and o(n), Algorithm 6 correctly reports all K intersec-
tions between input segments in O(n2s−

1−ϵ
2(1+ϵ) + K)time using

O(s) work space for any small constant ε > 0.

Proof. Given n segments and a parameter value s, let t
be s1/(1+ε) for a small constant ε > 0. Then, we partition
the set S into m = ⌈n/t⌉ disjoint subset S 1, . . . , S m, each
of t = O(s) segments. For each subset S i we construct a
data structure Di of size O(t1+ε) = O(s) in O(t(1+ε)2

) time
Theorem 6 [1]. Using this data structure, we can report all
intersections of a query segment ℓr with those segments in S i
in time O(t1/2(1+ε)+K(S i, ℓr)), where K(S i, ℓr) is the number
of those intersections of ℓr with the segments in S i. Then,
the total running time T (n) is given by

T (n) =
∑⌈n/t⌉

i=1 O(t log t + K(S i) + t(1+ε)2
+ nt

1
2 (1+ε)

+
∑
ℓr∈S i+1∪···∪S m

K(S i, ℓr)),

where K(S i) is the number of intersections within the set S i.
Since we have

⌈n/t⌉∑
i=1

K(S i) +
∑

ℓr∈S i+1∪···∪S m

K(S i, ℓr) = O(K),

we obtain

T (n) = O(n
t t log t + n

t t(1+ε)2
+ n

t nt
1
2 (1+ε) + K

= O(n log t + ntε
2+2ε + n2

√
t(1−ε) + K).

Replacing t1+ε with s, we obtain the theorem. 2

4. Conclusions and Future Works

In this paper we have presented adjustable work space algo-
rithms for detecting and reporting intersections among given
segments. Those algorithms run in work space of any size
between O(1) and o(n), assuming that n input segments are
stored in a read-only array. In our conjecture, segments do
not have many different slopes in reality. If the number of
different slopes is bounded by o(

√
n) our algorithms run al-

most in an optimal way. However, if the assumption does
not hold, our algorithm has to use a sophisticated data struc-
ture which is too impractical. So, one of the most important
open problems is to devise a more practical algorithm for
the general case.

Acknowledgment

This work was partially supported by the Ministry of Edu-
cation, Science, Sports and Culture, Grant-in-Aid for Sci-
entific Research on Priority Areas and Scientific Research
(B).

References

[1] P. K. Agarwal, and M. Sharir, “Applications of a New Space-
Partitioning Technique,” Discrete Comput. Geom., vol.9, pp.11-38,
1993.

[2] I. J. Balaban, “An optimal algorithm for finding segments intersec-
tions,” Proc. 11th ACM Sympos. on Comput. Geom., pp.211-219,

KONAGAYA and ASANO: REPORTING ALL SEGMENT INTERSECTIONS USING AN ARBITRARY SIZED WORK SPACE
7

1995.
[3] J. L. Bentley, and T.A. Ottmann, “Algorithms for Reporting and

Counting Geometric Intersections, ” IEEE Trans. on Computers, C-
28, 9, pp.643 - 647, 1979.

[4] M. de Berg, M. van Kreveld, R. van Oostrum, and M. Overmars,
“Simple traversal of a subdivision without extra storage, ” Int. J. of
Geographical Information Science, 11, 4, pp.359-373, 1997.

[5] M. Blum, R. W. Floyd, V. Pratt, R. Rivest, and R. Tarjan, “Time
bounds for selection,” J. Comput. System Sci., 7, pp.448-461, 1973.

[6] T. M. Chan, and E. Y. Chen, “Multi-Pass Geometric Algorithms,”
Discrete Comput. Geom., 37, 1, pp.79-102, 2007.

[7] B. M. Chazelle, “Filetering Search: a new approach to query-
answering,” SIAM J. Comput., vol.15, pp.703-724, 1986.

[8] B. Chazelle, and H. Edelsbrunner, “An optimal algorithm for inter-
secting line segments in the plane,” J. of the ACM, Volume 39, 1.
pp.1-54, 1992.

[9] B. Chazelle, M. Sharir, and E. Welzl, “Quasi-optimal upper bounds
for simplex range searching and new zone theorems,” Proc. 6th
ACM Sympos. on Comput. Geom., pp.23-33, 1990.

[10] E. Y. Chen, and T. M. Chan, “A space-efficient algorithm for seg-
ment intersection,” Proc. 15th Canad. Conf. Comput. Geom., pp.68-
71, 2003.

[11] M. Edahira, K. Tanaka, T. Hishino, and T. Asano, “A Bucketing
Algorithm for the Orthogonal Segment Intersection Search Problem
and Its Practical Efficiency,” Algorithmica, 4, pp.61-76, 1989.

[12] I-I. G. Mairson, and J. Stolfi, “Reporting line segment intersec-
tions,” In R. Earnshaw, editor, Theoretical Foundations of Computer
Graphics and CAD, number F40 in NATO ASI Series, pp.307-326.
Springer-Verlag, 1988.

[13] David M. Mount, “Geometric Intersection,” Handbook of Discrete
and Computational Geometry, CRC Press, pp.857-876,2004.

[14] J. I. Munro, “An implicit data structure supporting insertion, dele-
tion, and search in O(log2 n) time,” J. Comput. Sys. Sci., 33, pp.66-
74, 1986.

[15] M. I. Shamos, and D. J. Hoey, “Geometric intersection problems, ”
Proc. 17th IEEE Sympos. on Found. of Comp. Science, pp.208-215,
1976.

Matsuo Konagaya received B.S. degree
from Shizuoka Institute of Science and Technol-
ogy(SIST), Shizuoka, Japan, in 2010 and M.S.
degree from Japan Advanced Institute of Sci-
ence and Technology(JAIST), Ishikawa, Japan
in 2012. He is currently pursuing a Ph.D. de-
gree at JAIST. His research interests include al-
gorithms and data structures, especially in com-
putational geometry.

Tetsuo Asano received B.E., M.E., and
Ph.D degrees from Osaka University, Japan, in
1972, 1974, and 1977, respectively. He is now
a professor in School of Information Science
at JAIST. His research interest includes algo-
rithms and data structures, especially in compu-
tational geometry, combinatorial optimization,
computer graphics, computer vision using geo-
metric information.

