Analysis of cell-type specific adaptor protein (AP) complexes in cells and organisms

メタデータ	言語: jpn
	出版者:
	公開日: 2021-11-04
	キーワード (Ja):
	キーワード (En):
	作成者: Ohno, Hiroshi
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00063420
URL	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

2005 Fiscal Year Final Research Report Summary

Analysis of cell-type specific adaptor protein (AP) complexes in cells and organisms

Research Project

Project/Area Number
15370042
Research Category
Grant-in-Aid for Scientific Research (B)
Allocation Type
Single-year Grants
Section
一般
Research Field
Structural biochemistry
Research Institution
RIKEN (2004-2005) Kanazawa University (2003)
Principal Investigator
OHNO Hiroshi RIKEN, Lab.for Epithelial Immunobiol., Team Leader, 免疫系構築研究チーム, チームリーダー (50233226)
Co-Investigator(Kenkyū-buntansha)
HASE Koji RIKEN, Lab.for Epithelial Immunobiol., Researcher, 免疫系構築研究チーム, 研究員 (20359714) MURAKAMI Takaya RIKEN, Lab.for Epithelial Immunobiol., Researcher, 免疫系構築研究チーム, 研究員 (10399446)
Project Period (FY)
2003 - 2005
Keywords
vesicular transport / neurons / epithelial cells / gastric acid secretion / SNAP25 / AP complexes / KO mice / sorting signal

Research Abstract

We investigated the roles of membrane traffic, especially AP complexes, in neurons and epithelial cells. The following has bee elucidated during the term of this grant. 1.Foxl1 is a transcription factor expressed in mesenchymes of gastrointestinal tract. Foxl1-KO mice suffer from hardly detectable gastric acid secretion. Upon stimulation, proton pump, H,K-ATPase, translocates from internal tubulovesicles to the plasma membrane in gastric parietal cells, which leads to gastric acid secretion. In foxl1-KO mice, however, this translocation does not occur. We found that the expression SNAP25, a SNARE involved in the fusion of tubulovesicules and the plasma membrane, was significantly reduced, which likely is a major problem involved in acid secretion insufficiency in these mice.

2.We established and analyzed KO mice for AP-3B, the neuron-specific AP complex. AP-3B-KO mice suffered from epileptic seizure. Structural abnormalities of synaptic terminals and synaptic vesicles were seen in AP-3B-KO mice. Consistent with the observation, release of the inhibitory neurotransmitter, GABA, was impaired, and abnormal excitability was observed in electrophysiological examinations, in these KO mice. Taken together, these observations suggest that insufficient release of GABA causes imbalance in neuroexcitability in AP-3B-KO mice, which ultimately leads to epileptic seizure in these mice.

3.Previous studies on cultured cells have suggested that the AP-2 complex, involved in endocytosis, is not essential for cell survival. However, there should still be a small, residual amount of AP-2 in these experimental conditions, which may be sufficient for cells to survive. To test this possibility, we have tried to establish AP-2-KO mice. To our surprise, no homozygous embryo has been recovered at embryonic day 3.5 or later, suggesting that AP-2 is essential for cell survival or embryonic development at very early stages.

Research Products (6 results)

	All 2005 2004
	All Journal Article
[Journal Article] Clathrin adaptor AP-2 is essential for early embryonal development	2005 ~
[Journal Article] Clathrin adaptor AP-2 is essential for early embryonal development.	
[Journal Article] Reduction of SNAP25 in acid secretion defect of FoxI1-/-gastric parietal cells	2004 ~
[Journal Article] Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor	
[Journal Article] Reduction of SNAP25 in acid secretion defect of Foxl1-/-gastric parietal cells.	2004 ~
[Journal Article] Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor.	2004 ~

URL: https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-15370042/153700422005kenkyu_seika_hokoku_

Published: 2007-12-12