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Introduction

　An important group of pollutants associated with 
airborne particulate matter (PM) are polycyclic aro-
matic hydrocarbons (PAHs), which are constructed 
of two or more aromatic rings and are produced by 
incomplete combustion of fossil fuels.  PAHs have 
carcinogenicity and mutagenicity [1], and have been 
classified according to International Agency for Re-
search for Cancer (IARC) as carcinogenic or probably 
carcinogenic compounds [2, 3].  PAHs are believed 
to be the main causal compounds in the health effects 
of ambient air pollutants.  PAHs generate various de-
rivatives both in the atmosphere and in the body.  PAH 
derivatives are becoming known to have particular ef-
fects, such as oxidative stress and endocrine disrup-

tion.  Many studies give information on the possible 
roles of PAH derivatives in several diseases which 
have been increasing for several decades worldwide.  
However, a comprehensive assessment of the toxici-
ties of these compounds is not easy, since numerous 
PAH derivatives exist in the atmosphere and they have 
different toxicities.
　In recent years, studies of the structure and activity 
relationship have developed in the study of environ-
mental science.  This study can predict the possibil-
ity of the toxicities of compounds according to the 
relationship between chemical three-dimensional (3D) 
structures, even though the toxicities of their com-
pounds have not been measured.  Therefore, an analy-
sis of the structure and activity relationship is a key to 
know the health risk of numerous compounds in the 
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atmosphere, including PAH derivatives.
　This review provides information mainly about our 
recent observation assessing the relationship between 
structural and biological activities of PAH derivatives.

Generation of PAH derivatives

　It is well known that PAH derivatives such as hy-
droxylated PAHs (OHPAHs) and PAH quinones 
(PAHQs) are generated in the atmosphere through 
chemical reactions with nitrogen radicals (•NO3), 
hydroxide radicals (•OH) and ultraviolet light [4-6].  
These PAH derivatives are also generated in the body.  
After entering the body, PAHs bind to one of the nucle-
ar receptors, the aryl hydrocarbon receptor (AhR), and 
then induce the cytochrome P450 drug-metabolizing 
enzymes such as Cyp1a1, Cyp1a2 and Cyp1b1, which 
metabolize PAHs into various PAH derivatives.

Toxicities of PAH derivatives

　Concerning the toxicities of PAH derivatives, the 
mutagenicity induced by nitrated PAHs (NPAHs) has 
been well known for many years [7].  In recent years, it 
has been shown that other PAH derivatives also show 
various toxicities.  For instance, PAHQs produce reac-
tive oxygen species (ROS) through redox cycle, lead-
ing to ROS-related toxicities, such as physical DNA 
damage, oxidative stress and cell death [8-10].  The 
most important information is that PAH derivatives-
induced oxidative stress might be involved in various 
diseases, such as allergic reaction, circulatory organ 
system disease, infection and aging [11-17].  Cho et 
al.  have recently reported that phenanthrenequinone 
(PQ) induced the recruitment of inf lammatory cells, 
such as eosinophils and neutrophils, into the lung with 
the lung expression of pro-inf lammatory molecules 
such as interleukin (IL)-5 and eotaxin in vivo [19].  PQ 
also aggravates antigen-related airway inf lammation 
in mice, and PQ has adjuvant activity for antigen-spe-
cific immunoglobulin G (IgG), leading to aggravation 
of antigen-related airway inf lammation in mice [20].  
Because PQ is a major quinone in diesel exhaust par-
ticles (DEP) [18], which have been reported to cause 
lung inf lammatory-related impacts, these reports sug-
gest a key role of PQ in lung diseases by air pollutants.

　Interestingly, there are several reports suggesting 
that PAH derivatives have endocrine disruptor-like 
activities.  DEP extracts including numerous PAH 
derivatives exhibit estrogenic and/or antiestrogenic 
activities in human MCF-7 breast cancer cells and 
recombinant yeast cells [21-23].  These samples also 
exhibited a significant antiandrogenic effect in PC3/
AR human prostate carcinoma cells [24].  Actually, 
one of the OHPAHs, hydroxyphenanthrene (OHPhe) 
and hydroxyfluoranthene (OHFrt), constructed with 
three or four rings, were determined in the DEP ex-
tracts as antiandrogenic compounds.  Furthermore, 
strong estrogenic activities of several OHPAH iso-
mers, hydroxybenz[a]anthracene (OHBaA) and hy-
droxychrysene (OHCh), were also detected by screen-
ing evaluation using yeast two-hybrid assay [25].

Structure activity relationship of estrogenic/
antiestrogenic activity of PAH derivatives

　It has gradually become known that the endocrine 
disruptor-like activities of PAH derivatives are related 
to their structure.  It has been reported theoretically 
that the common structure of estrogenic compounds 
is a phenol with a hydrophobic moiety at the para-
position without a bulky group at the ortho-position 
[26].  This theory could be applied to the activities of 
PAH derivatives.  In our recent study, we investigated 
whether OHPAHs, PAHQs and PAH ketones (PAHKs) 
having two to six rings show estrogenic or antiestro-
genic activities [25, 27] by using the yeast two-hybrid 
assay system [28], in order to elucidate the character-
istics of PAH derivatives in more detail.
　Among the OHPAHs we tested, strong estrogenic 
activity was observed mainly in OHPAHs having 
4 rings.  We also observed strong antiestrogenic ac-
tivity in several OHPAHs having 4 and 5 rings [25].  
Because PAHs canʼt bind to the active site of human 
estrogen receptor (hER), it is strongly suggested that 
the hydroxyl modification and its location are key fac-
tors for the large difference in estrogenic activities be-
tween PAHs and OHPAHs.  At this time, relative bind-
ing affinity (RBA) is also correlated with estrogenic 
or antiestrogenic activity [29].  On the other hand, we 
have found that several PAHQs also showed strong 
antiestrogenic activities, suggesting that exhibition of 
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antiestrogenic activity mainly depends on the location 
of substituted groups rather than on the kinds of func-
tional groups [30].
　It has been reported that the phenol group (OH-3) of 
17β-estradiol (E2) makes hydrogen bonds with Glu353 
and Arg394 of hER and H2O and that the alcohol 
group (OH-17) of E2 has an affinity for the nitrogen 
atom of His524 of hER.  On the other hand, van der 
Walls interaction takes place between the benzene ring 
of E2 and the benzene ring of Phe404 of the binding 
site of hER [31, 32].  These reports suggest that 4-ring 
OHPAHs interact with the binding site of hER, and 
this binding mechanism depends on the phenol group.  
Furthermore, several physical parameters, such as the 
length-to-breadth (L/B) ratios of the rectangular van 
der Walls plane surrounding each PAH molecule and 
O-H distance, the distance between the oxygen atom 
of the phenol group and the hydrogen atom located 
farthest from the phenol group and partial charge, 
might be correlated with these binding mechanisms 
between E2 and estrogen receptor (ER), showing a 
correlation with estrogenic/antiestrogenic activities 
of OHPAHs and PAHQs.  Especially, L/B and O-H 
distance showed an effect on the activity (Fig. 1).   

Furthermore, compounds having a strong affinity to 
hER, such as E and diethylstilbestrol (DES), have two 
hydroxyl groups with the appropriate O-O distance 
[31].  The L/B ratios of E2 and DES were 1.545 and 
1.515, respectively.  These L/B ratios and O-O distanc-

es were close to the value of L/B ratios and O-H dis-
tances of the above strongly estrogenic OHPAHs in the 
small circle area (Fig. 2).  The area of the L/B ratio and 
O-H distance of the strongly antiestrogenic OHPAHs 
was much larger than that of the strongly estrogenic 
OHPAHs described above.  Although it is unclear why 
9-OHBaA was an exception, this result suggests that 
antagonistic OHPAHs can exhibit activity even when 
they bind to sites other than the active site of hER.
　These facts suggest that the activities of OHPAHs 
and PAHQs can be roughly predicted from their physi-
cal parameters, although differentiation between ago-
nistic and antagonistic effects is not easy.

Structural characteristic of oxidative stress 
induced by ortho-PAH quinones

　The oxidative stress induced by PAHQs has been 
extensively studied and several reviews are available 
[33-37].  Among PAHQs, ortho-PAHQs could form ei-
ther ortho-semiquinone anion radicals or catechols by 
electron nonenzymatic reduction.  These compounds 
are unstable, and easily return to quinones.  At that 
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Fig. 1.  Speculation of binding of OHPAH to hER.

Fig. 2.  Correlations between L/B ratio and O-H distance 
of estrogenic/antiestrogenic OHPAHs.  hERα was used in 
the assay.  ■: Relative effective potency of estrogenic activ-
ity (REPE) > 0.001, □ : REPE < 0.001, ◆ : Relative effective 
potency of antiestrogenic activity (REPAE) > 0.1, ◇: REPAE 
< 0.1, : diethylstilbestrol (DES), ● : 17β-estradiol (E2).  In 
the case of E2 and DES, O-O distance was used instead of 
O-H distance (Reproduced from ref. [25] with permission of 
Journal of Health Science).
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time, superoxide anion radical and hydrogen peroxide 
are generated (Fig. 3).  In addition, it was demonstrated 
that ortho-PAHQs, such as 9,10-phenanthrenequinone 
(9,10-PQ), can catalyze the transfer of electrons from 
dithiol to oxygen, generating superoxide anion radical.  
Regarding the para-quinone group, the generation of 
superoxide by semiquinone of Coenzyme Q (ubiqui-
none) has been also reported [38].  In fact, a large part 
of the electron leak to molecular oxygen results from 
the semiquinone form of CoQ generated during the 
Q-cycle in complex III or by a similar, less defined 
mechanism in complex I [39-41].  Therefore, most 
quinone compounds induce oxidative stress through 
an electronic mechanism induced by semiquinone.
　We recently gathered more information about ROS 
generation from various PAHQs that exist in the at-
mosphere.  In a study using thiol consumption as an 
index for ROS generation of PAHQs, we showed that 
ortho-PAHQs (9,10-PQ, 5,6-chrysenequinone (5,6-
CQ) and benzo[a]pyrene-5,6-quinone (B[a]P-5,6-Q) 
consumed much more of the thiol groups, while pa-
ra-PAHQs (1,4-naphthoquinone (1,4-NQ), 9,10-an-
thraquinone (9,10-AQ), 1,4-anthraquinone (1,4-AQ), 
1,4-phenanthrenequinone (1,4-PQ), 1,2-benzoanthra-
quinone (1,2-BAQ), 1,4-chrysenequinone (1,4-CQ) 

and benzo[c]phenanthren-1,4-quinone (B[c]P-1,4-Q) 
didnʼt.  We got the same results of viability for each 
PAHQ.  Three of the ortho-PAHQs (9, 10-PQ, 5, 6-CQ 
and B[c]P-5,6-Q) significantly reduced the viability 
of A549 cells to about 20% of the control, but para-
PAHQs had little effect on viability (Fig. 4).  These 
results provided the initial evidence that there was a 
structure activity relationship by which ortho-PAHQs 
have a stronger potential for ROS generation than pa-
ra-PAHQs.
　Actually, several ortho-PAHQs such as 9,10-PQ and 
9,10-AQ have been reported to exist in the atmosphere 
at the concentration range of 20 to 730 pg m‒3 [18, 
42, 43].  Other ortho-PAHQs with strong biological 
activities might also exist in the atmosphere.  In ad-
dition, ortho-PAHQs can be generated in the human 
body through the metabolism of PAHs by cytochrome 
P4501A1 [44, 13].  Therefore, our data suggest that 
PAHQs, especially ortho-PAHQs, need to be paid 
more attention from the aspect of many kinds of dis-
eases, such as pulmonary dysfunctional diseases, car-
cinogenesis, chronic inf lammatory process, and acute 
symptomatic responses in the respiratory tract et al.  
[18, 45-47]. 
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多環芳香族炭化水素誘導体が示す毒性作用

戸次　加奈江1，鳥羽　陽2，唐　寧2, 3，亀田　貴之2，早川　和一2
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要　　　旨：多環芳香族炭化水素類（PAHs）は大気粉塵などの多種類の環境汚染物質に含まれ，長年の研究によって
多様な生体影響を引き起こすことが知られている．一方で，PAHsは生体内での代謝反応や，大気中での化学反応に
よって多種多様な誘導体を生成することが知られている．近年では，PAHだけでなくPAH誘導体の毒性影響が着目
されており，エストロゲン様 /抗エストロゲン作用，酸化ストレス反応など，PAHとは異なる誘導体独自の毒性影響の
存在が報告されている．また，生成するPAH誘導体には多くの構造異性体が存在するが，PAH誘導体が示す毒性作
用と構造との間に相関性，いわゆる構造活性相関があることが示されている．以上の研究は，環境中に存在するPAH
誘導体の生体影響を解明する上で重要な研究であるとともに，多種多様なPAH誘導体の総合的な毒性影響予測に貢
献できると考えられる．
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